ISLAND BIOGEOGRAPHY Lab 7

Size: px
Start display at page:

Download "ISLAND BIOGEOGRAPHY Lab 7"

Transcription

1 Reminders! Bring memory stick Read papers for Discussion Key Concepts Biogeography/Island biogeography Convergent evolution Dynamic equilibrium Student Learning Outcomes After Lab 7 students will be able to: 1. explain the principles of biogeography and relate them to terrestrial habitats. 2. demonstrate the complex interactions of longterm ecological processes in biogeography including immigration and extinction using graphs and apply these ideas to broader evolutionary concepts. Book Chapters Campbell: Chp ISLAND BIOGEOGRAPHY Lab 7 I. BIOGEOGRAPHY Biogeography is the study of the spatial and geographical distribution of organisms. The central question of biogeography is, Why do we find these organisms at this location? The answer to this question includes both large scale answers (the community of species found at a given location is a function of the species pool from the larger surrounding region) and small scale answers (local competition and habitat conditions determine community composition), as well as, both historical (the community composition is a function of species and conditions that were there previously) and modern answers (the community composition is strictly a function of recent processes). When discussing the composition of a community, we can analyze it at many taxonomic levels (e.g. genus, family, etc.), not just at the species level. Biogeography also deals with functional questions of why certain areas tend to have similar or different communities. For instance, Figure 1 Figure 1. Desert grasslands from the Gobi Desert in Asia and the Chihuahuan desert in New Mexico. Can you tell which one is which? shows desert habitats from very distant locations in Asia and North America. Despite very different geographical locations, they support very similar communities of organisms. Similarly, the organisms within those communities may be very distantly related, but show convergent evolution toward a similar ecological role. For example, Figure 2. The Tasmanian wolf is more closely related to a kangaroo than a wolf. Fall

2 the recently extinct Tasmanian wolf (Figure 2) was a predatory animal very similar to North American and Eurasian wolves. However, it is a marsupial and is more closely related to kangaroos than wolves (yep, it s got a pouch and everything). II. ISLAND BIOGEOGRAPHY The theory of biogeography was developed by Robert MacArthur and Edward O. Wilson and published in their book on in Many early naturalists, including from Captain Cook s voyage, noticed a relationship between the size of an and the number of species it supports (species richness), with larger s supporting more species. In the Galapagos Islands, MacArthur and Wilson documented a similar pattern (Figure 3). This trend is true not just for plants in the Galapagos, but also for bird species in Hawaii, bat species in the Caribbean, amphibians and reptiles in the West Indies, and others. dynamic equilibrium because the composition of species on the might change over time, but the total number of species generally remains about the same. Imagine a new that appears off the coast of the mainland. Species that colonize this will come from the pool of species found on the mainland (or whatever is the source of new migrants). As the number of new immigrants increases, the rate of immigration will slow down because there will be fewer species remaining in the pool of potential immigrants that could migrate to the. Immigration reaches zero when all the species from the mainland pool have reached the. Initially, extinction rates on this new will be random. As more and more immigrants arrive, however, extinction rates will increase. This is because there are a larger number of species on the that could potentially go extinct, as well as, because habitat space is being filled up and more and more species on the are competing for fewer and fewer resources. If we plot immigration rates and extinction rates on the same graph, we can find the equilibrium number of species at the point where the two curves intersect (Figure 4). Figure 3. The relationship between size and the number of plant species. (Image from Campbell and Reece 2005). In MacArthur and Wilson s view, the number of species on an is a dynamic equilibrium between immigration and extinction rates. The balance between the number of new species arriving and the number of species going extinct on the will determine the equilibrium number of species on the. This is called a Figure 4. The relationship between immigration and extinction rates on the equilibrium number of species on an. (Image from Campbell and Reece 2005). We can look at the effect of immigration on the equilibrium number of species in more depth by including the effect of distance from the pool of Fall

3 potential colonizers (Figure 5). Islands that are close to the mainland will attract immigrants at a higher rate for the simple reason that it is easier for organisms to travel that shorter distance. Immigration rate Far Near Immigration or extinction rate à Far Near Small Large resident species Figure 5. The relationship between immigration rates and the number of resident species. We can also look at the effect of extinction on the equilibrium number of species in more depth by considering the size of the. Larger s will have lower extinction rates because they presumably have more space and a wider variety of habitats so could support a larger number of species (Figure 6). Extinction rate Small Large Equilibrium number of species Figure 7. Equilibrium species numbers with different extinction and immigration rates. Immigration curves in red and extinction curves in black. See also Figures 5 & 6 for more on immigration and extinction curves. (Image from Campbell and Reece 2005). Large s that are close to the mainland will support the largest number of species, while small s that are far from the mainland, will support the fewest number of species. Distant large s and close small s will support a similar number of species. The theory of biogeography was originally developed by researchers working on oceanic s. However, the concepts apply to any isolated patch of habitat. This could include cold mountain tops separated by warm valleys, ponds separated by dry land, or separate individuals of a host species for a parasite. A notable example in Hawaii is a kipuka. A kipuka is a patch of forest in which flowing lava has destroyed surrounding areas making it an of forest in a sea of lava rock (Figure 8). resident species Figure 6. The relationship between extinction rates and the number of resident species. By combining these two graphs, we can simultaneously examine the effects of both size and distance from the mainland on the equilibrium number of species (Figure 7). Figure 8. Kipukas on the of Hawaii. Fall

4 III. LABORATORY EXERCISES We have so far examined population and community ecology from a variety of perspectives. Today you will be examining the effects of the immigration and extinction of species on the make-up (species richness) of an community. General Procedures For this simulation in biogeography, the class will be divided into four teams. Collections of small cups will represent s, ping pong balls will represent species, bouncing them into the cups will represent immigration events, and dice rolls will represent extinction events. You will keep a running tally of immigration, extinction, and the species richness of your s, and then generate a graph as in Figure 7. Each group will be assigned one of the following scenarios by your TA. At the end you will combine the data for your homework within your class and with some other sections to have a big enough sample size. Near Large Islands The large will consist of two sets of 6 numbered, plastic cups one blue set and one red set placed next to each other. 1. Place a mark one meter away. 2. Take 5 ping pong balls and from one meter away, try bouncing them into the cups that make up the (they have to bounce at least once). Try a few practice rounds before recording data. 3. A ball bouncing into a cup is a successful colonization of a species onto that. A ball that lands on top of the cups is not successful, nor is a ball that lands in the same cup as another ball (think competitive exclusion principle). 4. Everyone on the team should take turns at colonization attempts to control for any differences in colonization ability (i.e. bouncing skills) amongst group members. Rotate jobs after each round (1 round= 5 balls) 5. On Data Sheet 1, record the starting number of species in that round, the number of successful colonizations, and the new total number of species (i.e. # of balls in cups). 6. Randomly choose either the red or blue die and roll to determine if extinction occurs. If there is a ball in the cup with the number matching the die roll, remove that ball an extinction has occurred. If there is no ball in that cup, no extinctions have occurred. (A piece of tape wrapped sticky side out can help you remove the balls). 7. Record the new number of species on the for the beginning of the next round. 8. Repeat steps 2-7 for a total of 30 rounds. Each round, attempt colonization with 5 ping pong balls, regardless of events in previous rounds. Near Small Islands The small will consist of one set of 6 numbered, plastic cups either blue or red. 1. Follow directions as for the near large, but with only one set of cups and one die for extinctions. 2. Record data on Data Sheet 1. Note that the max number of resident species you can have in Datasheets 1A and 1B is 6 (not 12, so ignore rows for species 7-12). Far Large Islands The large will consist of two sets of 6 numbered, plastic cups one blue set and one red set placed next to each other. 1. Follow directions as for the near large, but place the mark two meters away. 2. Record data on Data Sheet 1. Far Small Islands The small will consist of one set of 6 numbered, plastic cups either blue or red. 1. Follow directions as for the near small, but place the mark two meters away. 2. Record data on Data Sheet 1. Note that the max number of resident species you can have in Datasheets 1A and 1B is 6 (not 12, so ignore rows for species 7-12). Fall

5 Data Compilation For each of the four possible scenarios above, you will be generating two graphs (eight graphs total). One graph of immigration and extinction rates vs. number of resident species (as in Figure 4) and another graph of resident species number vs. time (or numbers of rounds). Remember to number the figure, label the axes, and your curves, and add a caption for each. To help you with the data for these graphs, there are data tables for compiling your section s data. Fill in the datasheet that corresponds to the scenario you collected data for. On the immigration data compilation sheet 1A, the initial number of resident species is from column 1 of Data Sheet 1. The number of colonization attempts is the number of rounds in which you started with X number of resident species multiplied by five attempts (ping pong balls) per round. (For example, if you had 8 of the 30 rounds start with no resident species in the cups, the number of colonization attempts for zero number of initial resident species is 8 * 5 = 40). For column 2 of Data Sheet 1A, to get the number of successful colonization events, sum up the number of successful colonization events from column 2 of Data Sheet 1 for those rounds in which you started with X number of resident species. The extinction rate compilation sheet 1B is similar to the immigration rate compilation sheet, however, the number of resident species after colonization is from column 3 of Data Sheet 1. In 1B, the number of extinction trials is the number of rounds in which you started with X number of species from column 3. To get the number of extinction events, sum up the number of extinction events from column 4 of Data Sheet 1 for those rounds in which you started with X number of resident species. IV. ASSIGNMENT (35 pts.) Do not leave lab early. If there is time, complete at least the graphs for Question 1 before leaving. Make sure you label all axes and add captions. The datasheets for question 3 will be a compilation of several sections and will be provided to you by your TA within 48hrs of your lab. 1. Use your section data to plot the number of resident species vs. time (rounds) for the simulations of all four groups within your section. You should end up with a total of 4 graphs, one per scenario (Near-Large, Near- Small, Far-Large, Far-Small). (4 pts.) 2. Describe each of your four graphs from Question #1 (e.g. - does the number of resident species fluctuate, does it level off quickly, etc.) in a cohesive paragraph including the following questions: For each of the scenarios, did the number of resident species on the reach equilibrium? (i.e. did it achieve a stable number of resident species?) If it did reach equilibrium, how many rounds did it take to reach that number? If it did not reach equilibrium, why do you think it didn t? How do the plots for small s compare to large s (think about the shapes of the plots, the variability, and the final equilibrium point)? How do near s compare to far s? Is this what you expected according to what you know about the theory of Island Biogeography? (8 pts.) 3. For the Near-Large Island scenario, using the compiled data from several sections (provided by your TA within 24hrs), plot the mean immigration and extinction rates vs. number of resident species on a single graph (see Figure 4). Do a XY scatter plot. Add polynomial trendlines for both data sets!! Repeat this for each of the other scenarios (Near-Small, Far-Large, Far-Small) so you get a total of 4 graphs. (4 pts.) Fall

6 4. a. What do your 4 graphs from Question #3 predict to be the equilibrium number of species for each of the four scenarios? (2 pts.) b. Do these predictions match the number of species you found at the end of 30 rounds of your sections simulations (see graphs of Question #1)? (1 pt.) Why do you think that they do or do not match? Explain. (1 pt.) c. How do your sectionʻs simulations rank in terms of the number of resident species (use number of resident species at end of the 30 rounds for each scenario from graphs in Question #1; e.g., large near : 10 species, rank 1; large far : 8 species, rank 2; etc.)? (1 pt.) Do these ranks (Question #1; number of resident species over time) match the predicted ranks (number of species at equilibrium from graphs in Question #3 )? (1 pt.) V. REFERENCES Blackburn, T.M., P. Cassey, R.P. Duncan, K.L. Evans, and K.J. Gaston Avian Extinction and Mammalian Introductions on Oceanic Islands. Science 305: MacArthur, R.H. and Wilson, E.O An equilibrium theory of insular zoogeography. Evolution 17(4): Let s say hypothetically, that one group in the class was much better than others at bouncing ping pong balls into cups. In our simulation, this would symbolize a higher immigration rate. Name two ecological or environmental conditions in which you might find variation in colonization rates to s that are otherwise matched for size and distance from the mainland. (5 pts.) 6. Write a cohesive paragraph on the material you read for your class discussion today according to the specifications of your TA. (8 pts.) Fall

7 Data Sheet 1: Island Scenario (circle one for both) Near / Far Small / Large Round # Column 1 Initial Resident Species (# of balls in cups) Column 2 Successful Colonization Events Column 3 Species after Colonization (Columns 1 + 2) Column 4 Extinction Events Fall

8 Data Sheet 1A: Immigration rate compilation table Island Scenario (circle one for both) Near / Far Small* / Large Initial number of resident species Column 1 Colonization Attempts Column 2 Successful Colonization Events *If you have the small then your max of resident species is 6 Data Sheet 1B: Extinction rate compilation table Island Scenario (circle one for both) Near / Far Small* / Large resident species after colonization Column 1 Extinction trials Column 2 Extinction Events *If you have the small then your max of resident species is 6 Fall

Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 9 AM

Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 9 AM Names: Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 2012 @ 9 AM NOTE: This lab is a modified version of the Island Biogeography lab that

More information

Biogeography of Islands

Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography of Islands Biogeography

More information

Island biogeography. Key concepts. Introduction. Island biogeography theory. Colonization-extinction balance. Island-biogeography theory

Island biogeography. Key concepts. Introduction. Island biogeography theory. Colonization-extinction balance. Island-biogeography theory Island biogeography Key concepts Colonization-extinction balance Island-biogeography theory Introduction At the end of the last chapter, it was suggested that another mechanism for the maintenance of α-diversity

More information

Biogeography of Islands. Oceanic islands Sky islands (mountain tops) Forest fragments Prairie potholes Prairie remnants

Biogeography of Islands. Oceanic islands Sky islands (mountain tops) Forest fragments Prairie potholes Prairie remnants Biogeography of Islands Oceanic islands Sky islands (mountain tops) Forest fragments Prairie potholes Prairie remnants Biogeography of Islands Oceanic islands Sky islands (mountain tops) Forest fragments

More information

Section 8. North American Biomes. What Do You See? Think About It. Investigate. Learning Outcomes

Section 8. North American Biomes. What Do You See? Think About It. Investigate. Learning Outcomes Section 8 North American Biomes What Do You See? Learning Outcomes In this section, you will Define the major biomes of North America and identify your community s biome. Understand that organisms on land

More information

Galapagos Islands 2,700 endemic species! WHY?

Galapagos Islands 2,700 endemic species! WHY? Galapagos Islands Galapagos Islands 2,700 endemic species! WHY? Denali, Alaska Low species diversity. Why? Patterns of Species Diversity Latitudinal Global pattern drivers? Islands (but also mtn. tops,

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Since the first caveman threw a rock at a sarer- toothed tiger, we ve been intrigued by the study of motion. In our quest to understand nature, we ve looked for simple, fundamental laws

More information

Community Ecology Bioe 147/247

Community Ecology Bioe 147/247 Community Ecology Bioe 147/247 Species Richness 2: Area Effects: Islands and Mainland Themes: o Species Area effects o Mechanisms: area, distance, equilibrium theory o Habitat islands o Is it area? Or.?

More information

Evolution. Darwin s Voyage

Evolution. Darwin s Voyage Evolution Darwin s Voyage Charles Darwin Explorer on an observation trip to the Galapagos Islands. He set sail on the HMS Beagle in 1858 from England on a 5 year trip. He was a naturalist (a person who

More information

BIOS 230 Landscape Ecology. Lecture #32

BIOS 230 Landscape Ecology. Lecture #32 BIOS 230 Landscape Ecology Lecture #32 What is a Landscape? One definition: A large area, based on intuitive human scales and traditional geographical studies 10s of hectares to 100s of kilometers 2 (1

More information

Gravity: How fast do objects fall? Student Advanced Version

Gravity: How fast do objects fall? Student Advanced Version Gravity: How fast do objects fall? Student Advanced Version Kinematics is the study of how things move their position, velocity, and acceleration. Acceleration is always due to some force acting on an

More information

Shenandoah University. (PowerPoint) LESSON PLAN *

Shenandoah University. (PowerPoint) LESSON PLAN * Shenandoah University (PowerPoint) LESSON PLAN * NAME DATE 10/28/04 TIME REQUIRED 90 minutes SUBJECT Algebra I GRADE 6-9 OBJECTIVES AND PURPOSE (for each objective, show connection to SOL for your subject

More information

Evolution Evidence of Change

Evolution Evidence of Change 6 Evolution Evidence of Change lesson 3 Evolution and Plate Tectonics Grade Seven Science Content Standard. 4.f. Students know how movements of Earth's continental and oceanic plates through time, with

More information

Assignment 5 SOLUTIONS. Part A Getting a 3 or less on a single roll of a 10-Sided Die. 2. Printout of the first 50 lines of your four data columns.

Assignment 5 SOLUTIONS. Part A Getting a 3 or less on a single roll of a 10-Sided Die. 2. Printout of the first 50 lines of your four data columns. Part A Getting a 3 or less on a single roll of a 10-Sided Die 1. Printout of your plot from Excel. 2. Printout of the first 50 lines of your four data columns. Everyone s plot and data columns will be

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

Assignment 5 SOLUTIONS. 2. Printout of the first 50 lines of your four data columns from Excel.

Assignment 5 SOLUTIONS. 2. Printout of the first 50 lines of your four data columns from Excel. SOLUTIONS Instructor Linda C. Stephenson SOLUTIONS Part A Getting a sum > 12 when rolling three 6-sided dice 1. Printout of your plot from Excel. 2. Printout of the first 50 lines of your four data columns

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES) TOPIC 2: THEORIES OF EVOLUTION (PART 1) Learner Note: Evolution is a theory. Evolution is change over time. Diversity is the RESULT of this change over time. If a trait is good, the organism survives and

More information

Community phylogenetics review/quiz

Community phylogenetics review/quiz Community phylogenetics review/quiz A. This pattern represents and is a consequent of. Most likely to observe this at phylogenetic scales. B. This pattern represents and is a consequent of. Most likely

More information

Pea Patch Pollination Game

Pea Patch Pollination Game Pea Patch Pollination Game Classroom Activity: 5-8 Time: One 45-60-minute class period Overview: In this activity, students play a simulation game modeling changes in a plant population (a Pea Patch) caused

More information

Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial

Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial Activity #96 Battling Beaks Challenge Question: Initial Thoughts: Prediction: Evidence: Table 1: Group Forkbird Population Data 1-Tined Forkbirds 2-Tined Forkbirds 4-Tined Forkbirds Initial 1 2 3 4 5 6

More information

World History: Grade 9 Unit 2.1: Lesson 1 Collective Learning: Pass it on 100,000-10,000 Years Ago

World History: Grade 9 Unit 2.1: Lesson 1 Collective Learning: Pass it on 100,000-10,000 Years Ago World History: Grade 9 Unit 2.1: Lesson 1 Collective Learning: Pass it on 100,000-10,000 Years Ago Unit 2.1 Lesson 1: Collective Learning: Pass it on M.T. Donkin Unit Objectives: 1. Define collective learning.

More information

A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson)

A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson) A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson) Biology Labs On-line EvolutionLab is a simulation which allows you to study the principles and processes behind the

More information

Lesson 1 Syllabus Reference

Lesson 1 Syllabus Reference Lesson 1 Syllabus Reference Outcomes A student Explains how biological understanding has advanced through scientific discoveries, technological developments and the needs of society. Content The theory

More information

Florida s Changing Shape

Florida s Changing Shape Florida s Changing Shape Background: For much of its history, Florida was underwater. At first, Florida consisted solely of the Florida Platform, a limestone base formed from the calcium carbonate remains

More information

Unit 6 Populations Dynamics

Unit 6 Populations Dynamics Unit 6 Populations Dynamics Define these 26 terms: Commensalism Habitat Herbivory Mutualism Niche Parasitism Predator Prey Resource Partitioning Symbiosis Age structure Population density Population distribution

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Rewritten Biceps Lab Introduction This lab will be different from the others you ve done so far. First, we ll have some warmup exercises to familiarize yourself with some of the theory, as well as the

More information

3 Natural Selection in Action

3 Natural Selection in Action CHAPTER 10 3 Natural Selection in Action SECTION The Evolution of Living Things California Science Standards 7.3.a, 7.3.e, 7.4.f BEFORE YOU READ After you read this section, you should be able to answer

More information

HABITAT SELECTION INTRODUCTION. Objectives

HABITAT SELECTION INTRODUCTION. Objectives 25 HABITAT SELECTION In collaboration with David N. Bonter Objectives Develop a spreadsheet model of ideal-free habitat selection. Compare the ideal-free and ideal-despotic habitat selection models. INTRODUCTION

More information

Equilibrium Theory of Island Biogeography

Equilibrium Theory of Island Biogeography Equilibrium Theory of Island MODULE: 04 EQUILIBRIUM THEORY OF ISLAND BIOGEOGRAPHY UNIT: 01 CONCEPTUAL FOUNDATIONS Objectives At the end of this series of lectures you should be able to: 1. Define a bunch

More information

Weather and climate. reflect. what do you think? look out!

Weather and climate. reflect. what do you think? look out! reflect You re going on vacation in a week and you have to start thinking about what clothes you re going to pack for your trip. You ve read the weather reports for your vacation spot, but you know that

More information

Island Biogeography & Nutrient Subsidies

Island Biogeography & Nutrient Subsidies Island Biogeography & Nutrient Subsidies Debora Obrist October 31, 2017 BISC204 Outline Island Biogeography Early theories Theory of Island Biogeography Nutrient Subsidies Land sea Sea land The 100 Islands

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ABSTRACT We will be doing some review of Math concepts in this lab. Scientific notation, unit conversions, scale modeling, time to

More information

Relative and Absolute Directions

Relative and Absolute Directions Relative and Absolute Directions Purpose Learning about latitude and longitude Developing math skills Overview Students begin by asking the simple question: Where Am I? Then they learn about the magnetic

More information

Lab 11: Seismic Waves and Travel-Time Curves

Lab 11: Seismic Waves and Travel-Time Curves Name p Earth Sci. Computer Applications GEOL 5303 Lab 11: Seismic Waves and Travel-Time Curves Your Mission: (1) Simulate velocities of different materials and how earthquake waves travel through the Earth

More information

Biology Chapter 15 Evolution Notes

Biology Chapter 15 Evolution Notes Biology Chapter 15 Evolution Notes Section 1: Darwin's Theory of Evolution by Natural Selection Charles Darwin- English naturalist that studied animals over a number of years before developing the theory

More information

North America ATLANTIC OCEAN PACIFIC OCEAN. The First Americans. Labrador Sea. Caribbean Sea. USI_ISN_U01_01.eps. Second Proof TCI19 65.

North America ATLANTIC OCEAN PACIFIC OCEAN. The First Americans. Labrador Sea. Caribbean Sea. USI_ISN_U01_01.eps. Second Proof TCI19 65. G e o g r a p h y C h a l l e n g e North America 70 N 180 N 60 170 W 30 W 160 W 40 W Labrador Sea 150 W 50 N 50 W Hud s on B ay 140 W 40 N 60 W ATLANTIC OCEAN 30 N PACIFIC OCEAN Gulf of Mexico 20 N 130

More information

Learning objectives. 3. The most likely candidates explaining latitudinal species diversity

Learning objectives. 3. The most likely candidates explaining latitudinal species diversity Lectures by themes Contents of the course Macroecology 1. Introduction, 2. Patterns and processes of species diversity I 3. Patterns and processes of species diversity II 4. Species range size distributions

More information

Understanding Natural Selection

Understanding Natural Selection Understanding Natural Selection Charles Darwin (1809-1882) Sailed around the world 1831-1836 What did Darwin s Travels reveal The diversity of living species was far greater than anyone had previously

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

What happened Before. reflect

What happened Before. reflect reflect Sea shells seem to be everywhere. Most of the time, you will find them on beaches. But every now and then, you might find them far from the sea. For example, you might find a shell stuck in a rock

More information

Darwin's Theory. Use Target Reading Skills. Darwin's Observations. Changes Over Time Guided Reading and Study

Darwin's Theory. Use Target Reading Skills. Darwin's Observations. Changes Over Time Guided Reading and Study Darwin's Theory This section discusses Charles Darwin and his theories ofevolution, which are based on what he saw during his trip around the world. Use Target Reading Skills In the graphic organizer,

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Biceps Muscle Model Physics 6A Lab Experiment 6 Introduction This lab will begin with some warm-up exercises to familiarize yourself with the theory, as well as the experimental setup. Then you ll move

More information

Theory of Evolution. Evolution The process of change over time. Specifically, a change in the frequency of a gene or allele in a population over time

Theory of Evolution. Evolution The process of change over time. Specifically, a change in the frequency of a gene or allele in a population over time Theory of Evolution Learning Goals Define "Evolution" & "Natural Selection". Describe the 4 steps of Natural Selection, giving an example of each. Explain the importance of "Variation". Does Natural Selection

More information

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study

More information

Succession. Lesson Overview. Lesson Overview. 4.3 Succession

Succession. Lesson Overview. Lesson Overview. 4.3 Succession Lesson Overview 4.3 THINK ABOUT IT In 1883, the volcanic island of Krakatau in the Indian Ocean was blown to pieces by an eruption. The tiny island that remained was completely barren. Within two years,

More information

Think about the landforms where you live. How do you think they have changed over time? How do you think they will change in the future?

Think about the landforms where you live. How do you think they have changed over time? How do you think they will change in the future? reflect All the landforms on Earth have changed over time and continue to change. Many of the changes were caused by wind, moving water, and moving ice. Mountains have grown and shrunk. Rivers have cut

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

PHYS 275 Experiment 2 Of Dice and Distributions

PHYS 275 Experiment 2 Of Dice and Distributions PHYS 275 Experiment 2 Of Dice and Distributions Experiment Summary Today we will study the distribution of dice rolling results Two types of measurement, not to be confused: frequency with which we obtain

More information

This nonfiction book

This nonfiction book This nonfiction book explains how islands are born from underwater volcanoes. The challenging content is made accessible with simple text, captions, photographs, labels, and diagrams. 16 pages, 231 words

More information

WTHS Biology Keystone Exams

WTHS Biology Keystone Exams WTHS Biology Keystone Exams Biology Keystone Review Packet 10 th / 11 th Grade Keystone Test Prep This packet contains helpful information for you to prepare for the upcoming Biology Keystone Test on May

More information

Infinity Unit 2: Chaos! Dynamical Systems

Infinity Unit 2: Chaos! Dynamical Systems Infinity Unit 2: Chaos! Dynamical Systems Iterating Linear Functions These questions are about iterating f(x) = mx + b. Seed: x 1. Orbit: x 1, x 2, x 3, For each question, give examples and a symbolic

More information

Merrily we roll along

Merrily we roll along Merrily we roll along Name Period Date Lab partners Overview Measuring motion of freely falling objects is difficult because they acclerate so fast. The speed increases by 9.8 m/s every second, so Galileo

More information

Predict the effect of increased competition for abiotic and biotic resources on a food web. colored pencils graph paper ruler

Predict the effect of increased competition for abiotic and biotic resources on a food web. colored pencils graph paper ruler Edit File QUICK LAB Effect of Abiotic and Biotic Factors No organism exists in isolation. Organisms depend on and compete for the abiotic, or non-living, factors in its environment. For example, organisms

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Organism Interactions in Ecosystems

Organism Interactions in Ecosystems Organism Interactions in Ecosystems Have you ever grown a plant or taken care of a pet? If so, you know they have certain needs such as water or warmth. Plants need sunlight to grow. Animals need food

More information

Community Interactions

Community Interactions Name Class Date 4.2 Niches and Community Interactions Lesson Objectives Define niche. Describe the role competition plays in shaping communities. Describe the role predation and herbivory play in shaping

More information

A) Pre-Darwin History:

A) Pre-Darwin History: Darwin Notes A) Pre-Darwin History: Ancient Greek philosophers such as and believed species were permanent and did not evolve. These ideas prevailed for 2,000 years. In 1859 Charles Darwin published. This

More information

Weather is the day-to-day condition of Earth s atmosphere.

Weather is the day-to-day condition of Earth s atmosphere. 4.1 Climate Weather and Climate Weather is the day-to-day condition of Earth s atmosphere. Climate refers to average conditions over long periods and is defined by year-after-year patterns of temperature

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

Regional Atlas Activity C

Regional Atlas Activity C Political Location Activity AUSTRALIA, OCEANIA, AND ANTARCTICA Regional Atlas Activity C DIRECTIONS: Identify each country marked by a number on the map. Then write the correct name on the numbered blanks

More information

V Q \ = 7]Z 4IVL 126 Unit 5

V Q \ = 7]Z 4IVL 126 Unit 5 126 Unit 5 Is it cold and windy? Or is it a sunny day? Is it raining cats and dogs? Or can we go out to play? I will learn to talk about seasons and weather plant life environments caring for the earth

More information

Lesson 5: Trees. Tell your child that today he is going to learn about trees. Ask him what he knows about trees and how people are dependent on trees.

Lesson 5: Trees. Tell your child that today he is going to learn about trees. Ask him what he knows about trees and how people are dependent on trees. Dirt and Plants -> 5: Trees Lesson 5: Trees Getting Started? Big Ideas P How are people dependent on plants? & Facts and Definitions P Evergreen trees do not change colors in the fall and winter. P Deciduous

More information

What is Evolution? Evolution = Most changes occur gradually, but can happen on a shorter time scale Variations in populations come from

What is Evolution? Evolution = Most changes occur gradually, but can happen on a shorter time scale Variations in populations come from Evolution Notes What is Evolution? Evolution = Most changes occur gradually, but can happen on a shorter time scale Variations in populations come from Time Line of Scientists 1785 proposes that the Earth

More information

MR. GOFF S WORLD HISTORY UNIT ONE: GEOGRAPHY 5 THEMES OF GEOGRAPHY

MR. GOFF S WORLD HISTORY UNIT ONE: GEOGRAPHY 5 THEMES OF GEOGRAPHY MR. GOFF S WORLD HISTORY UNIT ONE: GEOGRAPHY 5 THEMES OF GEOGRAPHY BYOD BRING YOUR OWN DEVICE IN SMALL GROUPS (3-4), USE YOUR ELECTRONIC DEVICE(S) AND DEFINE THE FOLLOWING VOCAB. WORDS 1. GEOGRAPHY 2.

More information

Chapter 1. Social Studies History and Geography

Chapter 1. Social Studies History and Geography Chapter 1 Social Studies History and Geography Unit 01 Geography Skills 1 Reading Maps Key Words border landform rely on display focus on route locater 1 There are many different kinds of maps. A political

More information

Ecosystems Chapter 4. What is an Ecosystem? Section 4-1

Ecosystems Chapter 4. What is an Ecosystem? Section 4-1 Ecosystems Chapter 4 What is an Ecosystem? Section 4-1 Ecosystems Key Idea: An ecosystem includes a community of organisms and their physical environment. A community is a group of various species that

More information

Spheres of Life. Ecology. Chapter 52. Impact of Ecology as a Science. Ecology. Biotic Factors Competitors Predators / Parasites Food sources

Spheres of Life. Ecology. Chapter 52. Impact of Ecology as a Science. Ecology. Biotic Factors Competitors Predators / Parasites Food sources "Look again at that dot... That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. Ecology Chapter

More information

Boardworks Ltd Evolution

Boardworks Ltd Evolution 1 of 34 Boardworks Ltd 2011 Evolution 2 of 34 Boardworks Ltd 2011 Life on earth 3 of 34 Boardworks Ltd 2011 Life on earth began approximately 3,500 million years ago. What do you think the earliest life

More information

Name period date assigned date due date returned. Natural Disasters

Name period date assigned date due date returned. Natural Disasters Name period date assigned date due date returned Match the following natural disaster to its description. Write the capital letter of the definition in the blank in front of the natural disaster. 1. tornado

More information

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005 Final Project Physics 590 Mary-Kate McGlinchey MISEP Summer 2005 Lesson Objectives: Students will be able to Identify the relationship between motion and a reference point. Identify the two factors that

More information

Changes to Land 5.7B. landforms: features on the surface of Earth such as mountains, hills, dunes, oceans and rivers

Changes to Land 5.7B. landforms: features on the surface of Earth such as mountains, hills, dunes, oceans and rivers All the landforms on Earth have changed over time and continue to change. Many of the changes were caused by wind, moving water, and moving ice. Mountains have grown and shrunk. Rivers have cut away land

More information

A Guide to Life on Earth

A Guide to Life on Earth A Guide to Life on Earth Introductory Activity circa 1-2 periods Main Activity circa 1period Conclusion circa 1 period Activity covers English, Science, ICT and Geography Overview In this activity, pupils

More information

CHAPTER 52: Ecology. Name: Question Set Define each of the following terms: a. ecology. b. biotic. c. abiotic. d. population. e.

CHAPTER 52: Ecology. Name: Question Set Define each of the following terms: a. ecology. b. biotic. c. abiotic. d. population. e. CHAPTER 52: Ecology 1. Define each of the following terms: a. ecology b. biotic c. abiotic d. population e. community f. ecosystem g. biosphere 2. What is dispersal? 3. What are the important factors that

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

Determining the age of fossils

Determining the age of fossils Sea shells seem to be everywhere. Most of the time you will find them on beaches, but every now and then, you may find them far from the sea. For example, you may have found a shell stuck in a rock high

More information

Australia and New Zealand: Powerpoint

Australia and New Zealand: Powerpoint Australia and New Zealand: Powerpoint Physical Geography Australia and New Zealand are between the Indian and Pacific Oceans. Australia s seasons are opposite of the United States due to their location.

More information

AP Physics 1 Summer 2018 Assignment

AP Physics 1 Summer 2018 Assignment AP Physics 1 Summer 018 Assignment Hello, and welcome to AP Physics 1! Your to-do list before the end of the spring semester: Sign up for Remind so that you can receive reminders about your summer assignment

More information

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson.

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson. Lesson 8: The History of Life on Earth Time: approximately 45-60 minutes, depending on length of discussion. Can be broken into 2 shorter lessons Materials: Double timeline (see below) Meter stick (to

More information

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate?

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? Name Hour Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? 2. What factors cause climate? The Greenhouse Effect (page 87) 3. Circle the

More information

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions CP Algebra Unit -1: Factoring and Solving Quadratics NOTE PACKET Name: Period Learning Targets: 0. I can add, subtract and multiply polynomial expressions 1. I can factor using GCF.. I can factor by grouping.

More information

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

Canadian Mapping Big Book

Canadian Mapping Big Book Canadian Mapping Big Book Grades 4-6 Written by Lynda Golletz Illustrated by S&S Learning Materials About the Author: Lynda Golletz was an elementary school teacher for thirty-three years. She is the author

More information

Teachers Notes For Let s Chat Habitat

Teachers Notes For Let s Chat Habitat Teachers Notes For Let s Chat Habitat Some points to discuss prior to the performance. What is a habitat? (Answer. The natural environment where an animal or organism is normally found. The place where

More information

2.1 Introduction to Simple Machines

2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines Simple Machines Unit DO NOT WRITE ANYWHERE IN THIS PACKAGE One of the few properties that separate us from animals is our ability

More information

In a radioactive source containing a very large number of radioactive nuclei, it is not

In a radioactive source containing a very large number of radioactive nuclei, it is not Simulated Radioactive Decay Using Dice Nuclei Purpose: In a radioactive source containing a very large number of radioactive nuclei, it is not possible to predict when any one of the nuclei will decay.

More information

CHAPTER 5. Interactions in the Ecosystem

CHAPTER 5. Interactions in the Ecosystem CHAPTER 5 Interactions in the Ecosystem 1 SECTION 3.3 - THE ECOSYSTEM 2 SECTION 3.3 - THE ECOSYSTEM Levels of Organization Individual one organism from a species. Species a group of organisms so similar

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

What is Evolution? Evolution Unit Vocabulary. Answer: Evidence of Evolution. What is a Gene Pool? Change over time.

What is Evolution? Evolution Unit Vocabulary. Answer: Evidence of Evolution. What is a Gene Pool? Change over time. What is Evolution? Evolution Unit Vocabulary Practice Quiz Change over time. Evidence of Evolution The gradual development of something, especially from simple to more complex. Can be big or very small

More information

EROSIONAL FEATURES. reflect

EROSIONAL FEATURES. reflect reflect Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features

More information

2 Rates of Weathering

2 Rates of Weathering Name CHAPTER 10 Class Date Weathering and Soil Formation SECTION 2 Rates of Weathering National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these

More information

Geologic Time. What have scientists learned about Earth s past by studying rocks and fossils?

Geologic Time. What have scientists learned about Earth s past by studying rocks and fossils? Name Geologic Time What have scientists learned about Earth s past by studying rocks and fossils? Before You Read Before you read the chapter, think about what you know about geologic time Record your

More information

UCI MATH CIRCLE: POPULATION DYNAMICS

UCI MATH CIRCLE: POPULATION DYNAMICS UCI MATH CIRCLE: POPULATION DYNAMICS ADAPTED FROM A SESSION OF THE UNIVERSITY OF UTAH MATH CIRCLE When Europeans first arrived in the Americas, Passenger Pigeons were perhaps the most populous bird in

More information

Drifting Continents. Key Concepts

Drifting Continents. Key Concepts Plate Tectonics Section Summary Key Concepts What was Alfred Wegener s hypothesis about the continents? What evidence supported Wegener s hypothesis? Why was Alfred Wegener s theory rejected by most scientists

More information

Temperature Changes OBJECTIVES PREPARATION SCHEDULE MATERIALS. The students. For each student. For each team of two. For the class

Temperature Changes OBJECTIVES PREPARATION SCHEDULE MATERIALS. The students. For each student. For each team of two. For the class activity 3 Temperature Changes OBJECTIVES Students observe changes in air temperature and discover the role of the Sun in heating Earth. The students measure and record outdoor air temperature at three

More information

GSC 107 Lab # 3 Calculating sea level changes

GSC 107 Lab # 3 Calculating sea level changes GSC 107 Lab # 3 Calculating sea level changes Student name Student ID Background Glacial-Interglacial Cycles Climate-related sea-level changes of the last century are very minor compared with the large

More information

EFFECTS OF TAXONOMIC GROUPS AND GEOGRAPHIC SCALE ON PATTERNS OF NESTEDNESS

EFFECTS OF TAXONOMIC GROUPS AND GEOGRAPHIC SCALE ON PATTERNS OF NESTEDNESS EFFECTS OF TAXONOMIC GROUPS AND GEOGRAPHIC SCALE ON PATTERNS OF NESTEDNESS SFENTHOURAKIS Spyros, GIOKAS Sinos & LEGAKIS Anastasios Zoological Museum, Department of Biology, University of Athens, Greece

More information