Instructional Objectives

Size: px
Start display at page:

Download "Instructional Objectives"

Transcription

1 GE 6477 DISCONTINUOUS ROCK 7. Shear Strength of Discontinuities Dr. Norbert H. Maerz Missouri University of Science and Technology (573) Instructional Objectives 1. Explain the differences between a simple frictional model of sliding between and the Mohr Colomb model for sliding on a discontinuity. 2. Explain the difference between peak and residual shear strength and justify the use of either model. 3. Critique the advantages and disadvantages in using triaxial vs direct shear test to establish the Mohr- Coulomb parameters. 4. Describe the shortcomings of the Mohr-Columb shear strength criterion, and how these are overcome in the Patton and Barton criteria. 5. Predict the effect of a) dilation and b) shear displacement on the fidelity of the measurements of the shear strength parameters. 1

2 Instructional Objectives 6. Justify the Patton and Barton criteria in terms of the physical representation of the roughness representations. 7. Explain what the Barton criterion has that is missing in the Patton criterion. 8. Suggest why the other shear strength models presented in this section are not widely used. 9. Predict how the scale effect would affect the behavior of rock discontinuities in shear. Image(s) from the collection of Dr. John Franklin. 2

3 Shear Strength of Joints Largely frictional property Some influence of cohesion Very sensitive to normal or confining stress Principle of peak vs. residual strength Simple Friction Model 1 R R F F' ' R ' F 3

4 Rock shear strength model Triaxial tests on discontinuities Image(s) from the collection of Dr. John Franklin. 4

5 Triaxial tests on discontinuities Traixial tests on discontinuities c 3 1 5

6 Direct shear tests Direct shear tests Image(s) from the collection of Dr. John Franklin. 6

7 Direct shear tests Review of stress- strain relationships 7

8 Direct shear test results Big direct shear tests Image(s) from the collection of Dr. John Franklin. 8

9 Mohr-Coulomb model c n c n tan M-C model vs. data 9

10 Picture(s) from Gonzales de Vallejo and Ferrer What makes a good model? 1. Accurate, faithful. 2. Simple If no one understand it, it goes nowhere. 3. Lowest possible number of parameters If there are too many it is too difficult. 4. Critical parameters are ones that are not easy to measure or estimate, and the model is especially sensitive to them. 10

11 Bilinear failure criteria What happens during shearing of rough surfaces? 1. Dilation. 2. Destruction of asperities. Bilinear failure criteria: Pattons i- angle 11

12 Bilinear failure criteria: Pattons i- angle For low normal stress p tan i n u For high normal stress p S j n tan r Picture(s) from Gonzales de Vallejo and Ferrer 12

13 Dilation Dilation 13

14 Barton s curvilinear failure criterion Empirical, curilinear three-parameter empirical shear strength model Uses Joint Roughness Coefficient, Joint (wall) Compressive Strength, and a base friction angle n tanjrc log 10 JCS n b JRC (Joint roughness coefficient). Typically estimated, or calculated from a digitized profile. Range Picture(s) from Gonzales de Vallejo and Ferrer 14

15 JCS (Joint wall Compressive Strength) from Schmidt Hardness Image(s) from the collection of Dr. John Franklin. Tilt test on core Base angle of friction tan tan b Typical guess = 30 degrees 15

16 Barton Model Barton vs Patton n tanjrc log 10 JCS b n n tan i u Equating IF THEN JCS JRC log 10 b n b u JCS JRC log 10 i n i u 16

17 Barton Model Roughness Directional. Can be thought of as a waveform. No direct relationship between roughness and shear strength. 17

18 Roughness Amplitude, wavelength, slope. Ratio of filling thickness to amplitude. Roughness to shear strength 1) Generate roughness profiles. 2) Measure some parameters on profile, such as average slope, use in Patton s model. 3) Empirical relationship to a parameter that can be used in a model, such as JRC, use in Barton s model. 18

19 Shadow Profilometry Image(s) from the collection of Dr. John Franklin. Principle of shadow profilometry 19

20 Angle of shadow profile 20

21 Shadow Profilometry Roughness Profile with Z2 (root mean square of the first derivative), i (average micro inclination angle), Rp (roughness profile index) Shadow Profilometry 21

22 Shadow profilometry Image(s) from the collection of Dr. John Franklin. Precision of shadow profilometry Greater accuracy and precision 22

23 Roughness to shear strength: Barton type curves JRC 401 R 1 p Roughness to shear strength, tilt tests on cores JRC 411 R 1 p 23

24 Shadow profilometry paper Ladanyi and Archambault model 24

25 Denby and Scoble Model B A n Reeves Model n tan t tan n t C Z 2 Uses Z 2 (root mean square of the first derivative) and empircal constants C, n to fit a power law curve. 25

26 Models superimposed Other models: Abound in literature, Suffer from obscurity. 26

27 Roughness scale effect Corrugated cardboard Rock joint surface Roughness scale effect 27

28 Shear strength scale effect Picture(s) from Gonzales de Vallejo and Ferrer Resolving shear scale effects Small portable shear machines - core sized Large lab shear machines mm on side Field shearing machines - several m on end Use small tests to get residual or ultimate or base friction. Use roughness (whichever measure) on the scale of the potential failure. Use back analysis 28

29 Time Dependent behavior of joints - rheological elements Time Dependent behavior of joints - rheological model 29

Instructional Objectives. Why use mass classification? What is rock mass classification? 3 Pillars of empirical design and rock mass classification

Instructional Objectives. Why use mass classification? What is rock mass classification? 3 Pillars of empirical design and rock mass classification GE 6477 DISCONTINUOUS ROCK 5. Rock Mass Classification and Empirical Design Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1.

More information

SOIL MECHANICS Assignment #7: Shear Strength Solution.

SOIL MECHANICS Assignment #7: Shear Strength Solution. 14.330 SOIL MECHANICS Assignment #7: Shear Strength Solution. PROBLEM #1: GIVEN: Direct Shear test results from a SP soil shown in Figure A (from 14.330_2012_Assignment_#8_P1.csv on the course website).

More information

SHEAR BEHAVIOUR OF JOINTED ROCK: A STATE OF ART

SHEAR BEHAVIOUR OF JOINTED ROCK: A STATE OF ART IGC 2009, Guntur, INDIA SHEAR BEHAVIOUR OF JOINTED ROCK: A STATE OF ART A.K. Shrivastava Lecturer, Department of Civil Engineering, Delhi College of Engineering, Delhi 110 042, India. E-mail: aksrivastava@dce.ac.in

More information

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK Contents 7.1 Introduction 7.2 Studies On Jointed Rock Mass 7.2.1 Joint Intensity 7.2.2 Orientation Of Joints 7.2.3 Joint Roughness/Joint Strength

More information

Rock Joint and Rock Mass Shear Strength

Rock Joint and Rock Mass Shear Strength Rock Joint and Rock Mass Shear Strength GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y5 Main: +1 403 269 2002 Fax: +1 403 266 4851 Introduction SLOPE/W

More information

Effects of shearing direction on shear behaviour of rock joints

Effects of shearing direction on shear behaviour of rock joints University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2014 Effects of shearing direction on shear behaviour of rock joints Ali Mirzaghorbanali

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

A modified model of a single rock joint s shear behavior in

A modified model of a single rock joint s shear behavior in This paper is accepted for publication in the International Journal of Mining Science and Technology A modified model of a single rock joint s shear behavior in limestone specimens Dindarloo Saeid R a*,

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact in Rock Dump Design

Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact in Rock Dump Design Keynote Address Rock Dumps 2008 A. Fourie (ed) 2008 Australian Centre for Geomechanics, Perth, ISBN 978-0-9804185-3-8 Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Determination of mobilized asperity parameters to define rock joint shear strength in low normal stress conditions

Determination of mobilized asperity parameters to define rock joint shear strength in low normal stress conditions Determination of mobilized asperity parameters to define rock joint shear strength in low normal stress conditions D.H. Kim 1, I. Gratchev 2, A.S. Balasubramaniam 3 and M. Chung 4 1 Faculty of Griffith

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 3. Description of Discontinuities Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the ISRM

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH. Y. F. Wei, a,1 W. X. Fu, b UDC and D. X. Nie a

NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH. Y. F. Wei, a,1 W. X. Fu, b UDC and D. X. Nie a DOI 10.1007/s11223-015-9649-8 Strength of Materials, Vol. 47, No. 1, January, 2015 NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH Y. F. Wei, a,1 W. X. Fu, b UDC 539.4 and D. X. Nie a The triaxial testing

More information

THE VOUSSOIR BEAM REACTION CURVE

THE VOUSSOIR BEAM REACTION CURVE THE VOUSSOIR BEAM REACTION CURVE Yossef H. Hatzor Ben-Gurion University, Department of Geological and Environmental Sciences Beer-Sheva, Israel, 84105 ABSTRACT: The influence of joint spacing (s) on the

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

DETERMINATION OF ROCK JOINT SHEAR STRENGTH BASED ON ROCK PHYSICAL PROPERTIES

DETERMINATION OF ROCK JOINT SHEAR STRENGTH BASED ON ROCK PHYSICAL PROPERTIES DETERMINATION OF ROCK JOINT SHEAR STRENGTH BASED ON ROCK PHYSICAL PROPERTIES Rutthapol Kemthong A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd.

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd. LECTURE 0 6. STRESSES AROUND UNDERGROUND OPENING contd. CASE : When σ x = 0 For σ x = 0, the maximum tangential stress is three times the applied stress and occurs at the boundary on the X-axis that is

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION:

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION: 14.330 SOIL MECHANICS Assignment #8: Shear Strength Solution. PROBLEM #1: GIVEN: A regional residential building contractor is planning on building a custom 4,100 ft² home on Martha s Vineyard, MA. The

More information

Effect of time and wear on the basic friction angle of rock discontinuities

Effect of time and wear on the basic friction angle of rock discontinuities Effect of time and wear on the basic friction angle of rock discontinuities Ignacio Pérez Rey, Leandro R. Alejano, Noelia González Pastoriza, Javier González, Javier Arzúa John P. Harrison Rock Mechanics

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

CHAPTER FIVE CLASSIFICATION OF SHEAR STRENGTH OF JOINTS IN ROCK

CHAPTER FIVE CLASSIFICATION OF SHEAR STRENGTH OF JOINTS IN ROCK CHAPTER FIVE CLASSIFICATION OF SHEAR STRENGTH OF JOINTS IN ROCK 5.1 Introduction The shear strength of joint surfaces in a rock mass is a difficult parameter to determine. Several researchers, including

More information

Rock slope failure along non persistent joints insights from fracture mechanics approach

Rock slope failure along non persistent joints insights from fracture mechanics approach Rock slope failure along non persistent joints insights from fracture mechanics approach Louis N.Y. Wong PhD(MIT), BSc(HKU) Assistant Professor and Assistant Chair (Academic) Nanyang Technological University,

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Failure and Failure Theories for Anisotropic Rocks

Failure and Failure Theories for Anisotropic Rocks 17th international Mining Congress and Exhibition of Turkey- IMCET 2001, 2001, ISBN 975-395-417-4 Failure and Failure Theories for Anisotropic Rocks E. Yaşar Department of Mining Engineering, Çukurova

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

Reliability analyses of rock slope stability

Reliability analyses of rock slope stability Reliability analyses of rock slope stability C. Cherubini & G. Vessia Politecnico di Bari, Bari, Italy ABSTRACT: The benchmark proposed is related to the topic of instability analyses in anchored rock

More information

Rock Mechanics and Seismology Laboratory

Rock Mechanics and Seismology Laboratory CAEE 211 Geology Laboratory 6 Lab Date: 29 July 2016 Rock Mechanics and Seismology Laboratory Due Date: 5 August 2016 Attendance (based on signing): 30 points Submitting Student Name: Members of laboratory

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Rock Mechanics and Rock Engineering

Rock Mechanics and Rock Engineering Rock Mechanics and Rock Engineering Overview Rock mechanics is the theoretical and applied science of the mechanical behaviour of rock and rock masses. Rock mechanics deals with the mechanical properties

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils STRESSES IN A SOIL ELEMENT t s v Analyze Effective Stresses (s ) Load carried by Soil t Where: s H t t s H s = t f = s v = s H = t = s v Stresses in a Soil Element after Figure

More information

Numerical models on anisotropy of rocks

Numerical models on anisotropy of rocks NGM 206 Reykjavik Proceedings of the 7 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Numerical models on anisotropy of rocks Henok M. Kassa Statoil ASA, Norway, hmka@statoil.com

More information

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone Rock Mechanics, Fuenkajorn & Phien-wej (eds) 211. ISBN 978 974 533 636 Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone T. Pobwandee & K. Fuenkajorn Geomechanics

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

A GEOMETRICAL APPROACH FOR THE ESTIMATION OF SCALE EFFECTS IN ROCK JOINT BEHAVIOUR

A GEOMETRICAL APPROACH FOR THE ESTIMATION OF SCALE EFFECTS IN ROCK JOINT BEHAVIOUR 57ième CONGRÈS CANADIEN DE GÉOTECHNIQUE 5ième CONGRÈS CONJOINT SCG/AIH-CNN 57TH CANADIAN GEOTECHNICAL CONFERENCE 5TH JOINT CGS/IAH-CNC CONFERENCE A GEOMETRICAL APPROACH FOR THE ESTIMATION OF SCALE EFFECTS

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

CHAPTER 8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS CHAPTER 8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 8.1 SUMMARY This thesis aimed to investigate the mechanisms behind valley closure and upsidence over unmined coal and old longwall panels using UDEC.

More information

Lecture Notes 5

Lecture Notes 5 1.5 Lecture Notes 5 Quantities in Different Coordinate Systems How to express quantities in different coordinate systems? x 3 x 3 P Direction Cosines Axis φ 11 φ 3 φ 1 x x x x 3 11 1 13 x 1 3 x 3 31 3

More information

Welcome back. So, in the last lecture we were seeing or we were discussing about the CU test. (Refer Slide Time: 00:22)

Welcome back. So, in the last lecture we were seeing or we were discussing about the CU test. (Refer Slide Time: 00:22) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 43 Shear Strength of Soils Keywords: Triaxial shear test, unconsolidated undrained

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

Numerical Simulation of Unsaturated Infilled Joints in Shear

Numerical Simulation of Unsaturated Infilled Joints in Shear University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2018 Numerical Simulation of Unsaturated Infilled Joints in Shear Libin Gong University

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 51 Module 4: Lecture 2 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-coulomb failure

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

Empirical Design in Geotechnical Engineering

Empirical Design in Geotechnical Engineering EOSC433: Geotechnical Engineering Practice & Design Lecture 5: Empirical Design (Rock Mass Classification & Characterization) 1of 42 Erik Eberhardt UBC Geological Engineering EOSC 433 (2013) Empirical

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985 #1586}

Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985 #1586} 12.524, 2005 09 28 LE04: Friction and Constitutive Laws 1 Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985

More information

Pillar strength estimates for foliated and inclined pillars in schistose material

Pillar strength estimates for foliated and inclined pillars in schistose material Pillar strength estimates for foliated and inclined pillars in schistose material L.J. Lorig Itasca Consulting Group, Inc., Minneapolis, MN, USA A. Cabrera Itasca S.A., Santiago, Chile ABSTRACT: Pillar

More information

Open Pit Rockslide Runout

Open Pit Rockslide Runout EOSC433/536: Geological Engineering Practice I Rock Engineering Lecture 5: Empirical Design & Rock Mass Characterization 1of 46 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) Open Pit Rockslide

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 8. Fracture Detection Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the advantages and disadvantages

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

A Document on ASSESSMENT OF ENGINEERING PROPERTIES OF ROCK-MASS IN CIVIL ENGINEERING APPLICATIONS. Compiled by Mahendra Singh

A Document on ASSESSMENT OF ENGINEERING PROPERTIES OF ROCK-MASS IN CIVIL ENGINEERING APPLICATIONS. Compiled by Mahendra Singh A Document on ASSESSMENT OF ENGINEERING PROPERTIES OF ROCK-MASS IN CIVIL ENGINEERING APPLICATIONS Compiled by Mahendra Singh Contributors: T. Ramamurthy Bhawani Singh M.N. Viladkar K. S. Rao T.G. Sitharam

More information

Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics

Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics 1.2.6 Curvature of the Failure Envelope Effect of angularity of soil particles Effect of rate of loading during the test 1.2.7 Shear

More information

(Refer Slide Time: 04:21 min)

(Refer Slide Time: 04:21 min) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 44 Shear Strength of Soils Lecture No.2 Dear students today we shall go through yet

More information

Analysis of forming - Slab Method

Analysis of forming - Slab Method Analysis of forming - Slab Method Forming of materials is a complex process, involving either biaxial or triaxial state of stress on the material being formed. Analysis of the forming process, therefore

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Geotechnical Investigation and Numerical Analysis of Rockfall in South Coast of Gunung Kidul Regency

Geotechnical Investigation and Numerical Analysis of Rockfall in South Coast of Gunung Kidul Regency Journal of the Civil Engineering Forum Vol. 3 No. 1 (January 2017) Geotechnical Investigation and Numerical Analysis of Rockfall in South Coast of Gunung Kidul Regency Odhi Attabik Illiyin PT. PP (Persero)

More information

The effect of stope inclination and wall rock roughness on backfill free face stability

The effect of stope inclination and wall rock roughness on backfill free face stability The effect of stope inclination and wall rock roughness on backfill free face stability Dirige, A. P. E., McNearny, R. L., and Thompson, D. S. Montana Tech of the University of Montana, Butte, Montana,

More information

P Forsmark site investigation. Borehole: KFM01A Results of tilt testing. Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo

P Forsmark site investigation. Borehole: KFM01A Results of tilt testing. Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo P-03-108 Forsmark site investigation Borehole: KFM01A Results of tilt testing Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo June 2003 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel

More information

FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING

FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING Toshinori SAKAI Department of Environmental Science and Technology, Mie University, Tsu, Japan Tadatsugu TANAKA Graduate School

More information

SHEAR STRENGTH I YULVI ZAIKA

SHEAR STRENGTH I YULVI ZAIKA SHEAR STRENGTH I YULVI ZAIKA MATERI Keruntuhan mohr coulomb, stress paths, kuat geser tanah non kohesif dan kohesif, evaluasi kuat geser di lapangan, tegangan normal dan tegangan geser pada sebuah bidang

More information

Study on Dynamic Properties of Rock Discontinuity using Dynamic Direct Shear Test Machine

Study on Dynamic Properties of Rock Discontinuity using Dynamic Direct Shear Test Machine Study on Dynamic Properties of Rock Discontinuity using Dynamic Direct Shear Test Machine Jun Yoshida a*, Ryunoshin Yoshinaka b, Takeshi Sasaki a, Masahiko Osada c a SUNCOH Consultant Co. Ltd., Tokyo,

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

(Refer Slide Time 1:07 min)

(Refer Slide Time 1:07 min) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 46 Shear Strength of Soils Lecture No.4 Students we had 3 lectures so far on this

More information

Chapter 6 Bearing Capacity

Chapter 6 Bearing Capacity Chapter 6 Bearing Capacity 6-1. Scope This chapter provides guidance for the determination of the ultimate and allowable bearing stress values for foundations on rock. The chapter is subdivided into four

More information

Session 3: Geology and Rock Mechanics Fundamentals

Session 3: Geology and Rock Mechanics Fundamentals Session 3: Geology and Rock Mechanics Fundamentals Geotechnical Engineering Appreciation Course (Jointly organised by IES Academy and GeoSS) Dr Zhou Yingxin, Senior Principal Engineer, DSTA Adjuct Associate

More information

ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE

ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE Paul MARINOS NTUA, School of Civil Engineering, 9 Iroon Polytechniou str., Athens, 157 80, Greece, e-mail : marinos@central.ntua.gr ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE 1. INTRODUCTION The

More information

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods Indian Geotechnical Conference 2017 GeoNEst 14-16 December 2017, IIT Guwahati, India Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods Aswathi CK Amalesh

More information

Shear strength model for sediment-infilled rock discontinuities and field applications

Shear strength model for sediment-infilled rock discontinuities and field applications Shear strength model for sediment-infilled rock discontinuities and field applications Buddhima Indraratna 1, Wuditha Premadasa 2, Jan Nemcik 3 and Mylvaganam Jayanathan 4 1 Centre for Geomechanics and

More information

Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

friction friction a-b slow fast increases during sliding

friction friction a-b slow fast increases during sliding µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

More information

With high enough plate forces in opposite directions Bolts. How do these fail? Each pin has sheared into two pieces.

With high enough plate forces in opposite directions Bolts. How do these fail? Each pin has sheared into two pieces. SHEAR STRENGTH In general, the shear strength of any material is the load per unit area or pressure that it can withstand before undergoing shearing failure. Shearing When you Pins hear can Shear be used

More information

GEO The Åknes rock slope. Content. Dr. Vidar Kveldsvik NGI

GEO The Åknes rock slope. Content. Dr. Vidar Kveldsvik NGI GEO 4180 The Åknes rock slope Dr. Vidar Kveldsvik NGI Content Background on large rock slides Triggers Stability analysis Risk mitigation (risk reduction) The Åknes rock slope 1 Background Landslides due

More information

Stress-Permeability Relationships in Low Permeability Systems: Application to Shear Fractures

Stress-Permeability Relationships in Low Permeability Systems: Application to Shear Fractures PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Stress-Permeability Relationships in Low Permeability Systems:

More information

13 Step-Path Failure of Rock Slopes

13 Step-Path Failure of Rock Slopes Step-Path Failure of Rock Slopes 13-1 13 Step-Path Failure of Rock Slopes 13.1 Problem Statement While UDEC represents a jointed rock structure as a system of discrete blocks by default, it is also a straightforward

More information

Module 9 : Foundation on rocks

Module 9 : Foundation on rocks LECTURE 32 9.3 BEARING CAPCITY contd... 9.3.2 Safe bearing pressure There are different methods are available to determine the safe bearing pressure on rocks. However, the applicability of different methods

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour

Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour 13 th International Brick and Block Masonry Conference Amsterdam, July 4-7, 2004 Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour H. R.

More information

STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY

STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY Yoshikazu YAMAGUCHI 1, Hiroyuki SATOH 2, Naoyoshi HAYASHI 3, Hisayuki YOSHINAGA 4 1, Dam Structures Research Team(DSRT),

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

ROCK MASS PROPERTIES FOR TUNNELLING

ROCK MASS PROPERTIES FOR TUNNELLING ROCK MASS PROPERTIES FOR TUNNELLING Robert Bertuzzi 2 nd November 2017 1 Driver Estimating the strength and deformation characteristics of a rock mass for tunnel design is generally based on empiricism

More information