Filtering of variances and correlations by local spatial averaging. Loïk Berre Météo-France

Size: px
Start display at page:

Download "Filtering of variances and correlations by local spatial averaging. Loïk Berre Météo-France"

Transcription

1 Filtering of variances and correlations by local spatial averaging Loïk Berre Météo-France

2 Outline 1. Contrast between two extreme approaches in Var/EnKF? 2.The spatial structure of sampling noise and signal 3. Spatial averaging of ensemble-based variances 4. Spatial averaging of innovation-based variances 5. Spatial averaging of correlations

3 Two usual extreme approaches in Var/EnKF Covariance modelling : Var: often globally averaged (spatially). robust with a very small ensemble, but lacks heterogeneity completely. EnKF: often «purelylocal». a lot of geographical variations potentially, but requires a rather large ensemble, and it ignores spatial coherences. An attractive compromise is to calculate local spatial averages of covariances.

4 Is the usual ensemble covariance optimal? Usual estimation («raw»): B(N) = 1/(N-1) Σi e b (i) e b (i) T = best estimate, for a given ensemble size N? No. Better to account for spatial structures of sampling noise and signal. Similar to accounting for spatial structures of errors in data assimilation, through B and R.

5 The spatial structure of sampling noise & signal in ensemble variance fields

6 Spatial structure of sampling noise (Fisher and Courtier 1995 Fig 6, Raynaud et al 2008a) True variance field V* ~ large scale Sampling noise V e =V(N)-V* ~ large scale? NO. N = 50 L( ε b ) = 200 km While the signal of interest is large scale, the sampling noise is rather small scale.

7 Spatial structure of sampling noise (Raynaud et al 2008b) Spatial covariance of sampling noise V e =V(N)-V* : V e (V e ) T = 2/(N-1) B* B* where B* B* is the Hadamard auto-product of B* = ε b ( ε b ) T. The spatial structure of sampling noise V e is closely connected to the spatial structure of background errors ε b.

8 Spatial structure of sampling noise (Raynaud et al 2008b) Correlation function of sampling noise: cor(v e [i], V e [j]) = cor(ε b [i], ε b [j])² Length-scale L( V e ) of sampling noise: L( V e ) = L( ε b ) / 2 The sampling noise V e is smaller scale than the background error field ε b which is smaller scale than the variance field V* of background error?

9 Spatial structure of signal (Houtekamer and Mitchell 2003, Isaksen et al 2007) Large scale features (data density contrasts, synoptic situation, ) tend to predominate in ensemble-based sigmab maps, which indicates that the signal of interest is large scale.

10 Spatial structure of sampling noise & signal (Isaksen et al 2007) General expectation : increasing the ensemble size reduces sampling noise, whereas the signal remains. N = 10 N = 50 Experimental result : when increasing the ensemble size, small scale details tend to vanish, whereas the large scale part remains. This indicates/confirms that the sampling noise is small scale, and that the signal of interest is large scale.

11 COMPARISON BETWEEN TWO RAW σ b MAPS (Vor( Vor,, 500 hpa) FROM TWO INDEPENDENT 3-MEMBER ENSEMBLES «RAW» σ b ENS #1 «RAW» σ b ENS #2 Differences correspond to sampling noise, which appears to be small scale. Common features correspond to the signal, which appears to be large scale.

12 Optimized spatial averaging of ensemble-based variances

13 OPTIMAL FILTERING OF THE BACKGROUND ERROR VARIANCE FIELD Accounting for spatial structures of signal and noise leads to the application of a low-pass filter ρ (as K in data assim ): ρ V b * ~ ρ V b with ρ = signal / (signal+noise) (Raynaud et al 2008b)

14 OPTIMAL FILTERING OF THE BACKGROUND ERROR VARIANCE FIELD SIMULATED «TRUTH» FILTERED SIGMAB s (N = 6) RAW SIGMAB s (N = 6) (Raynaud et al 2008a)

15 σb ENS 1 «RAW» RESULTS OF THE FILTERING (REAL ENSEMBLE ASSIMILATION) σb ENS 1 «FILTERED» σb ENS 2 «RAW» σb ENS 2 «FILTERED»

16 LINK BETWEEN LOCAL SPATIAL AVERAGING AND INCREASE OF SAMPLE SIZE Multiplication by a low-pass spectral filter latitude Local spatial averaging (convolution) Ng=9 The ensemble size N is MULTIPLIED(!) by a number Ng of gridpoint samples. If N=6 and Ng=9, then the total sample size is N x Ng = 54. The 6-member filtered estimate is as accurate as a 54-member raw estimate, under a local homogeneity asumption. longitude

17 DOES SPATIAL AVERAGING OF VARIANCES Ensemble Var at Météo-France (N=6; operational since July 2008) HAVE AN IMPACT IN THE (VERY) END? with FILTERED σb (Raynaud 2008) with RAW σb obs-analysis obs-guess

18 Validation with spatially averaged innovation-based variances

19 Spatial filtering of innovation-based sigmab s (Lindskog et al 2006) «Raw» innovation-based sigmab s «Filtered» innovation-based sigmab s Some relevant geographical variations (e.g. data density effects), especially after spatial averaging.

20 Innovation-based sigmab estimate (Desroziers et al 2005) cov( H dx, dy ) ~ H B H T This can be calculated for a specific date, to examine flow-dependent features, but then the local sigmab is calculated from a single error realization ( N = 1 )! Conversely, if we calculate local spatial averages of these sigmab s, the sample size will be increased, and comparison with ensemble can be considered.

21 Innovation-based sigmab s «of the day» HIRS 7 (28/08/ h) before spatial averaging after spatial averaging (with a radius of 500 km) (Desroziers 2006) After spatial averaging, some geographical patterns can be identified. Can this be compared with ensemble estimates?

22 Validation of ensemble sigmab s «of the day» HIRS 7 (28/08/ h) Ensemble sigmab s «Innovation-based» sigmab s Spatial averaging makes the two estimates easier to compare and to validate.

23 Spatial averaging of correlations

24 Spatial structure of raw correlation length-scale field RAW L( ε b )= 1/ (-2 d²cor/ds²) s=0 «TRUTH» N = 10 Sampling noise : artificial small scale variations. (Pannekoucke et al 2007)

25 Raw ensemble correlation length-scale field «of the day» Geographical patterns are difficult to identify, due to sampling noise (N = 6).

26 Spatial structure of raw correlation length-scale field N = 5 N = 15 N = 30 Reduction of small scale sampling noise, when the ensemble size increases. N = 60 Sampling noise ~ relatively small scale. Use spatial filtering. ex : wavelets. (Pannekoucke 2008)

27 Wavelet diagonal modelling of B (Fisher 2003, Pannekoucke et al 2007) It amounts to local spatial averages of correlation functions cor(x,s): cor W (x,s) ~ Σx cor(x,s) Φ(x,s) with scale-dependent weighting functions Φ : small-scale contributions to correlation functions are averaged over smaller regions than large-scale contributions.

28 Wavelet filtering of correlation functions RAW WAVELET Wavelet approach : sampling noise is reduced, leading to a lesser need of Schur localization. N = 10 (Pannekoucke et al 2007)

29 Impact of wavelet filtering on analysis quality N = 10 homogeneous raw wavelet Schur Length Wavelet approach : sampling noise is reduced, and there is a lesser need of Schur localization. (Pannekoucke et al 2007)

30 Wavelet filtering of flow-dependent correlations Synoptic situation (geopotential near 500 hpa) Anisotropic wavelet based correlation functions ( N = 12 ) (Lindskog et al 2007, Deckmyn et al 2005)

31 Wavelet filtering of correlations «of the day» Raw length-scales Wavelet length-scales (Fisher 2003, Pannekoucke et al 2007) N = 6

32 Conclusions Spatial structures of signal and sampling noise tend to be different. This leads to «optimal» spatial averaging/filtering techniques (as in data assimilation). The increase of sample size reduces the estimation error (thus it helps to use smaller (high resolution) ) ensembles). Useful for ensemble-based based covariance estimation, but also for validation with flow-dependent innovation-based estimates.

33 Perspectives Make a bridge with similar/other filtering techniques. ex : spatial BMA technique in probab. forecasting (Berrocal et al 2007). ex : ergodic space/time averages in turbulence. ex : local time averages of ensemble covariances (Xu et al 2008). The 4D nature of atmosphere & covariance estimation may suggest 4D filtering techniques (instead of 2D currently). There may be a natural path towards «a data assimilation/filtering» of ensemble- & innovation-based covariances, in order to achieve an optimal covariance estimation?

34 Thank you for your attention!

Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque

Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque Cliquez pour modifier le style du titre Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque L. Berre, G. Desroziers, H. Varella, L. Raynaud, C. Labadie and

More information

Loïk Berre Météo-France (CNRM/GAME) Thanks to Gérald Desroziers

Loïk Berre Météo-France (CNRM/GAME) Thanks to Gérald Desroziers Estimation and diagnosis of analysis/background errors using ensemble assimilation Loïk Berre Météo-France (CNRM/GAME) Thanks to Gérald Desroziers Outline 1. Simulation of the error evolution 2. The operational

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Simulation of error cycling

Simulation of error cycling Simulation of error cycling Loïk BERRE, Météo-France/CNRS ISDA, Reading, 21 July 2016 with inputs from R. El Ouaraini, L. Raynaud, G. Desroziers, C. Fischer Motivations and questions EDA and innovations

More information

Improved structure functions for 3D VAR

Improved structure functions for 3D VAR Improved structure functions for 3D VAR HIRLAM All Staff Meeting Sofia, Bulgaria, 15 18 May, 2006 Magnus Lindskog, Nils Gustafsson, Martin Ridal och Per Dahlgren Swedish Meteorological and Hydrological

More information

The hybrid ETKF- Variational data assimilation scheme in HIRLAM

The hybrid ETKF- Variational data assimilation scheme in HIRLAM The hybrid ETKF- Variational data assimilation scheme in HIRLAM (current status, problems and further developments) The Hungarian Meteorological Service, Budapest, 24.01.2011 Nils Gustafsson, Jelena Bojarova

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2)

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0

More information

Recent achievements in the data assimilation systems of ARPEGE and AROME-France

Recent achievements in the data assimilation systems of ARPEGE and AROME-France Recent achievements in the data assimilation systems of ARPEGE and AROME-France P. Brousseau and many colleagues from (CNRM/GMAP) 38th EWGLAM and 23 SRNWP Meeting Rome, 04 October 2016 Meteo-France NWP

More information

Background Error Covariance Modelling

Background Error Covariance Modelling Background Error Covariance Modelling Mike Fisher Slide 1 Outline Diagnosing the Statistics of Background Error using Ensembles of Analyses Modelling the Statistics in Spectral Space - Relaxing constraints

More information

Background error modelling: climatological flow-dependence

Background error modelling: climatological flow-dependence Background error modelling: climatological flow-dependence Yann MICHEL NCAR/MMM/B Meeting 16 th April 2009 1 Introduction 2 A new estimate of lengthscales 3 Climatological flow-dependence Yann MICHEL B

More information

Objective localization of ensemble covariances: theory and applications

Objective localization of ensemble covariances: theory and applications Institutionnel Grand Public Objective localization of ensemble covariances: theory and applications Yann Michel1, B. Me ne trier2 and T. Montmerle1 Professionnel (1) Me te o-france & CNRS, Toulouse, France

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast)

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Richard Ménard, Yan Yang and Yves Rochon Air Quality Research Division Environment

More information

Ensemble Kalman Filter based snow data assimilation

Ensemble Kalman Filter based snow data assimilation Ensemble Kalman Filter based snow data assimilation (just some ideas) FMI, Sodankylä, 4 August 2011 Jelena Bojarova Sequential update problem Non-linear state space problem Tangent-linear state space problem

More information

Background-error correlation length-scale estimates and their sampling statistics

Background-error correlation length-scale estimates and their sampling statistics QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 14: 497 58 (8) Published online 1 March 8 in Wiley InterScience (www.interscience.wiley.com) DOI: 1.1/qj.1 Bacground-error

More information

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto Introduction to Data Assimilation Saroja Polavarapu Meteorological Service of Canada University of Toronto GCC Summer School, Banff. May 22-28, 2004 Outline of lectures General idea Numerical weather prediction

More information

Heterogeneous Correlation Modeling Based on the Wavelet Diagonal Assumption and on the Diffusion Operator

Heterogeneous Correlation Modeling Based on the Wavelet Diagonal Assumption and on the Diffusion Operator SEPTEMBER 2009 P A N N E K O U C K E 2995 Heterogeneous Correlation Modeling Based on the Wavelet Diagonal Assumption and on the Diffusion Operator OLIVIER PANNEKOUCKE CNRM/GAME, Météo-France/CNRS, Toulouse,

More information

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Project eam: Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell WWRP/HORPEX Workshop on 4D-VAR and Ensemble

More information

Diagnosis of observation, background and analysis-error statistics in observation space

Diagnosis of observation, background and analysis-error statistics in observation space Q. J. R. Meteorol. Soc. (2005), 131, pp. 3385 3396 doi: 10.1256/qj.05.108 Diagnosis of observation, background and analysis-error statistics in observation space By G. DESROZIERS, L. BERRE, B. CHAPNIK

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Spectral and morphing ensemble Kalman filters

Spectral and morphing ensemble Kalman filters Spectral and morphing ensemble Kalman filters Department of Mathematical and Statistical Sciences University of Colorado Denver 91st American Meteorological Society Annual Meeting Seattle, WA, January

More information

Assimilation of cloud/precipitation data at regional scales

Assimilation of cloud/precipitation data at regional scales Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research auligne@ucar.edu Acknowledgments to: Steven Cavallo, David Dowell, Aimé Fournier, Hans

More information

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher Ensemble forecasting and flow-dependent estimates of initial uncertainty Martin Leutbecher acknowledgements: Roberto Buizza, Lars Isaksen Flow-dependent aspects of data assimilation, ECMWF 11 13 June 2007

More information

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF Blueprints for Next-Generation Data Assimilation Systems Workshop 8-10 March 2016 Mark Buehner Data Assimilation and Satellite

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

Ensemble of Data Assimilations and Uncertainty Estimation

Ensemble of Data Assimilations and Uncertainty Estimation Ensemble of Data Assimilations and Uncertainty Estimation Massimo Bonavita ECMWF, Reading, UK Massimo.Bonavita@ecmwf.int ABSTRACT The background error covariance matrix (B) plays a fundamental role in

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Report on the Joint SRNWP workshop on DA-EPS Bologna, March. Nils Gustafsson Alex Deckmyn.

Report on the Joint SRNWP workshop on DA-EPS Bologna, March. Nils Gustafsson Alex Deckmyn. Report on the Joint SRNWP workshop on DA-EPS Bologna, 22-24 March Nils Gustafsson Alex Deckmyn http://www.smr.arpa.emr.it/srnwp/ Purpose of the workshop On the one hand, data assimilation techniques require

More information

Spectral Ensemble Kalman Filters

Spectral Ensemble Kalman Filters Spectral Ensemble Kalman Filters Jan Mandel 12, Ivan Kasanický 2, Martin Vejmelka 2, Kryštof Eben 2, Viktor Fugĺık 2, Marie Turčičová 2, Jaroslav Resler 2, and Pavel Juruš 2 1 University of Colorado Denver

More information

Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation

Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 1425 1438 (2008) Published online 12 August 2008 in Wiley InterScience (www.interscience.wiley.com).288 Estimation of

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T.

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Changes in the Arpège 4D-VAR and LAM 3D-VAR C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Montmerle Content Arpège 4D-VAR Arome-France Other applications: Aladin Overseas,

More information

4 combination with the Kalman Smoother recursions (Durbin Koopman, 997) Kalman filtering can be extended to the non-gaussian nonlinear frameworks. Due

4 combination with the Kalman Smoother recursions (Durbin Koopman, 997) Kalman filtering can be extended to the non-gaussian nonlinear frameworks. Due Nonlinear Processes in Geophysics Open Access Nonlin. Processes Geophys.,,, 4 www.nonlin-processes-geophys.net///4/ doi:.94/npg---4 Author(s) 4. CC Attribution. License. A hybrid variational data assimilation

More information

Assimilation of IASI reconstructed radiances from Principal Components in AROME model

Assimilation of IASI reconstructed radiances from Principal Components in AROME model Assimilation of IASI reconstructed radiances from Principal Components in AROME model J. Andrey, V. Guidard, N. Fourrie and J.-F. Mahfouf CNRM-GAME (Météo-France and CNRS) October 3 th, 215 Outline 1 Background

More information

Brian J. Etherton University of North Carolina

Brian J. Etherton University of North Carolina Brian J. Etherton University of North Carolina The next 90 minutes of your life Data Assimilation Introit Different methodologies Barnes Analysis in IDV NWP Error Sources 1. Intrinsic Predictability Limitations

More information

Observation error specifications

Observation error specifications Observation error specifications Gérald Desroziers, with many contributions Météo-France, CNRS 4 av. G. Coriolis, 357 Toulouse Cédex, France gerald.desroziers@meteo.fr ABSTRACT The aim of this paper is

More information

Revision of the ECMWF humidity analysis: Construction of a gaussian control variable

Revision of the ECMWF humidity analysis: Construction of a gaussian control variable Revision of the ECMWF humidity analysis: Construction of a gaussian control variable Elías Valur Hólm ECMWF, Shinfield Park, Reading GR2 9AX, United Kingdom 1 Introduction In the ECMWF analysis specific

More information

Ensemble of Data Assimilations methods for the initialization of EPS

Ensemble of Data Assimilations methods for the initialization of EPS Ensemble of Data Assimilations methods for the initialization of EPS Laure RAYNAUD Météo-France ECMWF Annual Seminar Reading, 12 September 2017 Introduction Estimating the uncertainty in the initial conditions

More information

Background Error Covariance Modelling

Background Error Covariance Modelling Background Error Covariance Modelling M Fisher European Centre for Medium-Range Weather Forecasts m.fisher@ecmwf.int. Introduction The modelling and specification of the covariance matrix of background

More information

A HYBRID ENSEMBLE KALMAN FILTER / 3D-VARIATIONAL ANALYSIS SCHEME

A HYBRID ENSEMBLE KALMAN FILTER / 3D-VARIATIONAL ANALYSIS SCHEME A HYBRID ENSEMBLE KALMAN FILTER / 3D-VARIATIONAL ANALYSIS SCHEME Thomas M. Hamill and Chris Snyder National Center for Atmospheric Research, Boulder, Colorado 1. INTRODUCTION Given the chaotic nature of

More information

Tangent-linear and adjoint models in data assimilation

Tangent-linear and adjoint models in data assimilation Tangent-linear and adjoint models in data assimilation Marta Janisková and Philippe Lopez ECMWF Thanks to: F. Váňa, M.Fielding 2018 Annual Seminar: Earth system assimilation 10-13 September 2018 Tangent-linear

More information

The Evolution of Dispersion Spectra and the Evaluation of Model Differences in an Ensemble Estimation of Error Statistics for a Limited-Area Analysis

The Evolution of Dispersion Spectra and the Evaluation of Model Differences in an Ensemble Estimation of Error Statistics for a Limited-Area Analysis 3456 M O N T H L Y W E A T H E R R E V I E W VOLUME 134 The Evolution of Dispersion Spectra and the Evaluation of Model Differences in an Ensemble Estimation of Error Statistics for a Limited-Area Analysis

More information

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute Introduction to Data Assimilation Reima Eresmaa Finnish Meteorological Institute 15 June 2006 Outline 1) The purpose of data assimilation 2) The inputs for data assimilation 3) Analysis methods Theoretical

More information

Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience

Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading

More information

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM A. Srinivasan, E. P. Chassignet, O. M. Smedstad, C. Thacker, L. Bertino, P. Brasseur, T. M. Chin,, F.

More information

Comparison of of Assimilation Schemes for HYCOM

Comparison of of Assimilation Schemes for HYCOM Comparison of of Assimilation Schemes for HYCOM Ashwanth Srinivasan, C. Thacker, Z. Garraffo, E. P. Chassignet, O. M. Smedstad, J. Cummings, F. Counillon, L. Bertino, T. M. Chin, P. Brasseur and C. Lozano

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment

The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 27, NO. 6, 2010, 1303 1310 The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment LIU Juanjuan

More information

4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations

4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations QuarterlyJournalof theoyalmeteorologicalsociety Q J Meteorol Soc 4: 97 October 4 A DOI:/qj35 4DEnVar: lin with 4D state formulation of variational assimilation and different possible implementations Gérald

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Covariance Localization with the Diffusion-Based Correlation Models

Covariance Localization with the Diffusion-Based Correlation Models 848 M O N T H L Y W E A T H E R R E V I E W VOLUME 141 Covariance Localization with the Diffusion-Based Correlation Models MAX YAREMCHUK Naval Research Laboratory, Stennis Space Center, Mississippi DMITRY

More information

Recent Developments in Numerical Methods for 4d-Var

Recent Developments in Numerical Methods for 4d-Var Recent Developments in Numerical Methods for 4d-Var Mike Fisher Slide 1 Recent Developments Numerical Methods 4d-Var Slide 2 Outline Non-orthogonal wavelets on the sphere: - Motivation: Covariance Modelling

More information

Modelling of background error covariances for the analysis of clouds and precipitation

Modelling of background error covariances for the analysis of clouds and precipitation Modelling of background error covariances for the analysis of clouds and precipitation Thibaut Montmerle, Yann Michel and Benjamin Ménétrier Météo-France/CNRM-GAME 42 av. G. Coriolis, 31057 Toulouse, France

More information

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada ECMWF-JCSDA Workshop on Assimilating Satellite Observations of Clouds and Precipitation into NWP models ECMWF, Reading (UK) Sylvain

More information

Spectral and morphing ensemble Kalman filters

Spectral and morphing ensemble Kalman filters Spectral and morphing ensemble Kalman filters Department of Mathematical and Statistical Sciences University of Colorado Denver 91st American Meteorological Society Annual Meeting Seattle, WA, January

More information

Comparing the SEKF with the DEnKF on a land surface model

Comparing the SEKF with the DEnKF on a land surface model Comparing the SEKF with the DEnKF on a land surface model David Fairbairn, Alina Barbu, Emiliano Gelati, Jean-Francois Mahfouf and Jean-Christophe Caret CNRM - Meteo France Partly funded by European Union

More information

Modal view of atmospheric predictability

Modal view of atmospheric predictability Modal view of atmospheric predictability Nedjeljka Žagar University of Ljubljana, Ljubljana, Slovenia Based on Žagar, N., R. Buizza and J. Tribbia, J. Atmos. Sci., 0, and Žagar, N., J. Anderson, N. Collins,

More information

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University Bayesian Statistics and Data Assimilation Jonathan Stroud Department of Statistics The George Washington University 1 Outline Motivation Bayesian Statistics Parameter Estimation in Data Assimilation Combined

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

Representativity error for temperature and humidity using the Met Office high resolution model

Representativity error for temperature and humidity using the Met Office high resolution model School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2012-19 12 September 2012 Representativity error for temperature and humidity using the Met Office high

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

Environment Canada s Regional Ensemble Kalman Filter

Environment Canada s Regional Ensemble Kalman Filter Environment Canada s Regional Ensemble Kalman Filter May 19, 2014 Seung-Jong Baek, Luc Fillion, Kao-Shen Chung, and Peter Houtekamer Meteorological Research Division, Environment Canada, Dorval, Quebec

More information

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS AND STATISTICS Using Observations at Different Spatial Scales in Data Assimilation for Environmental Prediction Joanne A. Waller Thesis submitted for the

More information

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Hybrid variational-ensemble data assimilation Daryl T. Kleist Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Weather and Chaos Group Meeting 07 March 20 Variational Data Assimilation J Var J 2 2 T

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

How does 4D-Var handle Nonlinearity and non-gaussianity?

How does 4D-Var handle Nonlinearity and non-gaussianity? How does 4D-Var handle Nonlinearity and non-gaussianity? Mike Fisher Acknowledgements: Christina Tavolato, Elias Holm, Lars Isaksen, Tavolato, Yannick Tremolet Slide 1 Outline of Talk Non-Gaussian pdf

More information

The University of Reading

The University of Reading The University of Reading Radial Velocity Assimilation and Experiments with a Simple Shallow Water Model S.J. Rennie 2 and S.L. Dance 1,2 NUMERICAL ANALYSIS REPORT 1/2008 1 Department of Mathematics 2

More information

EnKF Localization Techniques and Balance

EnKF Localization Techniques and Balance EnKF Localization Techniques and Balance Steven Greybush Eugenia Kalnay, Kayo Ide, Takemasa Miyoshi, and Brian Hunt Weather Chaos Meeting September 21, 2009 Data Assimilation Equation Scalar form: x a

More information

Ensemble aerosol forecasts and assimila1on at ECMWF

Ensemble aerosol forecasts and assimila1on at ECMWF Ensemble aerosol forecasts and assimila1on at ECMWF Angela Benede*, Miha Razinger, Luke Jones & Jean- Jacques Morcre

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Model Error in the Forecast Ensemble System at Météo-France (PEARP)

Model Error in the Forecast Ensemble System at Météo-France (PEARP) 1. Model Error in the Forecast Ensemble System at Météo-France (PEARP) M. Boisserie L. Descamps P. Arbogast CNRM, Météo-France, Toulouse. 2 Introduction For a long time, it was assumed that model error

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

Accounting for Missing Data in Sparse Wavelet Representation of Observation Error Correlations

Accounting for Missing Data in Sparse Wavelet Representation of Observation Error Correlations Accounting for Missing Data in Sparse Wavelet Representation of Observation Error Correlations Vincent Chabot, Maëlle Nodet, Arthur Vidard To cite this version: Vincent Chabot, Maëlle Nodet, Arthur Vidard.

More information

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial 1 Background Errors 1. Background error covariance 2. Multivariate relationships

More information

An introduction to data assimilation. Eric Blayo University of Grenoble and INRIA

An introduction to data assimilation. Eric Blayo University of Grenoble and INRIA An introduction to data assimilation Eric Blayo University of Grenoble and INRIA Data assimilation, the science of compromises Context characterizing a (complex) system and/or forecasting its evolution,

More information

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: formulation and single resolution experiments with real data for NCEP GFS Ting Lei, Xuguang Wang University of Oklahoma, Norman,

More information

Current Limited Area Applications

Current Limited Area Applications Current Limited Area Applications Nils Gustafsson SMHI Norrköping, Sweden nils.gustafsson@smhi.se Outline of talk (contributions from many HIRLAM staff members) Specific problems of Limited Area Model

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

Covariance regularization in inverse space

Covariance regularization in inverse space QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 35: 33 56 (2009) Published online 25 June 2009 in Wiley InterScience (www.interscience.wiley.com).445 Covariance regularization

More information

Development and research of GSI based hybrid EnKF Var data assimilation for HWRF to improve hurricane prediction

Development and research of GSI based hybrid EnKF Var data assimilation for HWRF to improve hurricane prediction Development and research of GSI based hybrid EnKF Var data assimilation for HWRF to improve hurricane prediction Xuguang Wang, Xu Lu, Yongzuo Li School of Meteorology University of Oklahoma, Norman, OK,

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS

BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS BRAM: Reanalysis of stratospheric chemical composition based on Aura MLS quentin@oma.be Motivations BASCOE produces operational analyses of MLS since 2009 for the validation of MACC O 3 (Lefever et al.,

More information

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Matthew Wespetal Advisor: Dr. Eugenia Kalnay UMD, AOSC Department March

More information

Quarterly Journal of the Royal Meteorological Society

Quarterly Journal of the Royal Meteorological Society Quarterly Journal of the Royal Meteorological Society Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter Journal:

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

Application of the Ensemble Kalman Filter to History Matching

Application of the Ensemble Kalman Filter to History Matching Application of the Ensemble Kalman Filter to History Matching Presented at Texas A&M, November 16,2010 Outline Philosophy EnKF for Data Assimilation Field History Match Using EnKF with Covariance Localization

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

4D-Var: From early results to operational implementation

4D-Var: From early results to operational implementation 4D-Var: From early results to operational implementation Jean-Noël Thépaut, ECMWF Acknowledements: Florence Rabier, Erik Andersson, Lars Isaksen, + many others January 31, 2018 On what basis was the decision

More information

Systematic strategies for real time filtering of turbulent signals in complex systems

Systematic strategies for real time filtering of turbulent signals in complex systems Systematic strategies for real time filtering of turbulent signals in complex systems Statistical inversion theory for Gaussian random variables The Kalman Filter for Vector Systems: Reduced Filters and

More information

The assimilation of AMSU-A radiances in the NWP model ALADIN. The Czech Hydrometeorological Institute Patrik Benáček 2011

The assimilation of AMSU-A radiances in the NWP model ALADIN. The Czech Hydrometeorological Institute Patrik Benáček 2011 The assimilation of AMSU-A radiances in the NWP model ALADIN The Czech Hydrometeorological Institute Patrik Benáček 2011 Outline Introduction Sensor AMSU-A Set-up of model ALADIN Set-up of experiments

More information

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Bo Huang and Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK, USA Acknowledgement: Junkyung Kay (OU);

More information

Cloud detection for IASI/AIRS using imagery

Cloud detection for IASI/AIRS using imagery Cloud detection for IASI/AIRS using imagery Lydie Lavanant* Mohamed Dahoui** Florence Rabier***, Thomas Auligné*** * Météo-France/DP/CMS/R&D ** Moroccan Meterological Service. NWPSAF Visiting Scientist

More information

Localization in the ensemble Kalman Filter

Localization in the ensemble Kalman Filter Department of Meteorology Localization in the ensemble Kalman Filter Ruth Elizabeth Petrie A dissertation submitted in partial fulfilment of the requirement for the degree of MSc. Atmosphere, Ocean and

More information

Quarterly Journal of the Royal Meteorological Society !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"(1"&)23$)(4#$2#"( 5'$*)6!

Quarterly Journal of the Royal Meteorological Society !#$%&'&(&)&'*'+'*%(,#$,-$#*'.(/'*0'(#(1&)23$)(4#$2#( 5'$*)6! !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"("&)$)(#$#"( '$*)! "#$%&'()!!"#$%&$'()*+"$,#')+-)%.&)/+(#')0&%&+$+'+#')+&%(! *'&$+,%-./!0)! "! :-(;%/-,(;! '/;!?$@A-//;B!@

More information

Ensemble-variational assimilation with NEMOVAR Part 2: experiments with the ECMWF system

Ensemble-variational assimilation with NEMOVAR Part 2: experiments with the ECMWF system Ensemble-variational assimilation with NEMOVAR Part 2: experiments with the ECMWF system Toulouse, 20/06/2017 Marcin Chrust 1, Hao Zuo 1 and Anthony Weaver 2 1 ECMWF, UK 2 CERFACS, FR Marcin.chrust@ecmwf.int

More information

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1 GSI Tutorial 2013 Background and Observation Error Estimation and Tuning 8/6/2013 Wan-Shu Wu 1 Analysis system produces an analysis through the minimization of an objective function given by J = x T B

More information

Development of wavelet methodology for weather Data Assimilation

Development of wavelet methodology for weather Data Assimilation Development of wavelet methodology for weather Data Assimilation Aimé Fournier Thomas Auligné Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Newton Institute Mathematical

More information

Introduction to Data Assimilation

Introduction to Data Assimilation Introduction to Data Assimilation Alan O Neill Data Assimilation Research Centre University of Reading What is data assimilation? Data assimilation is the technique whereby observational data are combined

More information