Stress partitioning and Main wellbore failure in the West Tuna Area, Heading Gippsland Basin Emma Nelson 1 Richard Authors Hillis 2 Scott Mildren 3

Size: px
Start display at page:

Download "Stress partitioning and Main wellbore failure in the West Tuna Area, Heading Gippsland Basin Emma Nelson 1 Richard Authors Hillis 2 Scott Mildren 3"

Transcription

1 Exploration Geophysics (2006) 37, Stress partitioning and Main wellbore failure in the West Tuna Area, Heading Gippsland Basin Emma Nelson 1 Richard Authors Hillis 2 Scott Mildren 3 Key Words: Gippsland Basin, wellbore Key Words: stability, key present-day words stress, finite element modelling ABSTRACT Image logs from the deep intra-latrobe and Golden Beach Subgroups of the West Tuna area in the Gippsland Basin reveal that wellbore failure is restricted to fast, cemented sandstone units and does not occur in interbedded shales. Triaxial testing and analysis of empirically derived, wireline-log based strength equations reveals uniaxial compressive strengths of 60 MPa in sandstones and 30 MPa in shales in the West Tuna area. Conventional analysis of wellbore failure assumes constant stresses in the shales and adjacent sandstones and that breakout is focused in the weaker units. We propose that the flat lying, strong, cemented sandstone units in the West Tuna area act as a stress-bearing framework within the present-day stress regime that is characterised by very high horizontal stresses (S Hmax > S hmin = S v ). Stress focusing in strong sandstone units can result in high stress concentrations at the wellbore wall and account for the restriction of wellbore failure to the strong sandstone units. Finite element methods were used to investigate the stress distribution in horizontal, interbedded strong sands and weak shales subject to a high present-day stress state such as exists in the West Tuna area (S Hmax > S v ~ S hmin ). Modelling using the present-day stress tensor and estimated elastic properties for the sandstones and shales indicates that the present-day stress is partitioned between strong inter-bedded sandstones and weaker shales, with high stress being focussed into the strong sandstones. The stress focusing causes borehole breakout in the sands despite their higher strength. Conversely, stresses are too low to generate wellbore failure in the weaker shales. INTRODUCTION Stress magnitudes and orientations have been shown to vary substantially between lithologies in petroleum fields (Warpinski et al., 1985; Evans et al., 1989; Raaen et al., 1996). It has been proposed that the variation in stress distribution through different lithological units in a sedimentary basin (herein referred to as stress partitioning) depends on relative rock strength and the present-day stress state (Plumb, 1994; Reches, 1998). Plumb (1994) found that the ratio of minimum to vertical present-day stress was 1 BP Exploration (formerly at Australian School of Petroleum), Chertsey Road, Sunbury-on-Thames Middlesex TW16 17LN United Kingdom Phone: +44 (0) Facsimile: +44 (0) Emma.Nelson@bp.com 2 Australian School of Petroleum, The University of Adelaide, SA, Australia, JRS Petroleum Research Pty. Ltd Woodforde Rd Magill, SA, Manuscript received 6 January, Revised manuscript received Fig. 1. Location of the West Tuna study area in the Gippsland Basin (offshore Victoria). 40% greater in hard carbonate rocks, and 20% higher in hard sandstones, than in the weak shales in sedimentary basins at high present-day stress (reverse stress regimes). Similarly, the ratio of minimum to vertical stress was found to be 4 to 15% higher in weak shales than in strong sandstones in basins in a relaxed present-day stress state (normal fault regimes). Although reliable methods have been developed for estimating present-day stress in individual reservoirs using leak-off tests during drilling or specialised injection tests (such as mini-frac tests), these are often expensive and do not test all lithological units intersected by the wellbore. As such, the present-day stress tensor can often only be examined at a field or basin scale. The low spatial resolution of stress data is a problem in the assessment of wellbore stability and planning of fracture stimulation operations, where the present-day stress tensor is required in both the reservoir and surrounding non-reservoir units (Desroches and Woods, 1998; Smith et al., 2001; Barree, 2004). The interpretation of six image logs covering the deep intra- Latrobe and Golden Beach Subgroups in the West Tuna area of the Gippsland Basin (Figure 1) revealed that borehole breakout occurs in strong, cemented sandstones and is absent in the weaker shales. This is inconsistent with conventional wellbore stability analysis, which tends to assume that wellbore failure occurs in the weaker units (Hickman et al., 1985; Zoback et al., 1993; Reinecker and Lenhardt, 1999). This paper reviews the presentday stress in the Gippsland Basin and compares the relative strengths of sandstones and shales from the deep intra-latrobe and Golden Beach Subgroups. Finite element modelling is then used to show that the high present-day horizontal stresses that exist in the Gippsland Basin may be partitioned to strong lithological layers and can account for the occurrence of breakout in the cemented sandstones. 215

2 PRESENT-DAY STRESS IN THE WEST TUNA AREA The orientation of 96 borehole breakouts (194 m in cumulative length) and four drilling-induced tensile fractures (55 m in cumulative length) interpreted from six image logs consistently indicate that S Hmax is oriented ~138 N in the West Tuna area. The vertical stress magnitude was derived from density, sonic and checkshot velocity data from the Tuna-4 exploration well and the West Tuna-39 development well. The two vertical stress profiles indicate that S v is consistent across the West Tuna area, ranging from 20 MPa at 1 km to 66 MPa at 3 km depth (Figure 2). The lower bound to the leak-off pressures from deep intra-latrobe and Golden Beach Subgroups suggests that the minimum horizontal stress gradient (S hmin ) is ~20 MPa/km (close to S v ; Figure 2). Modular Dynamic Test pressures indicate that pore pressure is hydrostatic in the sandstones above 2800 m (Figure 2). The S Hmax magnitude can be constrained using observations of drillinginduced tensile fractures (DITFs) on image logs and the criterion for formation of DITFs in elastic, impermeable rocks in vertical wellbores (Peska and Zoback, 1995; Brudy and Zoback, 1999; Nelson et al., 2005). Assuming the stress magnitudes defined above, then the occurrence of DITFs in the West Tuna area constrains the magnitude of S Hmax to ~ 40 MPa/km (in sands above 2800 m). The present-day stress tensor suggests that the West Tuna area is on the boundary between strike-slip and reverse faulting stress regimes (i.e., S Hmax > S v S hmin ; Figure 2). Fig. 2. Stress depth plot for the West Tuna area. The diamonds represent the depths at which the stress gradients were assessed. S hmin has been determined from leak-off tests (red data), S v from density and check shot data (light green gradient from West Tuna-39, dark green gradient from Tuna-4), S Hmax from the occurrence of drilling-induced tensile fractures (orange data) and P p from MDT tests (blue data). The orientation of S Hmax in the West Tuna area is consistent with previously determined orientations in the greater Gippsland Basin and southeast Australia as a whole (Nelson and Hillis, 2005; Nelson et al., 2006). The high present-day stress magnitudes are also consistent with earthquake focal mechanisms and the neotectonic record, including significant reverse faulting in Southeast Australia (Nelson et al., 2006). The orientation of the horizontal stress, and the high, present-day horizontal stress magnitudes in the Gippsland Basin have been suggested to be a consequence of contemporary oblique compression along the New Zealand plate boundary (Coblentz et al., 1995; Sandiford, 2003; Nelson et al., 2006). ROCK STRENGTH IN THE WEST TUNA AREA Knowledge of the compressive strength of rocks is important to understanding wellbore failure in petroleum fields (Zoback et al., 1985). The uniaxial compressive strength (UCS) of rocks can be determined from laboratory testing of core samples or estimated using empirical relationships based on wireline log data. Both of these methods have been used in this study and are outlined in the section below. Laboratory testing of core Fig. 3. Borehole breakout in a cemented sandstone interpreted on the West Tuna-8 image log. Resistive features around the wellbore appear white, conductive features appear brown or black. The track on the right shows a dynamic presentation of the image log, while the track on the left shows a static image. Note the low gamma ray count, fast sonic velocity, and reasonably high density. The static image shows true resistivity and indicates that the resistivity is quite high in the sandstone unit. Two laboratory strength measurements were available from triaxial tests undertaken on the deep intra-latrobe and Golden Beach Subgroups in the West Tuna area (Nelson, 2002). These sandstone units are characterised by low porosity, low permeability (<5 md), high resistivity, low gamma ray count ( ~ gpi) and a high sonic velocity (Δt = µs/ft), which suggests that they are cemented and likely to be hard and strong (Figure 3). Failure envelopes constructed from the multi-stage triaxial test data indicate that the sandstones have a cohesion (C) of ~ 13.5 MPa and a co-efficient of friction (µ) of ~ 0.90 (Figure 4). The uniaxial compressive strength (C 0 ) is not directly measured in a triaxial test but can be determined by substituting C and µ into equation (1) below. Equation (1) indicates that the average uniaxial compressive strength of the two sandstone samples is ~ 60 MPa: ( ). (1) C 0 = 2C ( 2 + 1)

3 Unfortunately no laboratory testing of UCS in shales from the deep intra-latrobe or Golden Beach Subgroups was available in the Gippsland Basin. Triaxial test data was available for one shale sample from the Lakes Entrance formation ( ~ 2400 m depth; Figure 4). The failure envelope derived from the triaxial test results indicates a cohesion of ~ 8 MPa and a coefficient of friction of 0.6. When these values are substituted into equation (1) the uniaxial compressive strength is determined to be ~ 30 MPa. Shales in the deep intra- Latrobe and Golden Beach subgroups are characterised by their high gamma count (> 100 gpi) and relatively slow sonic velocity (Δt = µs/ft). Analysis of wireline log data over the sampled interval reveals that the shale tested is (petrophysically) very similar to those at depth (GR = 100 gpi, Δt = 90 µs/ft). Hence the shale tested is believed to be representative of those observed in the image logs in this study. Empirical relationships Since only three UCS tests were available in the Gippsland Basin, generic empirical relationships were used to determine UCS from sonic logs in sands and shales from three West Tuna wells. Log-based lithological discrimination was based on gamma ray (GR), density (RHOB), sonic velocity (DT) and caliper (CALI) logs. The logs were first examined to determine if the lithology was coal (distinguished by low DT, RHOB and GR), and if not the GR was used to discriminate sandstone and shale. Sandstones were interpreted where GR < 80 API, shales were interpreted where the GR > 100 API. The sonic velocities from each lithology were then substituted into the sand or shale empirical relationships: Fig. 4. Mohr circles and Mohr-Coulomb failure envelope from triaxial testing of a cemented sandstone in the Golden Beach sub-group and a shale from the Lakes Entrance formation. The sandstone sample has a µ approximately equal to 0.9, a cohesive strength approximately equal to 13.5 MPa and a compressive strength of 60 MPa. The shale sample has a µ approximately equal to 0.6, a cohesive strength approximately equal to 8 MPa and a compressive strength of 30 MPa. (2) (3) high horizontal present-day stress environment such as exists in the West Tuna area. Stresses Around a Vertical Wellbore As a well is drilled, the wellbore wall must support stresses previously carried by the removed rock. This causes a stress concentration about the borehole that depends on the orientations of the wellbore and of the far field present-day stress (Kirsch, 1898; Jaeger and Cook, 1979; Amadei and Stephansson, 1997). Three principal stresses act on the wall of a vertical well (Kirsch, 1898), these are: the radial stress (σ rr ) which acts normal to the wellbore, where UCS is in MPa and Δt is in microseconds per foot (µs/ft). An example UCS log from the West Tuna-39 development well is shown in Figure 5. The McNally (1987) equation was developed using strength data from sandstones in a shallow coal field environment in the Bowen basin however the range of UCS calculated using the McNally equation for the intra-latrobe and Golden Beach sandstones was found to be ~ MPa (average Δt = µs/ft) which compare very well to the laboratory derived values. The Chang (2004) equation was based on a global shale data set and determines the range of UCS for the intra-latrobe and Golden Beach shales to be ~ MPa (average Δt = µs/ft) which is consistent with lab-derived UCS and verifies that shales are much weaker than the sands in the West Tuna area. STRESS DISTRIBUTION AT THE WELLBORE WALL Borehole breakout forms when the circumferential stress at the wellbore wall exceeds the compressive strength of the rock (Peska and Zoback, 1995). From this perspective it is somewhat counter-intuitive that breakout forms in the strong sandstones rather than the weak shales in the West Tuna area (Figure 5). The following sections outline the Kirsch equations that describe stress concentration at the wellbore wall and wellbore failure. We will show that shales would be expected to fail prior to sands using a conventional Kirsch approach to wellbore stability in the West Tuna area. Finite element methods are then used to investigate stress variation by lithology (and rock strength) in a the axial stress (σ zz ) which acts parallel to the vertical wellbore axis, and, the circumferential stress (σ θθ ), which acts orthogonal to σ rr and σ zz. The stress at the wall of a wellbore drilled through elastic, homogeneous and isotropic rock can be described by the Kirsch (1898) equations. The magnitude of the stresses depends on the magnitude of the far field stresses, the radius of the wellbore (R), distance from the wellbore (r) and the pore pressure (P p ). For the full Kirsch equations and a comprehensive description of wellbore stresses, the reader is referred to Jaeger and Cook (1979). The Kirsch equations may be simplified if only the stresses at the wellbore wall are considered (i.e., where R = r). The simplified Kirsch equations are described in Moos and Zoback (1990). The Kirsch equation for circumferential stress at the wall of a vertical well can be written: = ( S ' H max + S ' h min ) 2( S ' H max S ' h min )cos2 P (4) where P is the difference between mud pressure and pore pressure (P w -P p ), θ is the angle between the S Hmax azimuth and north and S Hmax and S hmin are effective stresses (Moos and Zoback, 1990). If the circumferential stress is plotted with respect to position around the wellbore wall (Figure 6) it can be shown that σ θθ is maximum when θ = 90 (i.e., at the azimuth of far-field S hmin ), 217

4 circumferential stresses are calculated to be 0 and 80 MPa respectively assuming mud-weight in the well is in balance with the pore pressure (P w = P p ). The uniaxial compressive strengths determined for sandstones and shales in the West Tuna area have also been plotted on Figure 7. Figure 7 illustrates that borehole breakout is more likely in shales than in sandstones in the West Tuna area if a conventional approach (which considers a homogeneous stress distribution, independent of lithology) is assumed. This is contrary to what is observed in the West Tuna area. One possibility that explains the systematic occurrence of borehole breakout in the strong sandstone units is that stress is unequally distributed between different lithologies in the West Tuna area. We next investigate the likelihood of this possibility through finite element modelling. Finite Element Modelling A possible mechanism that explains the observed wellbore failure in the West Tuna area is that present-day stress is higher in the sandstone units than in the interbedded shales. Drilling-induced tensile fractures and leak-off tests have been used to constrain the present-day stress tensor in sandstones in the West Tuna area. However, since no leak-off tests or wellbore failure exist in the shales, there is no data on stress magnitude in the shales. A finite element model was constructed to investigate the concept of stress variation by lithology (stress partitioning), and to predict the state-of-stress in the shales in the West Tuna area. Linear elastic constitutive equations were used so that the results of the finite element model could be directly compared with the conventional approach to wellbore stability (using the Kirsch equations). Pore pressure and mud-weight have been accounted for by assuming an in-balance well and applying effective stresses at the model boundaries. The finite element modelling presented herein is only intended to investigate the concept of stress partitioning in the West Tuna area and is not intended to be fully predictive. Fig. 5. UCS log derived from sonic log data (blue), gamma ray log (red) and interpreted borehole breakouts (black) from the West Tuna- 39 development well. The logs show that borehole breakout occurs in sandstone (low GR) intervals with high compressive strength (high UCS). and minimum when θ = 0 (i.e., at the azimuth of far-field S Hmax ). Equation (4) can therefore be simplified for the conditions where θ = 0 and θ = 90 (Equations 5 and 6 respectively). ( ). max = 3S H max S h min P = 90 ( ). min = 3S h min S H max P = 0 Borehole breakouts form due to shear failure at the wellbore wall when the maximum circumferential stress around the wellbore exceeds the compressive strength of the rock (Peska and Zoback, 1995; Barton et al., 1998). The circumferential stress is maximised at θ = 90, hence breakouts form in the wellbore at the azimuth of S hmin (Figure 6). Equation (5) can be modified to represent the criterion for formation of breakouts in elastic, impermeable rocks in vertical wellbores such that: (5) (6) max = 3S H max S h min P C 0, (7) where C 0 is the uniaxial compressive rock strength. Using Conventional Methods to Assess Wellbore Failure The present-day stress tensor determined in the West Tuna area (S Hmax = 40 MPa/km, S hmin = 20 MPa/km, Pp = 10 MPa/km) can be substituted into equation (4) for all orientations around the wellbore wall (Figure 7). The minimum and maximum The stress concentration around the wellbore in a single sandstone layer predicted by the finite element code DIANA, was verified against the Kirsch equations for stress concentration around a vertical well. A 3D, linear elastic model of a wellbore drilled in a homogeneous block was constructed (TNO Construction Research, 2000). Structural boundary conditions were defined by imposing displacement constraints at three of the model boundaries (in the xy plane, yz plane and the zx plane). The three effective principal stresses previously derived (S' Hmax = 30, S' hmin = 10 and S' v = 10 MPa/km) were applied perpendicular to the remaining three model boundaries. The model boundaries were applied in this way to represent the high horizontal present-day stresses in the West Tuna area due to the compressional plate boundary at New Zealand. The model boundaries were constructed approximately six well diameters from the wellbore wall so that boundary effects were minimal. The perturbed near-wellbore stress environment is generally considered to extend three wellbore diameters from the well (Fjær et al., 1992). A Poisson s ratio of 0.25 and an elastic modulus of 40 GPa are considered average values for sandstones and were applied in the model construction (Lama and Vutukuri, 1978). The model geometry was discretised into elements using meshing algorithms inbuilt in DIANA. The modelled circumferential stress at the wellbore wall in a homogeneous sandstone reservoir is presented in Figure 8. The modelled circumferential stress is consistent down the wellbore and is a maximum of 80 MPa/km at the azimuth of S hmin (blue) and a minimum of 0 MPa/km at the azimuth of S Hmax (red). The circumferential stresses at the wellbore wall calculated using the finite element approach are consistent with those derived from the Kirsch equations (Table 1 and Figure 7). 218

5 Nelson, Hillis,Heading and Mildren Left Running Stress partitioning Right in therunning Gippsland Heading Basin Fig. 6. Circumferential stress diagram showing that breakouts form when the circumferential stress exceeds the compressive strength of the rock and drilling induced tensile fractures form when the circumferential stress is less than the tensile strength of the rock. Fig. 8. Finite element model of circumferential stress about a vertical wellbore drilled through homogeneous rock. Blue represents high stress, red represents low stress. Sandstone Shale Wellbore wall (MPa/km) 80 σθθmax 0 σθθmin 25 σθθmax σθθmin 5 Fig. 9. a) 3D finite element model of interbedded sandstone and shales. The sandstone layers (red) were assigned an elastic moduli of 40 GPa and a Poisson s ratio of The shale layer (orange) was assigned an elastic moduli of 0.86 GPa and a Poisson s ratio of 0.3. b) Circumferential stress at the wellbore wall derived from the finite element model. Far-field (MPa/km) SHmax Shmin SHmax Shmin Table 1. Far-field (total) stresses and circumferential stresses at the wellbore wall in modelled sandstone and shale layers calculated using FE methods. Once the finite element code and methodology were verified using the model above, a simplified 3D, linear elastic model of a wellbore drilled through alternating strong sandstone and weak shale layers was constructed (Figure 9a). The stress boundary conditions were applied such that the present-day stress tensor in the sandstone (in the far-field and at the wellbore wall) was consistent with that determined previously (SHmax ~ 40 MPa/ km, Shmin ~ 20 MPa/km and Sv ~ 20 MPa/km; σθθmax = 80 and σθθmin = 0). Based on Lama and Vutukiri (1978) the upper and lower sandstone layers were assigned a Poisson s ratio of 0.25 and an elastic modulus of 40 GPa (red in Figure 9a). The middle 219 Fig. 7. Plot of circumferential stress and average compressive rock strengths for sandstones and shales in the West Tuna area. Assuming a conventional Kirsch model for wellbore failure (equivalent stresses in the sandstone and shale); shales are more likely to fail than sandstones in the West Tuna area. shale layer was assigned a Poisson s ratio of 0.35 and an elastic modulus of ~ 10 GPa (orange in Figure 9a). The results of the multilayer 3D finite element model are shown in Figures 9b and 10 and support the hypothesis that the stress may be partitioned between stronger sandstone units and adjacent shales. The present-day stress is focused in the sandstones, where horizontal, interbedded, lithologies of varying strengths are subjected to high present-day horizontal stresses. The modelled sandstone units are at high stress equivalent to the total far-field tectonic stress (SHmax = 40 MPa and Shmin = 20 MPa; Table 1) whilst the total stress in the shale prone units is lower (SHmax = 20 MPa and Shmin = 15 MPa; Table 1). This mechanism for stress partitioning is analogous to stiff boards separated by sponge in a vice. The strong units (sandstones) take up the stress load whilst the sponge (shale) remains relatively unstressed and undeformed. IMPLICATIONS FOR WELLBORE STABILITY The finite element modelling of interbedded sandstones and shales shows that where far-field stress is low in the shales, the stress concentration at the wellbore wall is low (and more isotropic). Low stress concentration and low stress anisotropy

6 a northeast southwest (σ h ) azimuth as shown in Figure 11. The stresses acting on a horizontal well deviated in the southeast northwest (σ H ) azimuth are isotropic and hence this is a relatively stable drilling trajectory. The risk of breakout formation in the shale is low in all directions because of the lower stress anisotropy in the shales. CONCLUSIONS Fig. 10. Circumferential stress in the a) sandstone units and b) shale units derived from petroleum data and finite element modelling. The circumferential stress at the wellbore wall in the sandstone exceeds the compressive strength of the sandstone that should result in the formation of borehole breakout. Conversely, the circumferential stress in the shale does not exceed the compressive strength in the shale and hence no borehole breakout would be expected. Conventional analysis of wellbore failure (assuming constant stress in all lithologies) predicts that borehole breakout occurs in weak shales rather than strong sandstones in the West Tuna area of the Gippsland Basin. However, analysis of image logs has revealed that wellbore failure only occurs in strong, cemented sandstones in the West Tuna area. Rock strength testing and sonic log-derived uniaxial compressive strengths suggest that sandstones are much stronger than shales in the West Tuna area. A finite element model of horizontal, interbedded, strong sandstones and weak shales was constructed and subjected to a high horizontal far-field present-day stress load equivalent to that believed to exist in the Gippsland Basin. The model revealed that strong sandstones act as a stress-bearing framework when subjected to high horizontal stresses. The sandstone units effectively shield the shale-prone ( weak ) sections from the high horizontal stress load resulting in the shales being at a much lower and less anisotropic stress state than the sandstones. Stress partitioning (higher stress in the sandstones relative to the shales) results in high stress concentrations at the wellbore wall in the sandstones whilst the stress concentrations in the shales are much lower. We suggest this mechanism accounts for the high degree of borehole breakout in the sandstones, and absence of borehole breakout in the shales of the Latrobe Group and Golden Beach Subgroups in the West Tuna area. Fig. 11. Breakout risk diagrams constructed using the analytically determined present-day stress tensor in the sandstone (S Hmax orientation = 138 N, S Hmax ~ 40 MPa/km, S hmin ~ 20 MPa/km and S v ~ 20 MPa/km), and the modelled stress tensor in the shale (S Hmax orientation = 138 N, S Hmax ~ 16 MPa/km, S hmin ~ 14 MPa/km and S v ~ 15 MPa/km). Red indicates high risk of breakout, blue indicates low risk of breakout. decreases the propensity for wellbore failure during drilling (Figures 9b and 10). Assuming breakouts develop when the maximum circumferential stress exceeds the uniaxial compressive strength of the rock, then the finite element model suggests that the propensity for breakout is high in the sandstone (where σ θθmax ~ 80 MPa/km) and lower in the shale (where σ θθmax ~ 25 MPa/km). The contrast in circumferential stress between the modelled strong sandstones and weak shales can explain the occurrence of wellbore failure in the strong lithologies in the West Tuna area and the absence of wellbore failure in the weaker shale-prone lithologies (Figure 10). The modelling suggests that optimum mud weights to prevent well collapse for drilling should be planned considering the present-day stress in the sandstone units. The risk of breakout development in wells of all orientations can be assessed in terms of the rock strength (compressive strength, C 0 ) required to prevent breakout formation normalised to S v and the present-day stress tensor (Brudy and Zoback, 1999; Figure 11). A breakout risk diagram has been constructed using the present-day stress tensor determined analytically in the sandstones and the stress tensor derived from the finite element modelling in the shales in the West Tuna area. Blue colours indicate that low rock strength (or low mud weight) is required to prevent breakout. Red colours indicate that high rock strength (or high mud weight) is required to prevent breakout. The risk of breakout formation in the sandstones in West Tuna is greatest for a vertical well and for wells deviated in The finite element modelling undertaken herein illustrates that different lithological units may behave differently under an applied tectonic stress load. Hence, lithology should be considered when assessing wellbore failure on image logs, and indeed when using petroleum wellbore data such as injection tests for present-day stress analysis. Field and basin scale present-day stress tensors should be treated with caution during well planning or other operations which require knowledge of the present-day stress tensor (e.g., hydraulic fracturing or waterflooding). ACKNOWLEDGMENTS The authors thank Glen Nash, Michael Power, Adem Djakic, and Wayne Mudge (ExxonMobil) for supplying image log data and providing useful insight. Mark Tingay and Mike Dentith are thanked for their comments, which greatly improved the manuscript. Wilde FEA Ltd is thanked for the use of DIANA and the ASEG RF for supporting Emma Nelson s PhD project. REFERENCES Amadei, B. and Stephansson, O., 1997, Rock Stress and its Measurement: Chapman and Hall. Barree, R.D., 2004, Fracture modeling with GOHFER using extensive real-data input: Oilasia Journal. Barton, C.A., Castillo, D.A., Moos, D., Peska, P., and Zoback, M.D., 1998, Characterising the full stress tensor based on observations of drilling-induced wellbore failures in vertical and inclined boreholes leading to improved wellbore stability and permeability prediction: Australian Petroleum Production and Exploration Association Journal, 38, Brudy, M. and Zoback, M.D., 1999, Drilling-induced tensile wall-fractures: Implications for determination of in situ stress orientations and magnitudes: International Journal of Rock Mechanics and Mining Sciences, 36,

7 Chang, C., 2004, Empirical rock strength logging in boreholes penetrating sedimentary formations: Geophysical Exploration, 7, Coblentz, D.D., Sandiford, M., Richardson, R.M., Zhou, S., and Hillis, R.R., 1995, The origins of the intraplate stress field in continental Australia: Earth and Planetary Science Letters, 133, Desroches, J. and Woods, T.E., 1998, Stress measurements for sand control: SPE/ISRM Eurock, Trondheim, Norway. Society of Petroleum Engineers, SPE/ISRM TNO Building and Construction Research, 2000, DIANA 7.2, program and users manual (CD-ROM). Evans, K., Engelder, T., and Plumb, R.A., 1989, Appalachian Stress Study 1: A detailed description of in situ stress variation in Devonian Shales of the Appalachian Plateau: Journal of Geophysical Research, 94, Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.R., and Risnes, R., 1992, Petroleum related rock mechanics: Developments in Petroleum Science, vol. 33: Elsevier. Hickman, S.H., Healy, J.H., and Zoback, M.D., 1985, In situ stress, natural fracture distribution, and borehole elongation in the Aurburn geothermal well, Auburn, New York: Journal of Geophysical Research, 90, Jaeger, J.C. and Cook, N.G.W., 1979, Fundamentals of rock mechanics, Chapman and Hall. Kirsch, G., 1898, Die Theorie der Elastizitat und die Beaurforisse der Festigkeitslehre: Zeitschrift des Vereines Deutscher Ingenieure, 42, Lama, R.D. and Vutukuri, V.S., 1978, Handbook on mechanical properties of rocks testing techniques and results: Series on Rock and Soil Mechanics, vol. 3: Trans Tech Publications McNally, G.H., 1987, Estimation of coal measures rock strength using sonic and neutron logs: Geoexploration, 24, Moos, D. and Zoback, M.D., 1990, Utilization of observations of wellbore failure to constrain the orientation and magnitude of crustal stresses: application to continental, deep sea drilling project and ocean drilling program boreholes: Journal of Geophysical Research, 95, Nelson, E.J., 2002, The in situ stress field of the West Tuna area, Gippsland Basin: Implications for natural fracture permeability and wellbore stability: B.Sc.Hons thesis (unpublished), The University of Adelaide. Nelson, E.J. and Hillis, R.R., 2005, In Situ stresses of the West Tuna Area, Gippsland Basin: Australian Journal of Earth Sciences, 52, Nelson, E.J., Hillis, R.R., Reynolds, S.D., Sandiford, M., and Mildren, S.D., 2006, The present-day state-of-stress in Southeast Australia: Australian Petroleum Production and Exploration Association Journal, 46, Nelson, E.J., Meyer, J.J., Hillis, R.R., and Mildren, S.D., 2005, Transverse drillinginduced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime: International Journal for Rock Mechanics and Mining Sciences, 42, Peska, P. and Zoback, M.D., 1995, Compressive and tensile failure of inclined wellbores and determination of in situ stress and rock strength: Journal of Geophysical Research, 100, Plumb, R.A., 1994, Variations of the least horizontal stress magnitude in sedimentary rocks: 1st North American Rock Mechanics Symposium, North American Rock Mechanics Association. Raaen, A., Hovern, K., Joranson, H., and Fjaer, E., 1996, FORMEL: A step forward in strength logging: SPE Annual Technical Conference, Denver, Colorado. Society of Petroleum Engineers, SPE Reches, Z., 1998, Tensile fracturing of stiff rock layers under triaxial compressive stress states: Journal of Rock Mechanics and Mining Science, 35, 4 5. Reinecker, J. and Lenhardt, W.A., 1999, Present-day stress field and deformation in eastern Austria: International Journal of Earth Sciences, 88, Sandiford, M., 2003, Neotectonics of southeastern Australia: linking the Quaternary faulting record with seismicity and in situ stress: in Hillis, R.R. and Muller, R.D. (eds.), Evolution and dynamics of the Australian plate, Smith, M.B., Bale, A.B., Britt, L.K., Klein, H.H., Siebrits, E., and Dang, X., 2001, Layered Modulus Effects on Fracture Propagation, Proppant Placement, and Fracture Modeling: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. Society of Petroleum Engineers, SPE Warpinski, N.R., Brannagan, P., and Wilmer, R., 1985, In-situ stress measurements at U.S. DOE s multiwell experiment site, Mesaverde Group, Rifle, Colorado: Journal of Petroleum Technology, 37, Zoback, M.D., Moos, D., and Anderson, R.N., 1985, Well bore breakouts and in situ stress: Journal of Geophysical Research, 90, Zoback, M.D., Apel, R., Baumgartner, J., Brudy, M., Emmermann, R., Engeser, B., Fuchs, K., Kessels, W., Rischmuller, H., Rummel, F., and Vernik, L., 1993, Uppercrustal strength inferred from stress measurements to 6 km depth in the KTB borehole: Nature, 365,

Establishing the calculating program for rock stresses around a petroleum wellbore.

Establishing the calculating program for rock stresses around a petroleum wellbore. Establishing the calculating program for rock stresses around a petroleum wellbore. Le Nguyen Hai NAM 1, Do Quang KHANH 1, Tran Nguyen Thien TAM 1 and Hoang Trong QUANG 1 1 Faculty of Geology and Petroleum

More information

Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime

Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime International Journal of Rock Mechanics & Mining Sciences 4 (5) 6 7 www.elsevier.com/locate/ijrmms Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications

More information

Geomechanical controls on fault and fracture distribution with application to structural permeability and hydraulic stimulation

Geomechanical controls on fault and fracture distribution with application to structural permeability and hydraulic stimulation CSPG Luncheon Calgary February 5 th 2015 Geomechanical controls on fault and fracture distribution with application to structural permeability and hydraulic stimulation Scott Mildren - Ikon Science Australian

More information

Critical Borehole Orientations Rock Mechanics Aspects

Critical Borehole Orientations Rock Mechanics Aspects Critical Borehole Orientations Rock Mechanics Aspects By R. BRAUN* Abstract This article discusses rock mechanics aspects of the relationship between borehole stability and borehole orientation. Two kinds

More information

In situ stresses of the West Tuna area, Gippsland Basin

In situ stresses of the West Tuna area, Gippsland Basin Australian Journal of Earth Sciences (2005) 52, (299 313) In situ stresses of the West Tuna area, Gippsland Basin E. J. NELSON* AND R. R. HILLIS Australian School of Petroleum, University of Adelaide,

More information

The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks

The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks International Journal of Rock Mechanics & Mining Sciences 44 (2007) 787 801 www.elsevier.com/locate/ijrmms The relationship between closure pressures from fluid injection tests and the minimum principal

More information

Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment

Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment Daniel Moos 1 Pavel Peska 1 Thomas Finkbeiner 1 Mark Zoback 2 1 GeoMechanics International, Palo Alto, CA 94303 2 Stanford

More information

Analysis of stress variations with depth in the Permian Basin Spraberry/Dean/Wolfcamp Shale

Analysis of stress variations with depth in the Permian Basin Spraberry/Dean/Wolfcamp Shale ARMA 15-189 Analysis of stress variations with depth in the Permian Basin Spraberry/Dean/Wolfcamp Shale Xu, Shaochuan and Zoback, M.D. Stanford University, Stanford, California, USA Copyright 2015 ARMA,

More information

Wellbore stability analysis in porous carbonate rocks using cap models

Wellbore stability analysis in porous carbonate rocks using cap models Wellbore stability analysis in porous carbonate rocks using cap models L. C. Coelho 1, A. C. Soares 2, N. F. F. Ebecken 1, J. L. D. Alves 1 & L. Landau 1 1 COPPE/Federal University of Rio de Janeiro, Brazil

More information

A fresh look at Wellbore Stability Analysis to Sustainable Development of Natural Resources: Issues and Opportunities

A fresh look at Wellbore Stability Analysis to Sustainable Development of Natural Resources: Issues and Opportunities A fresh look at Wellbore Stability Analysis to Sustainable Development of Natural Resources: Issues and Opportunities Dr.Parag Diwan, Dr.B.P.Pandey, Dharmendra Kumar Gupta*, Suresh Ayyappan Department

More information

Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection

Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection Modeling pressure response into a fractured zone of Precambrian basement to understand deep induced-earthquake hypocenters from shallow injection S. Raziperchikolaee 1 and J. F. Miller 1 Abstract Analysis

More information

Tensor character of pore pressure/stress coupling in reservoir depletion and injection

Tensor character of pore pressure/stress coupling in reservoir depletion and injection Tensor character of pore pressure/stress coupling in reservoir depletion and injection Müller, B., Altmann, J.B., Müller, T.M., Weißhardt, A., Shapiro, S., Schilling, F.R., Heidbach, O. Geophysical Institute

More information

Determination of a safe mud window and analysis of wellbore stability to minimize drilling challenges and non-productive time

Determination of a safe mud window and analysis of wellbore stability to minimize drilling challenges and non-productive time J Petrol Explor Prod Technol (16) 6:493 3 DOI 1.17/s132-1-198-2 ORIGINAL PAPER - PRODUCTION ENGINEERING Determination of a safe mud window and analysis of wellbore stability to minimize drilling challenges

More information

Stress Damage in Borehole and Rock Cores; Developing New Tools to Update the Stress Map of Alberta

Stress Damage in Borehole and Rock Cores; Developing New Tools to Update the Stress Map of Alberta Stress Damage in Borehole and Rock Cores; Developing New Tools to Update the Stress Map of Alberta Qing Jia, University of Alberta, Edmonton qjia@ualberta.ca and Randy Kofman, University of Alberta, Edmonton

More information

Main Means of Rock Stress Measurement

Main Means of Rock Stress Measurement Real Stress Distributions through Sedimentary Strata and Implications for Reservoir Development and Potential Gas and Coal Development Strategies Ian Gray Sigra Pty Ltd 93 Colebard St West, Acacia Ridge,

More information

Analysis of Stress Heterogeneities in Fractured Crystalline Reservoirs

Analysis of Stress Heterogeneities in Fractured Crystalline Reservoirs Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Analysis of Stress Heterogeneities in Fractured Crystalline Reservoirs David Sahara, Martin Schoenball, Thomas Kohl, Birgit

More information

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science)

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) 29829. One 4D geomechanical model and its many applications J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) Main objectives (i) Field case study demonstrating application

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

Failure and Failure Theories for Anisotropic Rocks

Failure and Failure Theories for Anisotropic Rocks 17th international Mining Congress and Exhibition of Turkey- IMCET 2001, 2001, ISBN 975-395-417-4 Failure and Failure Theories for Anisotropic Rocks E. Yaşar Department of Mining Engineering, Çukurova

More information

WELLBORE STABILITY ANALYSIS IN GEOTHERMAL WELL DRILLING

WELLBORE STABILITY ANALYSIS IN GEOTHERMAL WELL DRILLING Orkustofnun, Grensasvegi 9, 40 th Anniversary Workshop IS-108 Reykjavik, Iceland April 26 2018 WELLBORE STABILITY ANALYSIS IN GEOTHERMAL WELL DRILLING Samuel Ikinya Nganga Kenya Electricity Generating

More information

Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study a deep oil well in the southwest of Iran

Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study a deep oil well in the southwest of Iran J Petrol Explor Prod Technol (217) 7:77 715 DOI 1.17/s1322-17-323-5 ORIGINAL PAPER - PRODUCTION GEOLOGY Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study

More information

Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska

Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska D. Moos, SPE, GMI; M.D. Zoback, SPE, Stanford U.; and L. Bailey, SPE, Unocal Alaska Summary A study of in-situ stress, rock

More information

Well Collapse Modelling And Application Of Two WorkFlows On Heidrun Field In Norwegian Sea

Well Collapse Modelling And Application Of Two WorkFlows On Heidrun Field In Norwegian Sea International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (017), pp. 71-79 International Research Publication House http://www.irphouse.com Well Collapse Modelling

More information

AADE 01-NC-HO-43. result in uncertainties in predictions of the collapse and fracture pressures.

AADE 01-NC-HO-43. result in uncertainties in predictions of the collapse and fracture pressures. AADE 01-NC-HO-43 Wellbore Stability in Deep Water Handling Geomechanical Uncertainty Daniel Moos, Ph.D., Sr. VP Technology Development, GeoMechanics International, Inc. Copyright 2001 AADE National Drilling

More information

The Stability Of Fault Systems In The South Shore Of The. St. Lawrence Lowlands Of Québec Implications For Shale Gas Development

The Stability Of Fault Systems In The South Shore Of The. St. Lawrence Lowlands Of Québec Implications For Shale Gas Development The Stability Of Fault Systems In The South Shore Of The St. Lawrence Lowlands Of Québec Implications For Shale Gas Development John Brodylo, Jean-Yves Chatellier,Guillaume Matton & Michel Rheault Copyright

More information

The Determination and Application of In Situ Stresses in Petroleum Exploration and Production

The Determination and Application of In Situ Stresses in Petroleum Exploration and Production The Determination and Application of In Situ Stresses in Petroleum Exploration and Production Jeremy J Meyer B.Sc (Hons.) National Centre for Petroleum Geology and Geophysics The University of Adelaide

More information

Understanding the Mechanical Behavior of Drilling-induced Tensile Fractures through Photoelasticity Lab Tests Conducted on Glass Cubes

Understanding the Mechanical Behavior of Drilling-induced Tensile Fractures through Photoelasticity Lab Tests Conducted on Glass Cubes Understanding the Mechanical Behavior of Drilling-induced Tensile Fractures through Photoelasticity Lab Tests Conducted on Glass Cubes Qing Jia, Douglas R. Schmitt, Randy Kofman and Xiwei Chen University

More information

URTeC: Abstract

URTeC: Abstract URTeC: 2902950 Can Seismic Inversion Be Used for Geomechanics? A Casing Deformation Example Jeremy J. Meyer 1*, Jeremy Gallop 1, Alvin Chen 1, Scott Reynolds 1, Scott Mildren 1 ; 1. Ikon Science Copyright

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Improving seismic calibration and geomechanical models through characterization of anisotropy using single and multi well data: Case Study in Forties Field, UK Adam Donald*, Andrea Paxton (Schlumberger),

More information

Technology Development on In Situ Stress Measurement during IODP Phase2

Technology Development on In Situ Stress Measurement during IODP Phase2 Technology Development on In Situ Stress Measurement during IODP Phase2 Osamu Sano (Earthquake Research Institute, The University of Tokyo, osano@eri.u-tokyo.ac.jp) Hisao Ito (JAMSTEC, hisaoito@jamstec.go.jp)

More information

Colleen Barton, PhD Senior Technical Advisor Baker Hughes RDS GMI. HADES - Hotter And Deeper Exploration Science Workshop

Colleen Barton, PhD Senior Technical Advisor Baker Hughes RDS GMI. HADES - Hotter And Deeper Exploration Science Workshop Geothermal Reservoir Geomechanics: The Application of High Temperature / High Pressure Borehole Logging Technologies to Reservoir Characterization and Production Prediction HADES - Hotter And Deeper Exploration

More information

EFFECT OF BEDDING PLANES ON ROCK MECHANICAL PROPERTIES ANISOTROPY OF SANDSTONE FOR GEOMECHANICAL MODELING

EFFECT OF BEDDING PLANES ON ROCK MECHANICAL PROPERTIES ANISOTROPY OF SANDSTONE FOR GEOMECHANICAL MODELING SCA216-84 1/6 EFFECT OF BEDDING PLANES ON ROCK MECHANICAL PROPERTIES ANISOTROPY OF SANDSTONE FOR GEOMECHANICAL MODELING Dee Moronkeji, Richard Shouse and Umesh Prasad Baker Hughes, Houston, TX, USA This

More information

Drilling-induced wellbore failures provide critical constraints on the in-situ state of stress. Knowledge of the

Drilling-induced wellbore failures provide critical constraints on the in-situ state of stress. Knowledge of the 16 Barton, C. A., and M. D. Zoback, 2002, Wellbore imaging technologies applied to reservoir geomechanics and environmental engineering, in M. Lovell and N. Parkinson, eds., Geological applications of

More information

Constraining stress magnitudes using petroleum exploration data in the Cooper Eromanga Basins, Australia

Constraining stress magnitudes using petroleum exploration data in the Cooper Eromanga Basins, Australia Tectonophysics 415 (2006) 123 140 www.elsevier.com/locate/tecto Constraining stress magnitudes using petroleum exploration data in the Cooper Eromanga Basins, Australia Scott D. Reynolds a,, Scott D. Mildren

More information

Geomechanics, Anisotropy and LMR

Geomechanics, Anisotropy and LMR Geomechanics, Anisotropy and LMR Marco Perez *, Apache Canada Ltd, Calgary, AB, Canada marco.perez@apachecorp.com Bill Goodway, Apache Canada Ltd, Calgary, AB, Canada bill.goodway@apachecorp.com David

More information

Implementing and Monitoring a Geomechanical Model for Wellbore Stability in an Area of High Geological Complexity

Implementing and Monitoring a Geomechanical Model for Wellbore Stability in an Area of High Geological Complexity AADE-10-DF-HO-15 Implementing and Monitoring a Geomechanical Model for Wellbore Stability in an Area of High Geological Complexity J. G. Vargas, Halliburton; J. Mateus, Halliburton; A. Jaramillo, Halliburton;

More information

I hereby declare that, except where specifically indicated, the work submitted herein is my own original work.

I hereby declare that, except where specifically indicated, the work submitted herein is my own original work. Finite Element Studies on the Mechanical Stability of Arbitrarily Oriented and Inclined Wellbores Using a Vertical 3D Wellbore Model by Di Zien Low (F) Fourth-Year Undergraduate Project in Group D, 2010/2011

More information

SPE Brisbane Section. Practical Aspects of Solids Production in CSG Wells. 16 May 2012 Brisbane

SPE Brisbane Section. Practical Aspects of Solids Production in CSG Wells. 16 May 2012 Brisbane SPE Brisbane Section Practical Aspects of Solids Production in CSG Wells 16 May 2012 Brisbane Khalil Rahman, Ph.D. Baker Hughes GMI Geomechanics Services SPE Queensland Section May 2012 Luncheon Talk Topic:

More information

Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

Identification of natural fractures and in situ stress at Rantau Dedap geothermal field IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Identification of natural fractures and in situ stress at Rantau Dedap geothermal field To cite this article: Andika Artyanto et

More information

ARTICLE IN PRESS. International Journal of Rock Mechanics & Mining Sciences

ARTICLE IN PRESS. International Journal of Rock Mechanics & Mining Sciences International Journal of Rock Mechanics & Mining Sciences ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect International Journal of Rock Mechanics & Mining Sciences journal homepage: www.elsevier.com/locate/ijrmms

More information

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING SPE Workshop OILFIELD GEOMECHANICS Slide 1 FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING A. Pimenov, R. Kanevskaya Ltd. BashNIPIneft March 27-28, 2017 Moscow, Russia Slide

More information

Estimate In situ Stresses from Borehole Breakout at Blanche 1 Geothermal Well in Australia

Estimate In situ Stresses from Borehole Breakout at Blanche 1 Geothermal Well in Australia Estimate In situ Stresses from Borehole Breakout at Blanche 1 Geothermal Well in Australia Dr. Baotang Shen, CSIRO, Australia, baotang.shen@csiro.au Prof. Mikael Rinne, Aalto University, Finland, mikael.rinne@tkk.fi

More information

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2006 Methods of Interpreting Ground Stress Based on Underground Stress Measurements and

More information

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone Rock Mechanics, Fuenkajorn & Phien-wej (eds) 211. ISBN 978 974 533 636 Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone T. Pobwandee & K. Fuenkajorn Geomechanics

More information

A log based analysis to estimate mechanical properties and in-situ stresses in a shale gas well in North Perth Basin

A log based analysis to estimate mechanical properties and in-situ stresses in a shale gas well in North Perth Basin Petroleum and Mineral Resources 163 A log based analysis to estimate mechanical properties and in-situ stresses in a shale gas well in North Perth Basin S. Archer & V. Rasouli Department of Petroleum Engineering,

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

A Study on Natural Fracture Characterization for Well Trajectory Design and Production Improvement: A Case Study from A Tight Gas Reservoir, Australia

A Study on Natural Fracture Characterization for Well Trajectory Design and Production Improvement: A Case Study from A Tight Gas Reservoir, Australia A Study on Natural Fracture Characterization for Well Trajectory Design and Production Improvement: A Case Study from A Tight Gas Reservoir, Australia Azadeh Aghajanpour, Roohullah Qalandari, and Raoof

More information

Title: Application and use of near-wellbore mechanical rock property information to model stimulation and completion operations

Title: Application and use of near-wellbore mechanical rock property information to model stimulation and completion operations SPE OKC Oil and Gas Symposium March 27-31, 2017 Best of OKC Session Chairperson: Matthew Mower, Chaparral Energy Title: Application and use of near-wellbore mechanical rock property information to model

More information

Using Borehole Induced Structure Measurements at Fallon FORGE Combined with Numerical Modeling to Estimate In-Situ Stresses

Using Borehole Induced Structure Measurements at Fallon FORGE Combined with Numerical Modeling to Estimate In-Situ Stresses PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Using Borehole Induced Structure Measurements at Fallon FORGE Combined

More information

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1-3 August 2016.

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1-3 August 2016. URTeC: 2461621 Determining Maximum Horizontal Stress With Microseismic Focal Mechanisms Case Studies in the Marcellus, Eagle Ford, Wolfcamp Alireza Agharazi*, MicroSeismic Inc. Copyright 2016, Unconventional

More information

Well Bore Stability Using the Mogi-Coulomb Failure Criterion and Elasto-Plastic

Well Bore Stability Using the Mogi-Coulomb Failure Criterion and Elasto-Plastic Title of the paper: Well Bore Stability Using the Mogi-Coulomb Failure Criterion and Elasto-Plastic Constitutive Model. Authors (name and last name): 1- Ali Mirzaghorbanali 2- Mahmoud Afshar Authors (E-mail):

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

Rock Failure. Topics. Compressive Strength Rock Strength from Logs Polyaxial Strength Criteria Anisotropic Rock Strength Tensile Strength

Rock Failure. Topics. Compressive Strength Rock Strength from Logs Polyaxial Strength Criteria Anisotropic Rock Strength Tensile Strength Rock Failure Topics Compressive Strength Rock Strength from Logs Polyaxial Strength Criteria Anisotropic Rock Strength Tensile Strength Key Points 1. When rock fails in compression, the compressive stress

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Gas Shale Hydraulic Fracturing, Enhancement. Ahmad Ghassemi

Gas Shale Hydraulic Fracturing, Enhancement. Ahmad Ghassemi Gas Shale Hydraulic Fracturing, Stimulated Volume and Permeability Enhancement Ahmad Ghassemi Tight Gas A reservoir that cannot produce gas in economic quantities without massive fracture stimulation treatments

More information

Available online at ScienceDirect. Energy Procedia 86 (2016 ) Alexandre Lavrov*

Available online at   ScienceDirect. Energy Procedia 86 (2016 ) Alexandre Lavrov* Available online at www.sciencedirect.com ScienceDirect Energy Procedia 86 (2016 ) 381 390 The 8th Trondheim Conference on CO 2 Capture, Transport and Storage Dynamics of stresses and fractures in reservoir

More information

Integrating Lab and Numerical Experiments to Investigate Fractured Rock

Integrating Lab and Numerical Experiments to Investigate Fractured Rock Integrating Lab and Numerical Experiments to Investigate Fractured Rock Bradford H. Hager Director, Earth Resources Laboratory and Cecil and Ida Green Professor Department of Earth, Atmospheric and Planetary

More information

In situ calibrated velocity-to-stress transforms using shear sonic radial profiles for time-lapse production analysis

In situ calibrated velocity-to-stress transforms using shear sonic radial profiles for time-lapse production analysis In situ calibrated velocity-to-stress transforms using shear sonic radial profiles for time-lapse production analysis J. A. Donald 1 and R. Prioul 2 Abstract Borehole acoustic waves are affected by near-

More information

11th Biennial International Conference & Exposition

11th Biennial International Conference & Exposition Analysis of Cleats in Coal Bed Methane wells from Micro Resistivity Image and Cross Dipole Array Acoustic Log Muhammad Ali* (ONGC), Partho Sarathi Sen (ONGC) Email ID: muhammadali_nzr@yahoo.co.in Keywords

More information

APPLICATION OF THE KAISER EFFECT TO THE MEASUREMENT OF IN-SITU STRESSES IN ARABIAN DEVONIAN SANDSTONE

APPLICATION OF THE KAISER EFFECT TO THE MEASUREMENT OF IN-SITU STRESSES IN ARABIAN DEVONIAN SANDSTONE APPLICATION OF THE KAISER EFFECT TO THE MEASUREMENT OF IN-SITU STRESSES IN ARABIAN DEVONIAN SANDSTONE W. T. Lauten, Ashraf Tahini and Merajuddin Khan New England Research and The Saudi Arabian Oil Company

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

The in situ stress field of the Cooper Basin and its implications for hot dry rock geothermal energy development

The in situ stress field of the Cooper Basin and its implications for hot dry rock geothermal energy development The in situ stress field of the Cooper Basin and its implications for hot dry rock geothermal energy development S.D. Reynolds 1, S.D. Mildren 1*, R.R. Hillis 1 and J.J. Meyer 2 Abstract Hot dry rock (HDR)

More information

Fault Reactivation Predictions: Why Getting the In-situ Stresses Right Matters

Fault Reactivation Predictions: Why Getting the In-situ Stresses Right Matters Fault Reactivation Predictions: Why Getting the In-situ Stresses Right Matters Pat McLellan, M.Sc., P.Eng. Principal Consultant McLellan Energy Advisors Inc. Calgary, Alberta May 8, 2015 Presented at the

More information

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Y. Zhou (Rock Solid Images), F. Ruiz (Repsol), M. Ellis*

More information

ractical Geomechanics for Oil & Gas Industry

ractical Geomechanics for Oil & Gas Industry P ractical Geomechanics for Oil & Gas Industry Practical Geomechanics for Oil and Gas Industry The integrity of the wellbore plays an important role in petroleum operations including drilling, completion

More information

Reservoir Geomechanics

Reservoir Geomechanics Reservoir Geomechanics This interdisciplinary book encompasses the fields of rock mechanics, structural geology, and petroleum engineering to address a wide range of geomechanical problems that arise during

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Predicting Structural Permeability in the Deep Coal Play, Tirrawarra-Gooranie fields, Cooper Basin

Predicting Structural Permeability in the Deep Coal Play, Tirrawarra-Gooranie fields, Cooper Basin Predicting Structural Permeability in the Deep Coal Play, Tirrawarra-Gooranie fields, Cooper Basin Bowker, C.J.* Camac, B.A. Fraser, S.A. Santos Ltd. Santos Ltd. Santos Ltd. 60 Flinders St, Adelaide SA

More information

Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications

Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications Peter Schutjens, Jeroen Snippe, Hassan Mahani, Jane Turner, Joel Ita and

More information

Optimizing Drilling Performance by Wellbore Stability and Pore-Pressure Evaluation in Deepwater Exploration T. Klimentos, Schlumberger

Optimizing Drilling Performance by Wellbore Stability and Pore-Pressure Evaluation in Deepwater Exploration T. Klimentos, Schlumberger IPTC 10933 Optimizing Drilling Performance by Wellbore Stability and Pore-Pressure Evaluation in Deepwater Exploration T. Klimentos, Schlumberger Copyright 2005, International Petroleum Technology Conference

More information

INFLUENCING FACTORS OF BOREHOLE FAILURE IN BEDDING PLANE OF A RESERVOIR

INFLUENCING FACTORS OF BOREHOLE FAILURE IN BEDDING PLANE OF A RESERVOIR Influencing factors of borehole failure in bedding plane of a reservoir 41 INFLUENCING FACTORS OF BOREHOLE FAILURE IN BEDDING PLANE OF A RESERVOIR Md. Shamsuzzoha TGTDCL, 105 Kazi Nazrul Islam Avenue,

More information

3D Finite Element Modeling of fault-slip triggering caused by porepressure

3D Finite Element Modeling of fault-slip triggering caused by porepressure 3D Finite Element Modeling of fault-slip triggering caused by porepressure changes Arsalan Sattari and David W. Eaton Department of Geoscience, University of Calgary Suary We present a 3D model using a

More information

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS EAST FLANK OF THE COSO GEOTHERMAL FIELD

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS EAST FLANK OF THE COSO GEOTHERMAL FIELD PROCEEDINGS, Twenty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 2003 SGP-TR-173 IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS EAST FLANK

More information

Effect Of The In-Situ Stress Field On Casing Failure *

Effect Of The In-Situ Stress Field On Casing Failure * Effect Of The In-Situ Stress Field On Casing Failure * Tang Bo Southwest Petroleum Institute, People's Republic of China Lian Zhanghua Southwest Petroleum Institute, People's Republic of China Abstract

More information

Strength, creep and frictional properties of gas shale reservoir rocks

Strength, creep and frictional properties of gas shale reservoir rocks ARMA 1-463 Strength, creep and frictional properties of gas shale reservoir rocks Sone, H. and Zoback, M. D. Stanford University, Stanford, CA, USA Copyright 21 ARMA, American Rock Mechanics Association

More information

FRACTURE PERMEABILITY AND ITS RELATIONSHIP TO IN-SITU STRESS IN THE DIXIE VALLEY, NEVADA, GEOTHERMAL RESERVOIR

FRACTURE PERMEABILITY AND ITS RELATIONSHIP TO IN-SITU STRESS IN THE DIXIE VALLEY, NEVADA, GEOTHERMAL RESERVOIR il ~-- ~ PROCEEDINGS. Twenty-Second Workshop on Geothermal Reservoir Engineenng Stanford Unlverslty, Stanford. California, January 27-29, 1997 SGP-TR- 155 FRACTURE PERMEABILITY AND ITS RELATIONSHIP TO

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Chapter 4 STRESSES AROUND BOREHOLE:BOREHOLE INSTABILITY CRITERIA

Chapter 4 STRESSES AROUND BOREHOLE:BOREHOLE INSTABILITY CRITERIA Chapter 4 STRESSES AROUND BOREHOLE:BOREHOLE INSTABILITY CRITERIA 4.1 NEAR WELLBORE STRESS- STATE Before drilling, rock stress is described by the in-situ stresses and effective stresses. As the hole is

More information

Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin

Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin Geomechanical Analysis of Hydraulic Fracturing Induced Seismicity at Duvernay Field in Western Canadian Sedimentary Basin Suvrat P Lele 1, Timothy Tyrrell 2, Ganeswara R Dasari 1, William A Symington 1

More information

Optimising Resource Plays An integrated GeoPrediction Approach

Optimising Resource Plays An integrated GeoPrediction Approach Optimising Resource Plays An integrated GeoPrediction Approach Edward Hoskin, Stephen O Connor, Scott Mildren, Michel Kemper, Cristian Malaver, Jeremy Gallop and Sam Green Ikon Science Ltd. Summary A mechanical

More information

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT *D.S. Subrahmanyam National Institute of Rock Mechanics, Bangalore

More information

Determination of Maximum Horizontal Field Stress from Microseismic Focal Mechanisms A Deterministic Approach

Determination of Maximum Horizontal Field Stress from Microseismic Focal Mechanisms A Deterministic Approach ARMA 16-691 Determination of Maximum Horizontal Field Stress from Microseismic Focal Mechanisms A Deterministic Approach Agharazi, A MicroSeismic Inc., Houston, Texas, USA Copyright 2016 ARMA, American

More information

DISCRETE FRACTURE NETWORK MODELLING OF HYDRAULIC FRACTURING IN A STRUCTURALLY CONTROLLED AREA OF THE MONTNEY FORMATION, BC

DISCRETE FRACTURE NETWORK MODELLING OF HYDRAULIC FRACTURING IN A STRUCTURALLY CONTROLLED AREA OF THE MONTNEY FORMATION, BC DISCRETE FRACTURE NETWORK MODELLING OF HYDRAULIC FRACTURING IN A STRUCTURALLY CONTROLLED AREA OF THE MONTNEY FORMATION, BC Steve Rogers Golder Associates Ltd Pat McLellan McLellan Energy Advisors Inc Gordon

More information

Mohr's Circle and Earth Stress (The Elastic Earth)

Mohr's Circle and Earth Stress (The Elastic Earth) Lect. 1 - Mohr s Circle and Earth Stress 6 Mohr's Circle and Earth Stress (The Elastic Earth) In the equations that we derived for Mohr s circle, we measured the angle, θ, as the angle between σ 1 and

More information

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Observation Scale Wavelength 10 0 10 4 10 6 10 8 10 12 10 16 10 18 10 20 Frequency (Hz) Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Elastic, Mechanical, Petrophysical

More information

Analysis of vertical, horizontal and deviated wellbores stability by analytical and numerical methods

Analysis of vertical, horizontal and deviated wellbores stability by analytical and numerical methods J Petrol Explor Prod Technol () :359 39 DOI.07/s132-0-00-7 ORIGINAL PAPER - PRODUCTION ENGINEERING Analysis of vertical, horizontal and deviated s stability by analytical and numerical methods Abbas Khaksar

More information

Force and Stress. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/9/ :35 PM

Force and Stress. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/9/ :35 PM Force and Stress Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/9/2017 12:35 PM We Discuss Force and Stress Force and Units (Trigonometry) Newtonian

More information

Analysis and Interpretation of Stress Indicators in Deviated Wells of the Coso Geothermal Field

Analysis and Interpretation of Stress Indicators in Deviated Wells of the Coso Geothermal Field PROCEEDINGS, 41 st Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 22-24, 2016 SGP-TR-209 Analysis and Interpretation of Stress Indicators in Deviated Wells

More information

RESERVOIR-SCALE FRACTURE PERMEABILITY IN THE DIXIE VALLEY, NEVADA, GEOTHERMAL FIELD

RESERVOIR-SCALE FRACTURE PERMEABILITY IN THE DIXIE VALLEY, NEVADA, GEOTHERMAL FIELD PROCEEDINGS,Twenty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California. January 26-28.1998 SGP-TR- I58 RESERVOIR-SCALE FRACTURE PERMEABILITY IN THE DIXIE VALLEY,

More information

Geotechnical data from geophysical logs: stress, strength and joint patters in NSW and QLD coalfields

Geotechnical data from geophysical logs: stress, strength and joint patters in NSW and QLD coalfields University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2014 Geotechnical data from geophysical logs: stress, strength and joint patters in NSW

More information

Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK

Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK Chris Hawkes University of Saskatchewan Tight Oil Optimization Conference, Calgary AB, March 12, 2015 Outline Overview of Geomechanical

More information

Research Themes in Stimulation Geomechanics. How do we optimize slickwater frac ing?

Research Themes in Stimulation Geomechanics. How do we optimize slickwater frac ing? Research Themes in Stimulation Geomechanics How do stress, fractures and rock properties affect the success of stimulation? How do pressure and stress (and formation properties) evolve during stimulation?

More information

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Title 4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Authors Bloomer, D., Ikon Science Asia Pacific Reynolds, S., Ikon Science Asia Pacific Pavlova, M., Origin

More information

Acoustic Anisotropy Measurements and Interpretation in Deviated Wells

Acoustic Anisotropy Measurements and Interpretation in Deviated Wells Acoustic Anisotropy Measurements and Interpretation in Deviated Wells X. M. Tang, and D. Patterson, Houston Technology Center, Baker Atlas, Houston, Texas, USA ABSTRACT Many acoustic anisotropy measurements

More information

IN-SITU STRESS ESTIMATION IN OFFSHORE EASTERN MEDITERRANEAN WITH FINITE ELEMENT ANALYSIS

IN-SITU STRESS ESTIMATION IN OFFSHORE EASTERN MEDITERRANEAN WITH FINITE ELEMENT ANALYSIS 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 IN-SITU STRESS ESTIMATION IN OFFSHORE EASTERN MEDITERRANEAN WITH FINITE ELEMENT ANALYSIS Anna Kyriacou 1, Panos

More information

In situ stress estimation using acoustic televiewer data

In situ stress estimation using acoustic televiewer data Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_39_goodfellow/ SD Goodfellow KORE

More information

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to : DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC Presented to : TERRATECH 455, René-Lévesque Blvd. West Montreal, Québec HZ 1Z3 Presented by : GEOPHYSICS GPR INTERNATIONAL

More information

Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation

Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation Vincent Roche *, Department of Physics, University of Alberta, Edmonton roche@ualberta.ca

More information