Learning based super-resolution land cover mapping

Size: px
Start display at page:

Download "Learning based super-resolution land cover mapping"

Transcription

1 earning based super-resolution land cover mapping Feng ing, Yiang Zang, Giles M. Foody IEEE Fellow, Xiaodong Xiuua Zang, Siming Fang, Wenbo Yun Du is work was supported in part by te National Basic Researc Program (973 Program) of Cina under Grant No. 2013cb733205, and in part by Natural Science Foundation of Hubei Province for Distinguised Young Scolars under Grant No. 2013CFA031. F. ing, Y. Zang, X. and Y. Du are wit te Key aboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Institute of Geodesy and Geopysics, Cinese Academy of Sciences, Wuan , Cina ( G. M. Foody is wit te Scool of Geograpy, University of Nottingam, University Park, Nottingam NG7 2RD, UK X. Zang is wit te Wuan Institute of ecnology, Wuan , Cina S. Fang is wit te Scool of Public Administration, Cina University of Geosciences, Wuan , Cina. W. i is wit te Hefei Institute of ecnology Innovation, Cinese Academy of Sciences, Hefe , Cina. * Corresponding autor: lingf@wigg.ac.cn

2 Abstract: Super-resolution mapping (SRM) is a tecnique for generating a fine spatial resolution land cover map from coarse spatial resolution fraction images estimated by soft classification. e prior model used to describe te fine spatial resolution land cover pattern is a key issue in SRM. Here, a novel learning based SRM algoritm, wose prior model is learned from oter available fine spatial resolution land cover maps, is proposed. e approac is based on te assumption tat te spatial arrangement of te land cover components for mixed pixel patces wit similar fractions is often similar. e proposed SRM algoritm produces a learning database tat includes a large number of patc pairs for wic tere is a fine and coarse spatial resolution representation for te same area. From te learning database, patc pairs tat ave similar coarse spatial resolution patces as tose in input fraction images are selected. Fine spatial resolution patces in tese selected patc pairs are ten used to estimate te latent fine spatial resolution land cover map, by solving an optimization problem. e approac is illustrated by comparison against state-of-te-art SRM metods using land cover map subsets generated from te USA s National and Cover Database. Results sow tat te proposed SRM algoritm better maintains te spatial pattern of land covers for a range of different landscapes. e proposed SRM algoritm as te igest overall accuracy and Kappa values in all tese SRM algoritms, by using te entire maps in te accuracy assessment. Index erms:super-resolution mapping; earning database; Patc pairs; Neigboring patces

3 I. Introduction Super-resolution mapping (SRM), wic is also referred to sub-pixel mapping, is a metod to generate fine spatial resolution land cover maps from coarse spatial resolution remote sensing images. SRM can be viewed as te post-processing of soft classification to furter address te mixed pixel problem tat is common in coarse spatial resolution images [1, 2]. In general, soft classification estimates te fraction images tat illustrate te area percentage cover of land cover classes witin coarse spatial resolution mixed pixels. e fraction images may be input to a SRM analysis to predict te spatial locations of te land cover class at a fine spatial resolution. e output of te SRM analysis is a ard classification land cover map, wic as a finer spatial resolution tan tat of input fraction images. At present, SRM as become a promising metod to reduce te mixed pixel problem tat is widely encountered wit coarse spatial resolution images, and as been successfully used in many applications, suc as mapping waterlines [3-5], lakes [6], urban buildings [7], urban trees [8], forests [9], as well as in ground control point refinement [10] and te calculation of landscape pattern indices [11]. A large number of SRM algoritms ave been proposed [12-27]. Generally, SRM is an ill-posed problem [28], and te prior information about te spatial pattern of different land cover classes at te fine spatial resolution scale needs be known before SRM is performed. erefore, in order to estimate te latent fine spatial resolution land cover map from input coarse spatial resolution fraction images, one of te key issues is te definition of te prior model. e latter as been described from different perspectives. In te simplest case, wen only te coarse spatial resolution fraction images are available, te prior model is often based on te spatial dependence principle, wic aims to make te fine spatial resolution land cover map ave te maximal spatial dependence [1]. In practice, te spatial dependence of a certain fine spatial resolution pixel can be calculated by comparing it wit its neigboring fine spatial resolution pixels [14], fractions of its neigboring coarse spatial resolution pixels [29], or bot of tem [30]. Moreover, anisotropic land cover dependences ave also been

4 proposed to describe te spatial land cover pattern more precisely [31], especially for some special land cover classes [7, 32]. e spatial dependence model is a popular model for use in SRM due to its simplicity and absence of requirements for additional information about te spatial pattern of te land cover. However, te model can be inappropriate for areas wit complex land cover patterns. e use of te wrong prior model in a SRM analysis can result in an inappropriate and inaccurate land cover representation, possibly even worse tan tat of a standard ard classification of te coarse resolution image in some cases [6, 33]. A promising approac to improve te effectiveness of te prior model is troug te incorporation of additional information on te land cover to inform te SRM analysis. Various approaces ave been used. An intuitive additional dataset to use in a SRM analysis is anoter kind of fine spatial resolution images, suc as a pancromatic band image [34-37] or a fine spatial resolution syntetic aperture radar (SAR) image [38]. Fine spatial resolution digital elevation model [4, 5] and ligt detection and ranging (IDAR) data [39], and vector datasets [40] ave also been successfully used to refine SRM analyses. Multiple sub-pixel sifted coarse spatial resolution images wic are used as an alternation datasets to provide additional information about te spatial land cover pattern [41] for SRM, and tis metod as been furter developed [6, 42-45]. A istorical fine spatial resolution land cover map can also be used to elp te SRM analysis [9, 46, 47]. Adding site-specific additional datasets can increase te accuracy of SRM, owever, tis kind of approac is often limited because te additional dataset sould cover te same area, in its entirety, as te input fraction images, and tis may often not be te case wit te additional data only available for part of te region being mapped. In addition to te aforementioned approaces, te spatial land cover pattern can also be learned from te training image, wic is often a fine spatial resolution land cover map tat as a similar spatial land cover pattern to te objective fine spatial resolution land cover map. In tis situation, SRM predicts te fine spatial resolution land cover map from input coarse spatial resolution fraction images wit te aid of te prior model

5 tat is learned from tese training fine spatial resolution land cover maps. One kind of learning based SRM algoritm uses a model to describe te fine spatial resolution land cover pattern, and te parameters of te prior model are learned from te training maps [48-50]. Central to tis kind of approac is te selection of te prior model. Presently, a popular approac is to use a semi-variogram based approac in wic te SRM aims to produce a fine spatial resolution land cover map tat as te same spatial pattern as tat represented by te semi-variogram fitted to te available fine spatial resolution land cover map. A critical drawback of tis category of SRM algoritms is, owever, tat te geo-statistical metodologies are constructed based on te assumption of spatial stationary, and tey are limited for complex land cover patterns wic are often non-stationary. Anoter kind of learning based SRM algoritms directly learns te relationsip between coarse spatial resolution fraction images and te fine spatial resolution land cover maps witout a predefined model [51-54]. e basic assumption of tis metod is tat te fine spatial resolution spatial land cover pattern is similar for a mixed pixel patc, wic is basically a block of coarse resolution pixels, wit similar land cover class fractional composition. Several algoritms ave been proposed to learn te relationsip, including te back-propagation (BP) neural networks [51-54], and te support vector regression algoritms [55]. e SRM algoritms belonging to tis category often include two steps. In te first step, a fine spatial resolution image is estimated for eac land cover class using te learned relationsip. In te second step, fine spatial resolution pixel labels are assigned wit te maximum a posteriori principle using all of tese estimated fine spatial resolution images and input fraction images as constraints. is kind of learning based SRM algoritm are special cases of te interpolation-based SRM algoritm [56]; only te interpolation step is performed by te learning based metods. As a result, te limitation of te interpolation-based SRM algoritm, notably salt-and-pepper and linear artifacts, is unavoidable for tis category of learning based SRM algoritm. In tis paper, we propose a novel SRM algoritm, wic is also based on te assumption tat coarse spatial

6 resolution mixed pixel patces wit similar fractions ave a similar fine spatial resolution land cover pattern. Different to oter learning based SRM algoritms, te novelty of te proposed learning based SRM algoritm lies in te way te coarse spatial resolution and fine spatial resolution patces are used witin te analysis. e proposed metod does not need te additional label assignment step and patc outliers are effectively addressed during te analysis, avoiding commonly encountered error sources in oter two-step learning based SRM algoritms. e remainder of tis paper is organized as follows. Section II details te proposed learning based SRM algoritm. Section III validates te performance of te proposed algoritm troug several experiments. Section IV discusses some issues about te proposed algoritm and Section V concludes tis paper. II. Metods A. Problem description Suppose tat te original coarse spatial resolution remotely sensed image as M N pixels and te number of land cover classes in te wole image is C. It is assumed tat te fraction images F for all classes ave been estimated by soft classification. e SRM analysis aims to generate a fine spatial resolution land cover map H using F as input. By setting te zoom factor to be z, eac coarse spatial resolution pixel is divided into z z fine spatial resolution pixels. All fine spatial resolution pixels are considered to be pure pixels and eac one sould be assigned to a single land cover class. e resulting fine spatial resolution land cover map tus contains ( z M) ( z N) pixels, wose labels are defined to a unique class of C. In tis paper, it is assumed tat fraction images F are exactly estimated witout error. In eac coarse spatial resolution pixel V, te number of fine spatial resolution pixels Qc ( V ) assigned to te class c (1,2,, C) is computed according to te equation: Q V f V z (1) 2 c ( ) round( F, c ( ) ) were ffc, ( V ) is te fractional abundance of te class c witin te area represented by te coarse spatial

7 resolution pixel V in te fraction images F, round( x ) returns te value of te closest integer to x. In tis situation, te objective of te SRM analysis is to arrange tese fine spatial resolution pixels witin eac coarse spatial resolution pixel to make te fine spatial resolution land cover map onor a pre-defined spatial pattern model. For te proposed learning-based SRM algoritm, it is assumed tat tere are a set of fine spatial resolution land cover maps available. ese fine spatial resolution maps could be istorical land cover maps or land cover maps derived from fine spatial resolution remote sensing images. ese available fine spatial resolution land cover maps are used to provide information about te spatial land cover patterns at te fine spatial resolution. en, assuming tat a mixed pixel patc wit similar fractions as similar spatial land cover pattern, te SRM analysis may yield a fine spatial resolution map. B. e fine and coarse spatial resolution patc pair For te land cover class c, te spatial land cover pattern is represented by te patc pair [ x, y ], in wic y c is a coarse spatial resolution patc and its corresponding fine spatial resolution patc is c c x c. Here, square patces of size p are used wit a coarse spatial resolution patc including p p coarse spatial resolution pixels. e coarse spatial resolution patc is represented by te vector y [ f (1), f (2),, f ( p p)], were c c c c fc ( V ) is te fraction value of te coarse spatial resolution pixel V of te class c. e corresponding fine spatial resolution patc includes z p z p fine spatial resolution pixels, and is represented by te vector x [ I (1), I (2),, I ( z p z p)], were I () v is an indicator number sowing weter a fine spatial c c c c c resolution pixel v belongs to te class c, and is defined as: 1 if fine spatial resolution pixel vlabelled wit te land cover class c Ic () v 0 oterwise (2) us, x c represents te spatial distribution of fine spatial resolution pixels of te class c.

8 Fig. 1. A patc pair example, were te zoom factor is 4 and te coarse spatial resolution patc size is 3. (a) is a fine spatial resolution land cover map including pixels of two land cover classes, 1 (black) and 2 (wite); (b) is te corresponding fine resolution patc of te class 1, were te number 1 indicates tat te fine resolution pixel belongs to te class 1, and 0 indicates tat te fine resolution pixel belongs to oter classes; (c) is te corresponding coarse resolution patc, were te number witin pixels is te area percentages of te class 1 in eac coarse spatial resolution pixel. Fig. 1 sows a patc pair example wit p 3 and z 4. Fig. 1(a) is a fine spatial resolution land cover map including two classes. For te land cover class 1, as sown in black in Fig. 1(a), te fine and coarse spatial resolution land cover patces are sown in Fig. 1(b) and Fig. 1(c), respectively. e fine spatial resolution patc is an indicator map [Fig. 1(b)], were a label 1 means tat te fine pixel belongs to te class 1, and 0 means tat te fine spatial resolution pixel belongs to oter classes. erefore, te indicator map x e first line e 5t line e 12t line [0,0,...,0,...,0,0,0,1,1,1,1,1,0,0,0,0,...,0,0,...,0] sows te spatial pattern of te class 1. e coarse patc is te fraction image of te class, were te value represents te area percentages witin eac coarse pixel, and is represented as y1 [0,,0,,1,,0,, ]. ogeter [ x1, y 1] is a patc pair for te class Once a large number of patc pairs available, te SRM problem can ten be solved by using a pattern matcing metod. Given a coarse spatial resolution patc in te input fraction images, te patc pairs tat ave similar coarse spatial resolution patces are selected from tose available patc pairs. ese selected patc pairs are called as neigboring patc pairs, because if all patc pairs are listed in order according to te fraction values, tey are located in neigboring sites. It is noted tat tese neigboring patc pairs all include a coarse spatial resolution patc and a fine spatial resolution patc. Because coarse spatial resolution patces wit similar

9 fraction values often ave similar spatial land cover patterns, te latent fine spatial resolution patc for te coarse spatial resolution patc in te input fraction images sould be similar wit te fine spatial resolution patc included in te neigboring patc pairs. us, te SRM seeks to make te spatial land cover pattern of te resultant fine spatial resolution land cover map matc tose of neigboring patc pairs. In general, in te proposed learning based SRM algoritm, te fine and coarse spatial resolution patc pairs are first extracted from available fine spatial resolution land cover maps to produce a learning database. Similar patc pairs are ten found for eac coarse spatial resolution patc in input fraction images. Finally, tese available patc pairs in te learning database are used to reconstruct te final fine spatial resolution land cover map. All tese steps are described in detail as follows. C. Generating te training database Finding te relationsip between te fine spatial resolution land cover maps and coarse spatial resolution fraction images, wic is represented by patc pairs in te training database, is one of te key issues of te proposed learning based SRM algoritm. Here, te patc pairs are generated class by class. Given a set of fine spatial resolution land cover maps, a corresponding set of coarse spatial resolution patces for eac land cover class can be produced from tem. An example fine spatial resolution land cover map wic includes tree land cover classes, as sown in Fig. 2(a), is used to illustrate te training database generation procedure. Before te training database is generated, te zoom factor z and te coarse spatial resolution patc size p are set. In tis example, z is set to be 4, and p is set to be 3. A fine spatial resolution patc ten includes z p z p fine spatial resolution pixels (equals to in tis example). In order to generate a patc pair, a fine spatial resolution land cover map wit te size of z p z p is first exacted. Generally, by moving a fixed window containing z p z p rows and columns witin te original land cover map, various fine spatial resolution maps can be extracted.

10 ese extracted fine spatial resolution maps can be overlapped, tus te fine spatial resolution land cover pattern included in te original land cover map is fully exploited. For an extracted fine spatial resolution map, as sown in Fig. 2(b), one fine spatial resolution patc, tat is, one indicator map was ten generated for eac land cover class, as sown in Fig. 2(c)-(e). For eac fine spatial resolution patc, te corresponding coarse spatial resolution patc consists of fraction values of all coarse spatial resolution pixels. Eac coarse spatial resolution pixel corresponds to z z fine spatial resolution pixels, and te fraction value f ( V ), wic is te percentage of te c fine spatial resolution pixels assigned to te class c in te coarse spatial resolution pixel V, is calculated as: f ( V ) I ( v) z c 2 c (3) v V Fig. 2. An example of te training database generation procedure, were te zoom factor is 4 and te coarse resolution patc size is 3. (a) is te original fine resolution land cover map; (b) is one fine resolution land cover map including fine resolution pixels extracted from te original fine resolution land cover map. (c), (d) and (e) are fine resolution patces of different land cover classes, wic are generated from te extracted fine resolution land cover map. e number 1 indicates tat te fine resolution pixel belongs to te class, and 0 indicates tat te fine resolution pixel belongs to oter classes; (f), (g) and () are corresponding coarse resolution patces generated from (c), (d) and (e), were te number witin pixels means te area percentages of different class in eac coarse resolution pixel. One fine resolution patc and one coarse resolution patc form a patc pair, including (c) and (f), (d) and (g), and (e) and () for tree different land cover classes.

11 Eac extracted fine spatial resolution map (Fig. 2) can generate one patc pair for eac land cover class. Supposed tat K different fine spatial resolution maps are extracted from te original fine spatial resolution land cover map, K patc pairs can be generated for eac class. ose patc pairs comprise te training database, were te fine spatial resolution patces are represented as, { i K X c x, c} i 1 and te coarse spatial resolution patces are represented as, { i K Y c y, c} i 1 for class c. D. Searcing neigboring patc pairs Once te training database as been built, it is used to provide land cover information to estimate te latent fine spatial resolution land cover map wit input coarse spatial resolution fraction images. For eac coarse spatial resolution patc in te input fraction images, neigboring training patc pairs tat ave similar coarse spatial resolution patc are searced from te training database. Since te training database is generated class by class, te searc procedure is also performed class by class. et, { i R YF c yf, c} i 1 be coarse spatial resolution i patces in te input fraction images F for class c. For te it coarse spatial resolution patc y,, its Fc neigboring training patc pairs are cosen according to te following criterion:, 1, 2 f ( y i,, i j, ) ( i, ( ) i j F c y c ff c V f, c ( V )) p p (4) were i f ( y, y ) is te difference of fraction values between coarse spatial resolution patc y, in te i j F, c, c Fc fraction image and te jt corresponding patc i y in te training database. f, ( V ) is te fraction value of j c, Fc i te class c of te coarse spatial resolution pixel V in y Fc,, and j fc, ( V ) is te fraction value of te class c of te corresponding coarse spatial resolution pixel V in y j c,. e more similar te coarse spatial resolution patces are, te lower te value of f. e tresold is te tolerable fraction difference between two patces. If te value of i j f ( yf, c, y, c ) is no more tan tat of, y is tus considered te similar patc of j c, y i Fc,, and te patc pair tat includes y is te neigboring training patc pair. e value of is an j c,

12 important parameter for searcing neigboring patc pairs. If it is too large, te neigboring patc pairs are too different wit tat of te input fraction images to provide accurate land cover information. On contrast, if is too small, only few neigboring patc pairs can be found, leading to insufficient land cover information. e effect of te value of will be assessed in our later experiments. e k-dimensional (K-D) tree algoritm is applied to find neigboring training patc pairs in te present work, due to its efficient and successful application in te image super-resolution field [57]. e K-D tree organizes coarse spatial resolution patces in te training database off-line to enable a fast searc by defining a binary tree of tresolds, wic are cosen optimally so as to expedite te searc. Moreover, te K-D tree relies on a special ig dimensional data structure and tus te neigbors searcing step can be speeded up significantly. More detailed information about te K-D tree can be found in references [57, 58]. For eac coarse spatial resolution patc in te input fraction images F, te neigboring coarse spatial resolution patces and teir corresponding fine spatial resolution patces are searced from te training database using te K-D tree algoritm. A simple example for a two class situation given in Fig. 3 is used to illustrate te neigboring training patc pairs searcing procedure. In tis example, te coarse spatial resolution patc size p is set to be 3, and one coarse spatial resolution patc ten includes 3 3 coarse spatial resolution pixels. For a coarse spatial resolution pixel in te fraction image, all nine coarse spatial resolution patces tat include tis coarse spatial resolution pixel are extracted, by scanning te entire fraction images F. For eac coarse spatial i resolution patc y Fc,, we searc te neigboring coarse spatial resolution patces from te training database. e neigboring training patc pairs {, } i j j k x, c y, c j 1, were i k is te number of te searced patces, are ten used to estimate te latent fine spatial resolution land cover map, as described below.

13 Fig. 3. An example of te fine resolution land cover map estimation procedure, were te coarse resolution patc size is 3. wo land cover classes are included. For one pixel, all relative coarse resolution patces are extracted for te input fraction images for eac class. e neigboring patc pairs are selected from te training database for eac exacted coarse resolution patc. All selected patc pairs are ten used to estimate te resultant fine resolution land cover map, wic sows te distribution of te classes and is still in correct proportion in te input fraction images (9/16 and 7/16, respectively). E. Estimating te fine spatial resolution land cover map e fundamental assumption of te proposed learning based SRM algoritm is tat coarse spatial resolution patces wit similar class fraction values ave similar fine spatial resolution land cover patterns. In order to estimate te latent fine spatial resolution land cover map, te proposed SRM algoritm aims to make te fine spatial resolution patces in te latent fine spatial resolution land cover map similar wit te fine spatial

14 resolution patces identified from te selected neigboring training patc pairs. erefore, te objective of te SRM is to obtain a minimal difference between te fine spatial resolution patc in te estimated fine spatial resolution land cover map and corresponding fine spatial resolution patces in te neigboring training patc pairs. During te estimation process, all coarse spatial resolution pixels in te input fraction images are andled simultaneously, and SRM can be addressed by using te following minimization optimization model: C M N k i µ j j i Min ( H) w ( x, c ) E( x, c, xµ ) (5) Hc, c 1 i 1 j 1 1 E( x, x ) ( I ( v) I ( v)) (6) z p z p j i j i 2, c µ H, c, c Hµ, c z p z p v 1 w ( x ) 1 f ( y, y ) 1 f ( y, y ) (7) j j i j i, c, c Hc µ,, c F, c Subject to C Iµ, ( v) 1, (8) Hc c 1 2 Iµ ( v) f, µ ( V ) z H c H, c for all V F v V. (9) were µ H is te fine spatial resolution land cover map tat we aim to estimate. Setting te coarse spatial i resolution patc size to be odd witout loss of generality, y, is te coarse spatial resolution patc in wic te Fc i i t coarse spatial resolution pixel is located in te patc center in te fraction images F. Note tat y, is te i same as y µ, because te values in F are preserved in H µ i as (1). x µ, is te corresponding fine spatial Hc Hc Fc i resolution patc of y µ, in H µ for te class c. Hc { x } i are fine spatial resolution patces corresponding to j k, c j 1 te coarse spatial resolution patces { y } i j i in te selected neigboring training patc pairs. E( x, x µ ) is j k, c j 1 c, Hc, i te difference between two fine spatial resolution patces, x µ, and Hc x j c,, and is computed as (6), were i i Iµ, () v is te indictor of te fine spatial resolution pixel v witin x Hc Hc µ,, and I, () v is te indicator of te fine j c spatial resolution pixel v witin x j c,, respectively. w ( x ) is te weigt value assigned to te fine spatial j, c resolution patc x j c,, and is computed in te coarse spatial resolution scale by comparing te fraction difference between two corresponding coarse spatial resolution patces as (7). e larger te fraction difference, lower te

15 weigt value. Moreover, Equation (8) ensures tat eac fine spatial resolution pixel is assigned one and only one land cover class, and Equation (9) is te area constraint provided by te input coarse spatial resolution fractions for all coarse spatial resolution pixels. e minimization problem as a large solution space, wic increases wit te number of neigboring fine spatial resolution patces, land cover classes, and te image size. o solve te problem witin a sort computational time, tis work used a simulated annealing algoritm to find te solution. A power-law annealing scedule is used in te simulated annealing algoritm [59], were te temperature em n at iteration n is modified according to em n em (10) n 1 were (0,1) controls te decrease rate of temperature em n. In te initialization step, te fine spatial resolution pixels of eac class witin eac coarse spatial resolution pixel are randomly labeled according to te input coarse spatial resolution fractions. In tis situation, te constraints in (8) and (9) are naturally satisfied. In eac iteration, two fine spatial resolution pixels wit different land cover labels are randomly selected in eac coarse spatial resolution pixel. e values are ten calculated by using equation (5) according to te current fine spatial resolution land cover map configuration. If swapping tese two fine spatial resolution pixels decreases te object function value in equation (5), tese two fine spatial resolution pixels are swapped. Oterwise, te swap can only be accepted wit a small probability according to te current temperature in equation (10). e algoritm stops wen te previously fixed number of iterations is acieved. F. Patc outlier rejection e above-proposed minimization optimization model sould be generally considered as a simple fine spatial resolution pixel averaging metod. is model as limitations, notably tat te derived fine spatial

16 resolution map may be disrupted because of te problem of patc outliers. In general, a fine spatial resolution patc only corresponds to one coarse spatial resolution patc, and teir relationsip is sown in equation (3). But on te contrary, given a coarse spatial resolution patc, many different fine spatial resolution patces can correspond to it, making SRM be an underestimated inversion problem [28]. Fig. 4. An example of patc outliers in selected neigboring patc pairs. (a) is a patc pair for one land cover class. e fine resolution patc includes pixels and te coarse resolution patc includes 3 3 pixels. e fine resolution pixel filled by grey color indicates tat it belongs to te class. e number witin pixels means te area percentages of class in eac coarse resolution pixel of te class. (b) to (j) are searced neigboring patc pairs of (a) using te tolerable fraction difference value. e fraction values in (b) to (j) are similar wit te fraction values in (a), owever, only fine spatial resolution patces in (b) and (c) are similar wit tat in (a). Fine spatial resolution patces in (g)-(j) are muc different wit tat in (a). Fig. 4 presents an example of a patc outlier. In Fig. 4(a), a patc pair is taken from an experiment reported below. is patc pair includes a coarse spatial resolution patc of size 3 3, and a fine spatial resolution patc of size e numbers witin coarse spatial resolution pixels mean te fraction values of te class. Grey fine spatial resolution pixels represent te pixels belonging to tis class, and wite fine spatial resolution pixels

17 represent te pixels belonging to oter classes. Searcing in a training database including 120,000 patc pairs by using te coarse spatial resolution patc in Fig. 4(a) as te reference, te resultant 9 neigboring patc pairs are simultaneously sown in Figs. 4(b)-(j). As te neigboring patc pairs are searced by comparing te fraction different between coarse spatial resolution patces, coarse spatial resolution patces in tese neigboring patc pairs are all muc similar to te coarse spatial resolution patc in te reference patc pair. Wen comparing te fine spatial resolution patces, it is noticed tat only fine spatial resolution patces in Fig. 4(b) and Fig. 4 (c) are very similar wit tose in Fig. 4(a). Fine spatial resolution patces in Figs. 4(g)-(j) are very different wit tose in Fig. 4(a), and are ten not suitable to be applied to estimate te fine spatial resolution patc. erefore, in order to improve te performance of te learning based SRM algoritm, only te patc pairs wic ave similar fine spatial resolution patces wit te reference sould be applied to estimate te latent fine spatial resolution land cover map, and oter patc pairs sould be considered as outliers. For te fine resolution patc x witin te neigboring training patc pairs, it is defined as te outlier j c, patc according to te following criterion: 1 f ( x, x ) ( I ( v) I ( v)) (11) z p z p j i j i 2, c H, c, c H, c z p z p v 1 were f ( x, x ) is te difference between two fine spatial resolution patces, and is computed as same as j i, c H, c i E( x, x ) is equation (6). x, is te fine spatial resolution patc in te latent fine spatial resolution land j i, c H, c Hc cover map, and x is te fine resolution patc witin te neigboring training patc pairs. e more similar j c, te fine resolution patces are, te lower te value of j i f ( x, c, xh, c ). e tresold is te tolerable difference between two fine spatial resolution patces. If te value of j i f ( x, c, xh, c ) is no less tan tat of, te fine spatial resolution patc x is considered as an outlier patc. j c, In te object function (5), w ( x ) is used to give te weigt values. However, tis weigt value is j, c computed by comparing coarse spatial resolution patces and is ten not sufficient to distinguis outliers from

18 te selected neigboring patc pairs. In order to consider te outlier patces, an additional patc weigt w ( x ) tat is computed at te fine spatial resolution is added in te object function of te proposed SRM H j, c algoritm as: C M N k i µ j j j i Min ( H) w ( x, c ) wh ( x, c ) E( x, c, xµ ) (12) Hc, c 1 i 1 j 1 j i j 0 If f ( x, c, xh, c ), te patc is an outlier wh ( x, c ) 1 Oterwise, te patc is not an outlier (13) In general, if te patc x is an outlier, te weigt value j c, w ( x ) is set to be zero, meaning tat tis H j, c fine spatial resolution patc no longer used during te estimation procedure. Oterwise, te weigt value w ( x ) is set to be one, if te patc is not te outlier. H j, c Fig. 5. e flowcart of te iterative patc outlier andling procedure. Setting an appropriate value of is important if patc outliers are to be addressed effectively. In te present work, an iterative metod is used. e main iteration procedure is sown in Figure 5. At first, a fine spatial resolution land cover map is estimated according to te minimization optimization model (5), using all searced neigboring learning patc pairs. Because all neigboring patc pairs are searced by using a tolerant fraction value as (4), it is expected tat te estimated fine spatial resolution land cover map is similar wit

19 te latent fine spatial resolution land cover map. en, we begin to refine te estimated fine spatial resolution land cover map, by decreasing te value of step by step, from te maximal tresold Max to te minimal tresold Min. Wit eac value of, a new fine spatial resolution land cover map is estimated according to (12). At te beginning, wit a large value, only a relatively small amount of neigboring patces, wose fine spatial resolution patces are markedly different to te current estimated fine spatial resolution land cover map, are considered as outlier. Witout tese patc outliers, a more accurate fine spatial resolution land cover map is expected to be estimated. e value of decreases iteratively and more patces are considered as outliers. en, te estimated fine spatial resolution land cover map is expected to be more accurate. At te end, te iteration converges to a stable solution until te minimal value Min is reaced, and te estimated fine spatial resolution land cover map is considered as te result of SRM. G. e proposed algoritm According to te aforementioned principles, we summarize te proposed learning based SRM algoritm in Algoritm 1. In brief, a fine spatial resolution land cover map is first randomly generated using input coarse spatial resolution fraction images in te initialization step. Meanwile, te patc pairs in te training database are constructed according to te zoom factor and te coarse spatial resolution patc size. e input coarse spatial resolution fraction images are ten scanned and neigboring patc pairs are searced by te K-D tree algoritm, for all coarse spatial resolution patces in fraction images class by class. Using tese searced neigboring patc pairs, te initial fine spatial resolution land cover map is estimated by using te simulated annealing algoritm. Outliers in tese neigboring patc pairs are ten found and te fine spatial resolution land cover map is re-estimated, by canging te tresold value. Once reaces Min, te iteration is finised, te estimated fine spatial resolution land cover map is te result of te learning based SRM algoritm.

20 Algoritm I Objective: Estimate fine spatial resolution land cover map H Input: Coarse spatial resolution fraction images F, zoom factor z, land cover class number C, coarse spatial resolution patc size p, coarse spatial resolution fraction tresold, te maximal and minimal fine spatial resolution tresolds Max and Min, fine spatial resolution tresold cange value d, parameters of te simulated annealing algoritm: em 0,, and Ite. 1. Initialization: 1) For eac coarse spatial resolution pixel, calculate te number of fine spatial resolution pixels for eac class as (1); 2) Randomly set class label for all fine spatial resolution pixels using te number as te constraints; 2. raining database generation 1) Extract fine spatial resolution patces from available land cover maps; 2) Estimate te corresponding coarse spatial resolution patc for eac fine spatial resolution patc and generate patc pairs in te training database; 3. Similar Patc Finding 1) Build te K-D tree for all coarse spatial resolution patces in te training database; 2) Scan F, and extract all coarse spatial resolution patces; 3) Searc neigboring patc pairs from te training database for all coarse spatial resolution patces in F. 4. Generating initial ig resolution land cover map 1) Reconstruct µ H by minimizing te objective function in (5) using te simulated annealing algoritm. 5. Iterative patc outlier rejection 1) Set 2) Do { Max [1] Calculate te weigt values using current H µ and, according to (13); [2] Reconstruct µ H according to (12); [3] d ; } Until Min Result: Output te fine spatial resolution land cover map µ H. III. EXAMPE e National and Cover Database 2001 (NCD 2001) tat sows te land cover for te conterminous USA was used to test te proposed learning based SRM algoritm. NCD 2001 is a raster-based 16-class land

21 cover map over all 50 US states and Puerto Rico at spatial resolution of 30 m, and is primarily generated from te unsupervised classification of andsat Enanced ematic Mapper Plus circa 2001 satellite dataset [60]. o simplify te experiment, te original 16 classes of te NCD images were converted into simple class sceme wic includes four general land cover classes: water, urban, forest and agriculture. Fig. 6. All 12 subsets of NCD land cover maps used to generate te training database. Eac subset as pixels and four land cover classes. Fig. 7. Four subset NCD land cover maps (wit pixels) used to test te proposed algoritm.

22 We select twelve subsets of NCD maps (eac contains pixels) as sown in Fig. 6 to generate te coarse and fine spatial resolution patc pairs, wic formed te training database. A furter four subsets of NCD maps (eac contains pixels; Fig.7), were used to assess te proposed SRM algoritm. ese twelve subsets are called as training maps and te four subsets are called as test maps. e locations of tese four test maps are different to tose of te twelve training maps used to construct te training database. For eac of te four test maps, we generate syntetic coarse fraction images by linear averaging te fine spatial resolution pixel number witin te coarse spatial resolution pixel according to different zoom factors. Using simulated fraction images as input, as well as te constructed training database, te proposed SRM algoritm is applied to estimate a fine spatial resolution land cover map. In order to assess te accuracy of te proposed learning based SRM algoritm, by using te test land cover maps as te reference, te overall accuracy (OA) and Kappa coefficient are used to evaluate te accuracy of te estimated land cover maps, by comparing te entire estimated map wit te corresponding reference map. e proposed learning based SRM algoritm was also compared wit te pixel-based ard classification metod (HC) and several popular SRM algoritms including te pixel swapping algoritm based on simulated annealing (PS) [61], te sub-pixel/pixel attraction algoritm (SPA) [29], te bilinear interpolation based algoritm (BI) [56] and te BP neural network based algoritm (BP) [53]. It is noted tat te input of PS, SPA and BI algoritms includes only coarse spatial resolution fraction images, because all tese SRM algoritms describe te land cover distribution using te spatial dependence principle. By contrast, te input of BP algoritm includes not only te coarse spatial resolution fraction images, but also fine spatial resolution land cover maps tat are used to learn prior land cover information. In te experiments, all twelve training maps are used in te BP algoritm.

23 Fig. 8. Simulated fraction image generated from te test map I as sown in Fig. 7. e top row presents te fraction images at z 5, and te bottom row presents te fraction images at z 8. e test map I as sown in Fig. 7(a), was first used to assess te impact of parameters in te proposed SRM algoritm. Syntetic fraction images, as sown in Fig. 8, were simulated from te fine spatial resolution test map I. wo zoom factors, z 5 and z 8, were applied. e fine and coarse spatial resolution patc pairs in te training database were generated from all twelve training maps as sown in Fig. 6 wit zoom factors of 5 and 8, respectively. Wen te proposed learning based SRM algoritm is performed, te resultant fine spatial resolution land cover map is affected by parameters used in te algoritm. According to our experiments, te coarse patc size p was set to be 3, because a large p value makes te spatial structure of a coarse patc too complex to find enoug similar image patces. Max was set to 1, meaning tat no fine spatial resolution neigboring patces are considered as outliers at te beginning. d was set to 0.05, in order to decrease te value of gradually. Moreover, to furter assess te impact of parameter values on te performance of te proposed metod, tree most important parameters including te number of patc pairs in te training database, te coarse spatial resolution fraction difference tresold value and te minimal fine spatial resolution difference tresold value Min are discussed in te following sections, respectively.

24 Fig. 9. Kappa values of te resultant fine resolution land cover maps of te proposed learning based SRM algoritm wit different numbers of training patc pairs. (a) is te result at z 5 ; (b) is te result at z 8. 1) Impact of te number of patc pairs in te training database: o assess te impact of te number of patc pairs in te training database, te analysis was repeated 8 times over te range of 4 4 [1 10,15 10 ] wit an interval of Fig. 9 indicates te Kappa values of resultant fine spatial resolution land cover maps produced by te learning based SRM algoritm wit different numbers of patc pairs in te training database, at zoom factors of 5 and 8, respectively. Wen te number is less tan , te Kappa values of te results at z 5 and z 8 are bot at a low level. is is because te use of only a few patc pairs cannot provide enoug information about te spatial land cover patterns. Wit te increment of te number, bot Kappa values at z 5 and z 8 increase rapidly until te number reaces to about , and ten te Kappa values maintain stable, as sown in Figs. 9 (a) and (b). It is also noticed tat te increment of Kappa values at z 5 is more rapid tan tat at z 8, wen te number is in te range of 4 4 [3 10, 9 10 ]. e reason is tat more patc pairs are needed in order to decrease te uncertainty caused by a large zoom factor. According to te experiment, a number of patc pairs larger tan is reasonable. As more patc pairs may increase te calculation burden, te number of patc pairs in te training database is set to be 2) Impact of te tresold : e tresold value in our latter experiments. is a pre-defined parameter tat represents te tolerable fraction difference between two coarse spatial resolution patces. is parameter guarantees tat te searced coarse spatial resolution patc wic as a fraction difference f larger tan cannot be accepted as te candidate image patc. Fig. 10 sows te Kappa values of te resultant fine spatial resolution land cover

25 maps produced by te proposed learning-based SRM algoritm wit different values. Wen is in te range of [0.02, 0.14] at z 5 and in te range of [0.02,0.12] at z 8, te Kappa values increase wit te increment of te value of. is is because tat te number of candidate patc pairs is too small to provide enoug land cover pattern information for SRM, if is set to be a too low value. For z 5, as sown in Fig. 10(a), if te value of is larger tan 0.14, te Kappa values are kept at a stable level. For z 8, owever, te Kappa values begin to decrease until a stable value, if is larger tan In general, wit a larger value of, more patc pairs wit larger fraction errors are considered as candidate patces, wic indeed generally provide erroneous information and make te estimated fine spatial resolution land cover map differ significantly from te latent map. Setting too large a value of may degrade te estimated fine spatial resolution map. However, te result is only sligtly different because of te additional patc outlier rejection procedure. Fig. 10. Kappa values of te resultant fine resolution land cover maps of te proposed learning based SRM algoritm wit different values of coarse resolution tresold F. (a) is te result at z 5 ; (b) is te result at z 8. Fig. 11. Kappa values of te resultant fine resolution land cover maps of te proposed learning based SRM algoritm wit different minimal fine resolution tresold Min. (a) is te result at z 5 ; (b) is te result at z 8. 3) Impact of te minimal fine spatial resolution tresold of Min : e value of Min is denoted as te minimal tresold value, wic is used to distinguis te outlier patces from all neigboring patces in te

26 estimation procedure. o assess te impact of te Min value, te learning based SRM algoritm was applied wit different values of Min in te range of [1.0, 0.1] wit an interval of e Kappa values of te resultant fine spatial resolution land cover maps produced by te proposed learning based SRM algoritm at z 5 and z 8 are sown in Fig. 11. Wit te decrement of te values of Min, te corresponding Kappa values of te resultant fine spatial resolution land cover maps increase, because more coarse spatial resolution patces are considered as outlier patces and not used in te estimation procedure. Wen Min is larger tan 0.2 at z 5 and 0.3 at z 8, owever, te Kappa values begin to decrease as te value of decreases. e reason is tat most neigboring patces are considered as outliers if te value of is too low, and te remaining neigboring patces can not provide enoug information for SRM. Fig. 12. Resultant fine resolution land cover maps produced by te proposed learning based SRM algoritm. (a) is te result witout patc outlier andling procedure and (b) is te result using patc outlier andling procedure at z 5. (c) is te result witout patc outlier andling procedure and (d) is te result using patc outlier andling procedure at z 8. Using te patc outlier andling procedure reduces te salt-and-pepper artifacts as sown in te enlarged part A, and te linear discontinuities as sown in te enlarged part B. A visual comparison, as sown in Fig. 12, is used to furter assess te impact of te value of Min. For z 5, as sown in Fig. 12(a), many salt-and-pepper artifacts appear and te spatial continuities of some linear Min features are interrupted wen 1.0, wic means tat all patces are accepted and no outliers exist. In Min contrast, wit patc outlier rejection (wen 0.2 ), most of te salt-and-pepper artifacts are eliminated and

27 te spatial continuities are well maintained, as sown in Fig. 12(b). e impact of Min on te resultant fine spatial resolution land cover map is more obvious wen z 8. Many salt-and-pepper artifacts and linear discontinuities tat appear in te fine spatial resolution land cover map, as sown in Fig. 12(c), are eliminated by te outlier rejection, as sown in Fig. 12(d). Fig. 13. Resultant land cover maps generated by different metods wit z 5 and z 8 for te test map I. HC produces jagged boundaries (suc as te area A); PS produces isolated patces (suc as te area B); SPA and BI produce linear artifacts (suc as te area C); and BP produces salt-and-pepper artifacts and isolated patces (suc as te area D). 4) Comparison wit oter metods: According to aforementioned discussion about parameters used in te proposed learning based SRM metod, te optimal parameter values were used to produce te resultant fine spatial resolution land cover maps. In particular, te number of patc pairs in te learning database is , te value of f is 0.12, and te value of Min is 0.2 for z 5 and 0.3 for z 8, respectively. By using te same aforementioned simulated coarse fraction images used for te proposed learning based SRM metod as input, te resultant land cover maps of HC, PS, SPA, BI, BP and te proposed learning based SRM are all sown in Fig. 13. Additionally, te Kappa and OA values of all tese maps produced by different metods are sown in able. I.

28 able I. Kappa and Overall Accuracy (OA) values of te resultant land cover maps produced by different metods at z 5 and z 8 for te test map I. HC PS SPA BI BP Proposed z=5 Kappa OA z=8 Kappa OA In general, for all SRM algoritms, te zoom factor plays an important role on te accuracy of result. e key point of SRM is to determine te class labels of te fine spatial resolution pixels witin te coarse spatial resolution pixel. For a given zoom factor z, tere will be z z fine spatial resolution pixels witin te coarse spatial resolution pixel to be estimated. Wit te increase of z, te number of fine spatial resolution pixels would be increased exponentially, and more fine spatial resolution pixels witin te coarse spatial resolution pixel need to be estimated. erefore, te uncertainty of te estimation would be expected to increase, and te performance of te algoritm would decrease. For te results of HC, as sown in Fig. 13 and Fig. 13, te land cover boundaries are jugged and many spatial details are missed. e Kappa and OA values of te results of HC, as sown in able. I, stay at te lowest level. is is because tat HC is based on te pixel scale, and does not consider te spatial distribution of classes at sub-pixel scale. By contrast, more land cover details at te sub-pixel scale are maintained by SRM including PS, SPA, BI, BP and te proposed learning-based SRM metod. Visual comparison of te fine spatial resolution maps obtained from te various SRM analyses igligted differences in te way tey represented te land cover. For te results of PS, many land cover features are mapped as isolated rounded patces, and te spatial continuities are interrupted. is sortcoming becomes more serious wit te increment of te zoom factor.

29 Wen z 8, te Kappa and OA values of PS are and , and are even lower tan tose of HC because te uncertainty of te fine spatial resolution pixel distributions in te resultant fine spatial resolution land cover map generated by PS is serious wen te zoom factor is large. e fine spatial resolution land cover maps produced by SPA and BI visually differed from tat obtained wit PS wit more spatial detail are maintained. e Kappa and OA values of fine spatial resolution land cover maps produced by SPA and BI are also iger tan tose of PS. However, numerous linear artifacts are found near te land cover boundaries in te obtained fine spatial resolution land cover maps produced by SPA and BI, and te linear artifacts become more serious wit te increment of te zoom factor. e fine spatial resolution land cover maps produced by PS, SPA and BI are, terefore, less tan ideal. is is because tese SRM metods just apply te spatial dependence assumption to describe te land cover pattern, and tis assumption will often be too simple to provide enoug information for SRM in areas wit complex land cover patterns. Compared wit te results of PS, SPA and BI, te linear artifacts in te results of BP are eliminated and te spatial continuities are maintained to some extent. e Kappa and OA values of te resultant fine spatial resolution land cover maps produced by BP at zoom factor of 5 and 8 are bot iger tan tose of PS, SPA and BI. is improvement arises from te use of additional information about te spatial land cover pattern tat is learned from te training database in te SRM procedure. However, in te resultant fine spatial resolution land cover maps produced by BP, many salt-and-pepper artifacts are found and many linear land cover features are also mapped as isolated small-sized patces. Moreover, wit te increment of te zoom factor, te geometric integrity of features is more difficult to be maintained by te BP based SRM metod. e sortcoming of te BP based SRM metod is mainly caused by its two-step procedure and te impact of outliers during te learning procedure. e resultant fine spatial resolution land cover maps produced by te proposed learning-based SRM metod

30 are more similar to te reference (Fig. 7) at bot zoom factors tan te maps produced from te oter SRM metods. Isolated land cover patces, jagged sapes and linear artifacts, wic are common in te resultant fine spatial resolution land cover maps produced by aforementioned metods, are effectively eliminated by te proposed learning based SRM metod. More spatial details, especially te linear features and te spatial land cover continuities are maintained. e Kappa and OA values of te resultant fine spatial resolution land cover maps produced by te proposed learning based SRM metod are all te igest at bot zoom factors.. Bot te visual comparison and accuracy analysis indicate tat te proposed learning-based SRM metod is superior to te SRM algoritms used for comparison. e test maps II to IV, as sown in Figs. 7(b) to (d), were used to furter validate te performance of te proposed learning-based SRM metod. As wit te analyses focused on test map I, wit te zoom factors of 5 and 8, te tree fine spatial resolution test maps were degraded to produce te simulated coarse spatial resolution fraction images. ese simulated coarse spatial resolution fraction images are ten used as input to te SRM metods in order to produce te resultant fine spatial resolution land cover maps. e same parameter values used in te experiment of te test map I were applied for test maps II to IV. e resultant land cover maps produced by HC, PS, SPA, BI, BP and te proposed learning based SRM algoritm at zoom factors of 5 and 8 are all sown in Fig. 14 and Fig. 15, respectively. By using te original fine spatial resolution land cover maps as te reference, te accuracy analysis of tree land cover maps at z 5 and z 8 are sown in able II. A similar trend as te experiment of te test map I is found by visually comparing te resultant fine spatial resolution land cover maps produced by different metods. e resultant land cover maps produced by HC ave jagged boundaries and many spatial details are missed. By contrast, te fine spatial resolution land cover maps produced by SRM metods ave smoot boundaries and more spatial details are maintained. e fine spatial resolution land cover maps produced by PS are locally smoot and many linear land cover features are mapped

31 into individual round patces for all tree test maps. e spatial land cover pattern of te results produced by SPA and BI are muc improved, owever, numerous irregular linear artifacts exist near te boundaries. Moreover, more linear artifacts appear in te SPA and BI results of te test map III tan tose of te test map II and IV, due to te complex land cover features of te test map III, especially te urban class. e BP based SRM metod can reconstruct more spatial details, and eliminate linear artifacts in te results of SPA and BI to some extent, due to additional spatial land cover information is learned from te extra fine spatial resolution land cover maps. However, many salt-and-pepper artifacts and isolated small-sized patces are still unavoidable due to te errors caused by te two-step process. By contrast, te fine spatial resolution land cover maps produced by te proposed learning-based SRM metod, as sown in Fig. 14 and Fig. 15 at z 5 and z 8, are more similar to te reference fine spatial resolution land cover maps as sown in Fig. 7. e fine spatial resolution land cover maps produced by te proposed algoritm are smoot. Salt-and-pepper artifacts, isolated patces and irregular linear artifacts tat appear in te results of some of te oter SRM analyses are mostly eliminated. For all of te tree testing land cover maps at bot zoom factors of 5 and 8, more spatial detail, especially te linear features, are well maintained in te results of te proposed learning based SRM algoritm.

32 Fig. 14. Resultant land cover maps generated by different metods for test maps II-IV wit z 5. HC produces jagged boundaries (suc as te area A); PS produces isolated patces (suc as te area B); SPA and BI produce linear artifacts (suc as te area C); and BP produces salt-and-pepper artifacts and isolated patces (suc as te area D). Fig. 15. Resultant land cover maps generated by different metods for test maps II-IV wit z 8. HC produces jagged boundaries (suc as te area A); PS produces isolated patces (suc as te area B); SPA and BI produce linear artifacts (suc as te area C); and BP produces salt-and-pepper artifacts and isolated patces (suc as te area D). able II. Kappa and Overall Accuracy (OA) values of te resultant land cover maps produced by different metods at z 5 and z 8 for test maps II-IV. HC PS SPA BI BP Proposed est map II z=5 z=8 Kappa OA Kappa OA est map III z=5 Kappa OA z=8 Kappa

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Efficient algorithms for for clone items detection

Efficient algorithms for for clone items detection Efficient algoritms for for clone items detection Raoul Medina, Caroline Noyer, and Olivier Raynaud Raoul Medina, Caroline Noyer and Olivier Raynaud LIMOS - Université Blaise Pascal, Campus universitaire

More information

HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS

HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS Po-Ceng Cang National Standard Time & Frequency Lab., TL, Taiwan 1, Lane 551, Min-Tsu Road, Sec. 5, Yang-Mei, Taoyuan, Taiwan 36 Tel: 886 3

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Notes on Neural Networks

Notes on Neural Networks Artificial neurons otes on eural etwors Paulo Eduardo Rauber 205 Consider te data set D {(x i y i ) i { n} x i R m y i R d } Te tas of supervised learning consists on finding a function f : R m R d tat

More information

Effect of the Dependent Paths in Linear Hull

Effect of the Dependent Paths in Linear Hull 1 Effect of te Dependent Pats in Linear Hull Zenli Dai, Meiqin Wang, Yue Sun Scool of Matematics, Sandong University, Jinan, 250100, Cina Key Laboratory of Cryptologic Tecnology and Information Security,

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES

A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES Ronald Ainswort Hart Scientific, American Fork UT, USA ABSTRACT Reports of calibration typically provide total combined uncertainties

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Fast Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis Jin Yan, Graduate Student Member, IEEE, and Dan Jiao, Fellow, IEEE

Fast Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis Jin Yan, Graduate Student Member, IEEE, and Dan Jiao, Fellow, IEEE Tis article as been accepted for inclusion in a future issue of tis journal. Content is final as presented, wit te exception of pagination. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 1 Fast Explicit

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

These errors are made from replacing an infinite process by finite one.

These errors are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

The Complexity of Computing the MCD-Estimator

The Complexity of Computing the MCD-Estimator Te Complexity of Computing te MCD-Estimator Torsten Bernolt Lerstul Informatik 2 Universität Dortmund, Germany torstenbernolt@uni-dortmundde Paul Fiscer IMM, Danisc Tecnical University Kongens Lyngby,

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Impact of Lightning Strikes on National Airspace System (NAS) Outages

Impact of Lightning Strikes on National Airspace System (NAS) Outages Impact of Ligtning Strikes on National Airspace System (NAS) Outages A Statistical Approac Aurélien Vidal University of California at Berkeley NEXTOR Berkeley, CA, USA aurelien.vidal@berkeley.edu Jasenka

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds.

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds. Numerical solvers for large systems of ordinary differential equations based on te stocastic direct simulation metod improved by te and Runge Kutta principles Flavius Guiaş Abstract We present a numerical

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

Regularized Regression

Regularized Regression Regularized Regression David M. Blei Columbia University December 5, 205 Modern regression problems are ig dimensional, wic means tat te number of covariates p is large. In practice statisticians regularize

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

RECOGNITION of online handwriting aims at finding the

RECOGNITION of online handwriting aims at finding the SUBMITTED ON SEPTEMBER 2017 1 A General Framework for te Recognition of Online Handwritten Grapics Frank Julca-Aguilar, Harold Moucère, Cristian Viard-Gaudin, and Nina S. T. Hirata arxiv:1709.06389v1 [cs.cv]

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

On the computation of wavenumber integrals in phase-shift migration of common-offset sections

On the computation of wavenumber integrals in phase-shift migration of common-offset sections Computation of offset-wavenumber integrals On te computation of wavenumber integrals in pase-sift migration of common-offset sections Xiniang Li and Gary F. Margrave ABSTRACT Te evaluation of wavenumber

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

School of Geomatics and Urban Information, Beijing University of Civil Engineering and Architecture, Beijing, China 2

School of Geomatics and Urban Information, Beijing University of Civil Engineering and Architecture, Beijing, China 2 Examination Metod and Implementation for Field Survey Data of Crop Types Based on Multi-resolution Satellite Images Yang Liu, Mingyi Du, Wenquan Zu, Scool of Geomatics and Urban Information, Beijing University

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Empirical models for estimating liquefaction-induced lateral spread displacement

Empirical models for estimating liquefaction-induced lateral spread displacement Empirical models for estimating liquefaction-induced lateral spread displacement J.J. Zang and J.X. Zao Institute of Geological & Nuclear Sciences Ltd, Lower Hutt, New Zealand. 2004 NZSEE Conference ABSTRACT:

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

A Multiaxial Variable Amplitude Fatigue Life Prediction Method Based on a Plane Per Plane Damage Assessment

A Multiaxial Variable Amplitude Fatigue Life Prediction Method Based on a Plane Per Plane Damage Assessment American Journal of Mecanical and Industrial Engineering 28; 3(4): 47-54 ttp://www.sciencepublisinggroup.com/j/ajmie doi:.648/j.ajmie.2834.2 ISSN: 2575-679 (Print); ISSN: 2575-66 (Online) A Multiaxial

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Haplotyping. Biostatistics 666

Haplotyping. Biostatistics 666 Haplotyping Biostatistics 666 Previously Introduction to te E-M algoritm Approac for likeliood optimization Examples related to gene counting Allele frequency estimation recessive disorder Allele frequency

More information

Optimal parameters for a hierarchical grid data structure for contact detection in arbitrarily polydisperse particle systems

Optimal parameters for a hierarchical grid data structure for contact detection in arbitrarily polydisperse particle systems Comp. Part. Mec. 04) :357 37 DOI 0.007/s4057-04-000-9 Optimal parameters for a ierarcical grid data structure for contact detection in arbitrarily polydisperse particle systems Dinant Krijgsman Vitaliy

More information

Convergence and Descent Properties for a Class of Multilevel Optimization Algorithms

Convergence and Descent Properties for a Class of Multilevel Optimization Algorithms Convergence and Descent Properties for a Class of Multilevel Optimization Algoritms Stepen G. Nas April 28, 2010 Abstract I present a multilevel optimization approac (termed MG/Opt) for te solution of

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES

GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES Cristoper J. Roy Sandia National Laboratories* P. O. Box 5800, MS 085 Albuquerque, NM 8785-085 AIAA Paper 00-606 Abstract New developments

More information

INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION AID METHODS: A GENERAL FRAMEWORK

INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION AID METHODS: A GENERAL FRAMEWORK F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S Vol. 7 (0) No. DOI: 0.478/v009-0-000-0 INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Matematics 94 (6) 75 96 Contents lists available at ScienceDirect Journal of Computational and Applied Matematics journal omepage: www.elsevier.com/locate/cam Smootness-Increasing

More information

arxiv: v3 [cs.ds] 4 Aug 2017

arxiv: v3 [cs.ds] 4 Aug 2017 Non-preemptive Sceduling in a Smart Grid Model and its Implications on Macine Minimization Fu-Hong Liu 1, Hsiang-Hsuan Liu 1,2, and Prudence W.H. Wong 2 1 Department of Computer Science, National Tsing

More information

arxiv: v1 [math.pr] 28 Dec 2018

arxiv: v1 [math.pr] 28 Dec 2018 Approximating Sepp s constants for te Slepian process Jack Noonan a, Anatoly Zigljavsky a, a Scool of Matematics, Cardiff University, Cardiff, CF4 4AG, UK arxiv:8.0v [mat.pr] 8 Dec 08 Abstract Slepian

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Artificial Neural Network Model Based Estimation of Finite Population Total

Artificial Neural Network Model Based Estimation of Finite Population Total International Journal of Science and Researc (IJSR), India Online ISSN: 2319-7064 Artificial Neural Network Model Based Estimation of Finite Population Total Robert Kasisi 1, Romanus O. Odiambo 2, Antony

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

One-Sided Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-uniform Meshes

One-Sided Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-uniform Meshes DOI 10.1007/s10915-014-9946-6 One-Sided Position-Dependent Smootness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-uniform Meses JenniferK.Ryan Xiaozou Li Robert M. Kirby Kees Vuik

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Handling Missing Data on Asymmetric Distribution

Handling Missing Data on Asymmetric Distribution International Matematical Forum, Vol. 8, 03, no. 4, 53-65 Handling Missing Data on Asymmetric Distribution Amad M. H. Al-Kazale Department of Matematics, Faculty of Science Al-albayt University, Al-Mafraq-Jordan

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes *

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes * tecnical note 3 general articulation angle stability model for non-slewing articulated mobile cranes on slopes * J Wu, L uzzomi and M Hodkiewicz Scool of Mecanical and Cemical Engineering, University of

More information

Profit Based Unit Commitment in Deregulated Electricity Markets Using A Hybrid Lagrangian Relaxation - Particle Swarm Optimization Approach

Profit Based Unit Commitment in Deregulated Electricity Markets Using A Hybrid Lagrangian Relaxation - Particle Swarm Optimization Approach Profit Based Unit Commitment in Deregulated Electricity Markets Using A Hybrid Lagrangian Relaxation - Particle Swarm Optimization Approac Adline K. Bikeri, Cristoper M. Maina and Peter K. Kiato Proceedings

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Automatic Extraction of Shape Features for Classification of Leukocytes

Automatic Extraction of Shape Features for Classification of Leukocytes 00 International Conference on Artificial Intelligence and Computational Intelligence Automatic Extraction of Sape Features for Classification of Leukocytes Ermai Xie, T. M. McGinnity, QingXiang Wu Intelligent

More information

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem Journal of Combinatorial Optimization manuscript No. (will be inserted by te editor) Improved Algoritms for Largest Cardinality 2-Interval Pattern Problem Erdong Cen, Linji Yang, Hao Yuan Department of

More information

EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS

EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS Statistica Sinica 24 2014, 395-414 doi:ttp://dx.doi.org/10.5705/ss.2012.064 EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS Jun Sao 1,2 and Seng Wang 3 1 East Cina Normal University,

More information

d m = distance from te elicopter base to mission m demand location F cycle,i = set of missions assigned to veicle in cycle i H = total number of rescu

d m = distance from te elicopter base to mission m demand location F cycle,i = set of missions assigned to veicle in cycle i H = total number of rescu PSO-Greedy Searc Algoritm for Helicopter Mission Assignment in Disaster Relief Operations Adriana Andreeva-Mori 1, Keiji Kobayasi 2 and Masato Sindo 3 Japan Aerospace Exploration Agency, Mitaka, Tokyo,

More information

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India Open Journal of Optimization, 04, 3, 68-78 Publised Online December 04 in SciRes. ttp://www.scirp.org/ournal/oop ttp://dx.doi.org/0.436/oop.04.34007 Compromise Allocation for Combined Ratio Estimates of

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

An Adaptive Model Switching and Discretization Algorithm for Gas Flow on Networks

An Adaptive Model Switching and Discretization Algorithm for Gas Flow on Networks Procedia Computer Science 1 (21) (212) 1 1 1331 134 Procedia Computer Science www.elsevier.com/locate/procedia International Conference on Computational Science, ICCS 21 An Adaptive Model Switcing and

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Model development for the beveling of quartz crystal blanks

Model development for the beveling of quartz crystal blanks 9t International Congress on Modelling and Simulation, Pert, Australia, 6 December 0 ttp://mssanz.org.au/modsim0 Model development for te beveling of quartz crystal blanks C. Dong a a Department of Mecanical

More information

arxiv: v2 [stat.ml] 4 Jun 2015 Abstract

arxiv: v2 [stat.ml] 4 Jun 2015 Abstract Visual Causal Feature Learning Krzysztof Calupka Computation and Neural Systems California Institute of Tecnology Pasadena, CA, USA Pietro Perona Electrical Engineering California Institute of Tecnology

More information

arxiv: v1 [math.na] 3 Nov 2011

arxiv: v1 [math.na] 3 Nov 2011 arxiv:.983v [mat.na] 3 Nov 2 A Finite Difference Gost-cell Multigrid approac for Poisson Equation wit mixed Boundary Conditions in Arbitrary Domain Armando Coco, Giovanni Russo November 7, 2 Abstract In

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING

EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING Statistica Sinica 13(2003), 641-653 EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING J. K. Kim and R. R. Sitter Hankuk University of Foreign Studies and Simon Fraser University Abstract:

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods DOI 0.007/s095-07-048- Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Metods Mengping Zang Jue Yan Received: 7 December 06 / Revised: 7 April 07 / Accepted: April 07 Springer Science+Business

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f =

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f = Introduction to Macine Learning Lecturer: Regev Scweiger Recitation 8 Fall Semester Scribe: Regev Scweiger 8.1 Backpropagation We will develop and review te backpropagation algoritm for neural networks.

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Estimating Peak Bone Mineral Density in Osteoporosis Diagnosis by Maximum Distribution

Estimating Peak Bone Mineral Density in Osteoporosis Diagnosis by Maximum Distribution International Journal of Clinical Medicine Researc 2016; 3(5): 76-80 ttp://www.aascit.org/journal/ijcmr ISSN: 2375-3838 Estimating Peak Bone Mineral Density in Osteoporosis Diagnosis by Maximum Distribution

More information

An optimum design of robotic food handling by using Burger model

An optimum design of robotic food handling by using Burger model DOI 10.1007/s11370-008-0032-5 ORIGINAL RESEARCH PAPER An optimum design of robotic food andling by using Burger model Naoki Sakamoto Mitsuru Higasimori Tosio Tsuji Makoto Kaneko Received: 28 February 2008

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Journal of Engineering Science and Technology Review 7 (4) (2014) 40-45

Journal of Engineering Science and Technology Review 7 (4) (2014) 40-45 Jestr Journal of Engineering Science and Tecnology Review 7 (4) (14) -45 JOURNAL OF Engineering Science and Tecnology Review www.jestr.org Mecanics Evolution Caracteristics Analysis of in Fully-mecanized

More information

MIMO decorrelation for visible light communication based on angle optimization

MIMO decorrelation for visible light communication based on angle optimization MIMO decorrelation for visible ligt communication based on angle optimization Haiyong Zang, and Yijun Zu Citation: AIP Conference Proceedings 80, 09005 (07); View online: ttps://doi.org/0.03/.4977399 View

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information