Nematic colloids for photonic systems with FreeFem++

Size: px
Start display at page:

Download "Nematic colloids for photonic systems with FreeFem++"

Transcription

1 Nematic colloids for photonic systems with FreeFem++ Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko Univerza v Ljubljani Slovenija

2 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems Modeling requirements in 3D!

3 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems Modeling requirements in 3D!

4 Most well-known application of liquid crystals?

5 Applications of liquid crystals LCD (Liquid Crystal Displays).

6 Applications of liquid crystals LCD (Liquid Crystal Displays). Eye protecting filters for welding helmets (Balder) Polarizing glasses for 3D vision Liquid crystals have unique optical properties.

7 Liquid crystals properties

8 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals.

9 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals. In nematic LC molecules are rodlike. Tend to align in a preferred direction.

10 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals. In nematic LC molecules are rodlike. Tend to align in a preferred direction. 5CB

11 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals. Isotropic liquid phase (higher temperature) In nematic LC molecules are rodlike. Tend to align in a preferred direction. 5CB

12 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals. In nematic LC molecules are rodlike. Tend to align in a preferred direction. Isotropic liquid phase (higher temperature) Low enough temperature Partially ordered mesophase 5CB

13 Liquid crystals properties Liquid crystals are an oily material: flow like a liquid but are also partially ordered - like crystals. In nematic LC molecules are rodlike. Tend to align in a preferred direction. Isotropic liquid phase (higher temperature) Low enough temperature Partially ordered mesophase E

14 Basic example of nematic structure Thin cell (~microns):

15 Description of nematic liquid crystals

16 Description of nematic liquid crystals Basic quantities

17 Description of nematic liquid crystals Basic quantities Director n (r) n 1 Points in preferenced orientation.

18 Description of nematic liquid crystals Basic quantities Scalar order parameter Director S(r ) 1 S 1 2 n (r) n 1 Points in preferenced orientation. Quantifies the degree of order of the director orientation:

19 Description of nematic liquid crystals Basic quantities Scalar order parameter Director S(r ) 1 S 1 2 n (r) n 1 Points in preferenced orientation. Quantifies the degree of order of the director orientation: S=0 isotropic liquid

20 Description of nematic liquid crystals Basic quantities Scalar order parameter Director S(r ) 1 S 1 2 n (r) n 1 Quantifies the degree of order of the director orientation: S=0 isotropic liquid Points in preferenced orientation. S=1 ideally aligned liquid (all molecules parallel)

21 Description of nematic liquid crystals Basic quantities Scalar order parameter Director S(r ) 1 S 1 2 n (r) n 1 Points in preferenced orientation. Quantifies the degree of order of the director orientation: S=0 isotropic liquid S=0.53 a typical intermediate bulk value (for 5CB) S=1 ideally aligned liquid (all molecules parallel)

22 Alternative description with Q-tensor field New quantity: tensor order parameter Q(r) : S Q S 2 P 2 3n n I e e e e its largest eigenvalue and n its corrispondent eigenvector Q traceless: Q Q 0 Q symmetric: Only 5 independent Q Q33 Q 11Q22 Qij Q ji components of Q are required. Q Q 11 Q Q Q Q Q Q 22

23 S Alternative description with Q S 2 Q-tensor field New quantity: tensor order parameter Q(r) : P 2 3n n I e e e e its largest eigenvalue and n its corrispondent eigenvector. Q traceless: Q Q 0 Q symmetric: Only 5 independent 1 1 Q Q33 Q 11Q22 Qij Q ji components of Q are required. Q 2 Q 2 11 Q Q Uniaxial approximation Q Q Q Q 22

24 Alternative description with Q-tensor field New quantity: tensor order parameter Q(r) : S Q S 2 3n n I its largest eigenvalue and n its corrispondent eigenvector. Q traceless: Q Q 0 Q symmetric: Only 5 independent Q Q33 Q 11Q22 Qij Q ji components of Q are required. Q Q 11 Q Q Q Q Q Q 22

25 Nematic LC structures

26 Nematic LC structures Possible nematic structures Minima of the free-energy F

27 Nematic LC structures Possible nematic structures Minima of the free-energy F Landau-de Gennes free-energy functional: F( Q) f ( Q, Q) dv f ( Q, Q) dv bulk bulk border surf

28 Nematic LC structures Possible nematic structures Minima of the free-energy F Landau-de Gennes free-energy functional: F( Q) f ( Q, Q) dv f ( Q, Q) dv bulk bulk surf border f 1 Q L Q 1 ij ij 2 bulk AQijQij BQijQ jkqki C(QijQij) 2 x k x k Elastic energy Thermodynamic energy 1 1 L elastic constants A, B, C material constants W surface energy

29 Nematic LC structures Possible nematic structures Minima of the free-energy F Landau-de Gennes free-energy functional: F( Q) f ( Q, Q) dv f ( Q, Q) dv bulk bulk surf border f 1 Q L Q 1 ij ij 2 bulk AQijQij BQijQ jkqki C(QijQij) 2 x k x k Elastic energy Thermodynamic energy 1 1 L elastic constants A, B, C material constants W surface energy f 1 2 (0) 2 surf W (Qij - Qij ) Surface energy

30 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems

31 One colloidal particle

32 One colloidal particle f 1 Q L Q 1 AQ Q 1 BQ Q 1 ij ij 2 bulk ij ij ij jk ki C(QijQij) 2 x k x k Bulk energy Q f 1 2 (0) 2 surf W (Qij - Qij ) Surface interaction energy L, A, B, C material constants W anchoring (surface) energy

33 One colloidal particle f 1 Q Q 1 ij ij 2 bulk L AQijQij BQijQ jkqki C(QijQij) 2 x k x k Bulk energy 1 f 1 2 (0) 2 surf W (Qij - Qij ) Surface interaction energy L, A, B, C material constants W anchoring (surface) energy

34 One colloidal particle f 1 Q Q 1 ij ij 2 bulk L AQijQij BQijQ jkqki C(QijQij) 2 x k x k Bulk energy 1 f 1 2 (0) 2 surf W (Qij - Qij ) Surface interaction energy L, A, B, C material constants W anchoring (surface) energy

35 Several colloidal particles Inclusion of colloidal particles Photos: I. Muševič group, PRE, PRL, Science,

36 Several colloidal particles Inclusion of colloidal particles Disclination lines (topological defects): Photos: I. Muševič group, PRE, PRL, Science,

37 Several colloidal particles Inclusion of colloidal particles Disclination lines (topological defects): Strong attractive forces Photos: I. Muševič group, PRE, PRL, Science,

38 Several colloidal particles Inclusion of colloidal particles Disclination lines (topological defects): Strong attractive forces Colloidal structures - crystals in nematic. Photos: I. Muševič group, PRE, PRL, Science,

39 Several colloidal particles Inclusion of colloidal particles Disclination lines (topological defects): Strong attractive forces Colloidal structures - crystals in nematic. 1D structures Photos: I. Muševič group, PRE, PRL, Science,

40 Several colloidal particles Inclusion of colloidal particles Disclination lines (topological defects): Strong attractive forces Colloidal structures - crystals in nematic. 2D structures - crystals 1D structures Photos: I. Muševič group, PRE, PRL, Science,

41 Large 3D structures - crystals: Final aim dipolar crystal. Experiment by Andriy Nych, 2010 (to be published).

42 Large 3D structures - crystals: Final aim dipolar crystal. Experiment by Andriy Nych, 2010 (to be published). In the meanwhile:

43 Large 3D structures - crystals: Final aim dipolar crystal. Experiment by Andriy Nych, 2010 (to be published). In the meanwhile: Škarabot, Ravnik et al., PRE, 2008.

44 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems

45 Some already made simulations M. Ravnik, S. Žumer, Soft Matter, 2009.

46 Computational requirements Use of uniform grid becomes impracticable (time/memory) for larger systems or localized resolutions. Nonuniform grid required, for ex. with the finite element method (FEM). Strategy: mesh adaptivity less degrees of freedom (so less memory/time) more details given only where needed (e.g. around defects) A priori Metric based

47 New modeling requirements Mesh adaptivity in 3D, preferably with anisotropic metric. Moving objects (due to nematic elastic forces). Parallel processing (computer clusters). Meshes by Cécile Dobrzynski, Institut de Mathématiques de Bordeaux.

48 Newton iteration of tensor fields

49 Newton iteration of tensor fields F(Q) min: F( Q) F' ( Q) Q 0 Euler-Lagrange equations

50 Newton iteration of tensor fields F(Q) min: F( Q) F' ( Q) Q 0 Euler-Lagrange equations F( Q) f ( Q, Q) dv f Q r LQ ij f QdV ( Q) ij f QdV ( Q) 0 AQ BQ Q CQ Q Q dv W Q Q da ij ik kj ik kl lj ij ij ij ij

51 Newton iteration of tensor fields F(Q) min: F( Q) F' ( Q) Q 0 Euler-Lagrange equations F( Q) f ( Q, Q) dv f Q r LQ ij f QdV ( Q) ij f QdV ( Q) 0 AQ BQ Q CQ Q Q dv W Q Q da ij ik kj ik kl lj ij LQ W (Q ij ij ij ij ij - Q 0 ij )

52 Newton iteration of tensor fields F(Q) min: F( Q) F' ( Q) Q 0 Euler-Lagrange equations F( Q) f ( Q, Q) dv f Q r LQ ij f QdV ( Q) ij f QdV ( Q) 0 AQ BQ Q CQ Q Q dv W Q Q da ij ik kj ik kl lj ij LQ W (Q ij ij ij ij ij - Q 0 ij ) F '' ( Q k ) v F' ( Q ) k ( - test functions) k Newton iteration equation Q k1 Q k v k (next iteration step)

53 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems

54 1. Two particles (dimer) 3D geometry: Interior Profile cross section Particle diameter: 1 um Boundary condition: strong radial (energy density W=1e-2 J/m^2). Cell dimensions: side: [um]. Floor, bottom, walls: strong vertical BC Inbetween particles and box: nematic liquid crystal (5CB).

55 Tetrahedral mesh (cross section) ~ mesh points. Mesh adaptivity used: metric based. At the moment isotropic adaptivity but anisotropic being setting up. (prooved to be globally quasi-optimal) Director field (cross section) Code written in FreeFem++: ~ 2000 lines.

56 2. One large + two small particles 3D geometry: Interior Cross section 1 large particle: 1 um 2 small particles: 0,1 um Boundary conditions: strong radial (energy density W=1e-2 J/m^2). Cubical simulation cell: side = 2 um. Floor, bottom, walls: strong vertical BC. Inbetween particle and box: nematic liquid crystal (5CB).

57 2. Tetrahedral mesh profile cross section ~ mesh points. Mesh generator: TetGen Metric: mshmet

58 2. Director field profile cross section ~ mesh points. Mesh generator: TetGen Metric: mshmet

59 Scalar order parameter S Topological defects

60 Scalar order parameter S Topological defects

61 Outline Nematic liquid crystals Colloidal particles Methods/computations Photonic systems

62 New potential applications: metamaterials, microresonators

63 New potential applications: metamaterials, microresonators Photonic crystals:

64 New potential applications: metamaterials, microresonators Photonic crystals: Solid state metamaterials:

65 New potential applications: metamaterials, microresonators Photonic crystals: Solid state metamaterials: Soft metamaterials?

66 New potential applications: metamaterials, microresonators Photonic crystals: Nematic droplet. Solid state metamaterials: Soft metamaterials? Figures: I. Muševič, CLC Ljubljana Conference, 2010.

67 New potential applications: metamaterials, microresonators Photonic crystals: Nematic droplet. Whispering Gallery Modes (WGM ) in a microresonator. Solid state metamaterials: Soft metamaterials? Figures: I. Muševič, CLC Ljubljana Conference, 2010.

68 New potential applications: metamaterials, microresonators Photonic crystals: Nematic droplet. Whispering Gallery Modes (WGM ) in a microresonator. Solid state metamaterials: Soft metamaterials? Figures: I. Muševič, CLC Ljubljana Conference, 2010.

69 Nematic droplet E 0 By tuning electric field we switch between optical modes. Figures: I. Muševič, CLC Ljubljana Conference, 2010.

70 Computational photonics Detail dimensions comparable with wavelength. Ray optics not adequate. Numerical solution of full Maxwell equations Time-harmonic expansion 1) Frequency-domain eigenproblems 2) Frequency-domain response

71 Frequency domain eigenproblems ( r) 1 H 0 H c 2 H Eigenequation (+ condition) Reduces to a matrix eigenproblem: Ax 2 Bx Škarabot, Ravnik et al., PRE, 2008.

72 Future work Movement of particles to stationary positions movement of mesh. Initial mesh and starting guess for general setting of spherical particles (should be good enough in order to converge). Anisotropic mesh adaptivity (code module mmg3d). Visualization. EM code for solving Maxwell eqns in nonhomogeneously anisotropic media.

73 Acknowledgments: Slobodan Žumer (adviser), Faculty of Mathematics and Physics, Ljubljana, Slovenija. Frédéric Hecht, Laboratoire Jacques-Louis Lions, UPMC, Paris. Miha Ravnik, Faculty of Mathematics and Physics, Ljubljana. Igor Muševič & experimental group, Jožef Stefan Institute, Ljubljana. Pascal Frey, Laboratoire Jacques-Louis Lions, UPMC, Paris. Cécile Dobrzynski, Institut de Mathématiques de Bordeaux. Work has been finansed by EU: Hierarchy Project, Marie-Curie Actions

Energetics of entangled nematic colloids

Energetics of entangled nematic colloids Energetics of entangled nematic colloids M. Ravnik, U. Tkalec, S. Copar, S. Zumer, I. Musevic Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia Josef Stefan Institute, Ljubljana,

More information

Modeling Colloidal Particles in a Liquid Crystal Matrix

Modeling Colloidal Particles in a Liquid Crystal Matrix Modeling Colloidal Particles in a Liquid Crystal Matrix Paula Dassbach, Carme Calderer, and Douglas Arnold School of Mathematics University of Minnesota June 12, 2015 Paula Dassbach, Carme Calderer, and

More information

A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency

A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency arxiv:1505.07046v1 [physics.comp-ph] 26 May 2015 A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency Iztok Bajc 1, Frédéric Hecht 2 3 4, Slobodan

More information

Supplementary Information: Dispersions of ellipsoidal particles in a nematic liquid crystal

Supplementary Information: Dispersions of ellipsoidal particles in a nematic liquid crystal Supplementary Information: Dispersions of ellipsoidal particles in a nematic liquid crystal Mykola Tasinkevych, 1, 2, Frédéric Mondiot, 3 Olivier Mondain-Monval, 3 and Jean-Christophe Loudet 3, 1 Max-Planck-Institut

More information

Knots and links of disclination lines in chiral nematic colloids

Knots and links of disclination lines in chiral nematic colloids Knots and links of disclination lines in chiral nematic colloids Seminar at the Isaac Newton Institute, Cambridge, UK, 6 December, 2012 Simon Čopar Uroš Tkalec Jožef Stefan Institute, University of Maribor,

More information

I seminari del giovedì. Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate

I seminari del giovedì. Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate Università di Pavia Dipartimento di Matematica F. Casorati 1/23 http://www-dimat.unipv.it I seminari del giovedì Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate

More information

Liquid crystal in confined environment

Liquid crystal in confined environment Liquid crystal in confined environment Adviser: Prof. Rudi Podgornik Supervisor: Prof. Igor Muševič By Maryam Nikkhou September 2011 Contents Abstract.................................................................

More information

Supplementary Information Assembly and Control of 3D Nematic Colloidal Crystals

Supplementary Information Assembly and Control of 3D Nematic Colloidal Crystals Supplementary Information Assembly and Control of 3D Nematic Colloidal Crystals A. Nych 1,2, U. Ognysta 1,2, M. Škarabot1, M. Ravnik 3, S. Žumer3,1, and I. Muševič 1,3 1 J. Stefan Institute, Jamova 39,

More information

Defects in Nematic Liquid Crystals Seminar

Defects in Nematic Liquid Crystals Seminar University of Ljubljana Faculty of Mathematics and Physics Defects in Nematic Liquid Crystals Seminar Miha Ravnik Adviser: Professor Slobodan Žumer Defects in liquid crystals are discontinuities in order

More information

Geometry and Anchoring Effects on Elliptic Cylinder Domains of Nematic Phases

Geometry and Anchoring Effects on Elliptic Cylinder Domains of Nematic Phases Geometry and Anchoring Effects on Elliptic Cylinder Domains of Nematic Phases by Pouya Khayyatzadeh A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Soft and Biological Matter

Soft and Biological Matter Soft and Biological Matter Series editors Roberto Piazza, Milan, Italy Peter Schall, Amsterdam, The Netherlands Roland Netz, Berlin, Germany Wenbing Hu, Nanjing, People s Republic of China Gerard Wong,

More information

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells N.C. Papanicolaou 1 M.A. Christou 1 A.C. Polycarpou 2 1 Department of Mathematics, University of Nicosia

More information

Equivalent electrostatic capacitance Computation using FreeFEM++

Equivalent electrostatic capacitance Computation using FreeFEM++ Equivalent electrostatic capacitance Computation using FreeFEM++ P. Ventura*, F. Hecht** *PV R&D Consulting, Nice, France **Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, France

More information

Nematodynamics of a Colloidal Particle

Nematodynamics of a Colloidal Particle Department of Physics Seminar - 4th year Nematodynamics of a Colloidal Particle Author: David Seč Adviser: doc. dr. Daniel Svenšek Co-Adviser: dr. Miha Ravnik Ljubljana, January 2009 Abstract Dynamic flow

More information

Surveying Free Energy Landscapes: Applications to Continuum Soft Matter Systems

Surveying Free Energy Landscapes: Applications to Continuum Soft Matter Systems Surveying Free Energy Landscapes: Applications to Continuum Soft Matter Systems Halim Kusumaatmaja Department of Physics, University of Durham Acknowledgement David Wales (Cambridge) Discussions on various

More information

Modeling 3-D chiral nematic texture evolution under electric switching. Liquid Crystal Institute, Kent State University, Kent, OH 44242

Modeling 3-D chiral nematic texture evolution under electric switching. Liquid Crystal Institute, Kent State University, Kent, OH 44242 Modeling 3-D chiral nematic texture evolution under electric switching Vianney Gimenez-Pinto * and Robin L. B. Selinger Liquid Crystal Institute, Kent State University, Kent, OH 44242 Corresponding author:

More information

Static continuum theory of nematic liquid crystals.

Static continuum theory of nematic liquid crystals. Static continuum theory of nematic liquid crystals. Dmitry Golovaty The University of Akron June 11, 2015 1 Some images are from Google Earth and http://www.personal.kent.edu/ bisenyuk/liquidcrystals Dmitry

More information

VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS. Andreja [arlah 1

VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS. Andreja [arlah 1 VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS Andreja [arlah 1 Primo` Ziherl, 2,3 and Slobodan @umer 1,3 1. Department of Physics, Faculty of Mathematics and Physics,

More information

Interactions between spherical colloids mediated by a liquid crystal: A molecular simulation and mesoscale study

Interactions between spherical colloids mediated by a liquid crystal: A molecular simulation and mesoscale study JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 4 22 JULY 2004 Interactions between spherical colloids mediated by a liquid crystal: A molecular simulation and mesoscale study Evelina B. Kim, Orlando Guzmán,

More information

Advection of nematic liquid crystals by chaotic flow

Advection of nematic liquid crystals by chaotic flow Advection of nematic liquid crystals by chaotic flow Lennon Ó Náraigh Home fixture 21st September 2016 Advection of nematic liquid crystals by chaotic flow 21st September 2016 1 / 31 Context of work Liquid

More information

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model P. Ventura*, F. Hecht**, Pierre Dufilié*** *PV R&D Consulting, Nice, France Laboratoire LEM3, Université

More information

Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host

Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host PHYSICAL REVIEW E, VOLUME 65, 041702 Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host Denis Andrienko* and Michael P. Allen H. H. Wills Physics Laboratory,

More information

Biaxial Phase Transitions in Nematic Liquid Crystals

Biaxial Phase Transitions in Nematic Liquid Crystals - Biaxial Phase Transitions in Nematic Liquid Crystals Cortona, 6 September 5 Giovanni De Matteis Department of Mathematics University of Strathclyde ra.gdem@maths.strath.ac.uk Summary General quadrupolar

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 8 Oct 2000

arxiv:cond-mat/ v2 [cond-mat.soft] 8 Oct 2000 Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal arxiv:cond-mat/0007040v [cond-mat.soft] 8 Oct 000 Joachim Stelzer Schwetzinger Str. 0, 69190 Walldorf (Baden),

More information

materials ISSN

materials ISSN Materials 2014, 7, 4272-4281; doi:10.3390/ma7064272 Article OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Janus Nematic Colloids with Designable Valence Simon Čopar 1,2, Miha Ravnik

More information

Model for the director and electric field in liquid crystal cells having twist walls or disclination lines

Model for the director and electric field in liquid crystal cells having twist walls or disclination lines JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 12 15 JUNE 2002 Model for the director and electric field in liquid crystal cells having twist walls or disclination lines G. Panasyuk a) and D. W. Allender

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets

Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets Vol. 25, No. 2 23 Jan 2017 OPTICS EXPRESS 1073 Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets MARUŠA MUR, 1 JUNAID AHMAD SOFI, 2 IVAN KVASIĆ,

More information

Mathematical Problems in Liquid Crystals

Mathematical Problems in Liquid Crystals Report on Research in Groups Mathematical Problems in Liquid Crystals August 15 - September 15, 2011 and June 1 - July 31, 2012 Organizers: Radu Ignat, Luc Nguyen, Valeriy Slastikov, Arghir Zarnescu Topics

More information

arxiv: v2 [math.ap] 1 Jul 2009

arxiv: v2 [math.ap] 1 Jul 2009 Equilibrium order parameters of nematic liquid crystals in the Landau-De Gennes theory Apala Majumdar arxiv:0808.1870v2 [math.ap] 1 Jul 2009 July 1, 2009 Abstract We study equilibrium liquid crystal configurations

More information

Dissipative solutions for a hyperbolic system arising in liquid crystals modeling

Dissipative solutions for a hyperbolic system arising in liquid crystals modeling Dissipative solutions for a hyperbolic system arising in liquid crystals modeling E. Rocca Università degli Studi di Pavia Workshop on Differential Equations Central European University, Budapest, April

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Numerical Analysis of Liquid Crystal Droplets

Numerical Analysis of Liquid Crystal Droplets Numerical Analysis of Liquid Crystal Droplets Angelique Morvant Joint work with Ethan Seal Mentor: Dr. Shawn Walker July 26, 2017 Morvant, Seal, Walker Numerical Analysis of Liquid Crystal Droplets 7/26/17

More information

An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals

An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals Chuck Gartland Department of Mathematical Sciences Kent State

More information

phases of liquid crystals and their transitions

phases of liquid crystals and their transitions phases of liquid crystals and their transitions Term paper for PHYS 569 Xiaoxiao Wang Abstract A brief introduction of liquid crystals and their phases is provided in this paper. Liquid crystal is a state

More information

On a hyperbolic system arising in liquid crystals modeling

On a hyperbolic system arising in liquid crystals modeling On a hyperbolic system arising in liquid crystals modeling E. Rocca Università degli Studi di Pavia Workshop on Mathematical Fluid Dynamics Bad Boll, May 7 11, 2018 jointly with Eduard Feireisl (Prague)-Giulio

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

Model For the Director and Electric Field in Liquid Crystal Cells Having Twist Walls Or Disclination Lines

Model For the Director and Electric Field in Liquid Crystal Cells Having Twist Walls Or Disclination Lines Kent State University Digital Commons @ Kent State University Libraries Physics Publications Department of Physics 6-15-2002 Model For the Director and Electric Field in Liquid Crystal Cells Having Twist

More information

Liquid Crystals. Martin Oettel. Some aspects. May 2014

Liquid Crystals. Martin Oettel. Some aspects. May 2014 Liquid Crystals Some aspects Martin Oettel May 14 1 The phases in Physics I gas / vapor change in density (scalar order parameter) no change in continuous translation liquid change in density change from

More information

Interaction between colloidal particles in chiral nematic liquid crystals

Interaction between colloidal particles in chiral nematic liquid crystals Interaction between colloidal particles in chiral nematic liquid crystals Manoj Bhushan andey, I. Smalyukh Department of hysics, Liquid Crystal Materials Research Centre, University of Colorado at Boulder,

More information

Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers

Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers Moscow, Russia, September 25-26, 2017 Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers R.V. Galev, A.N. Kudryavtsev, S.I. Trashkeev Khristianovich

More information

From the theory of liquid crystals to LCD-displays

From the theory of liquid crystals to LCD-displays From the theory of liquid crystals to LCD-displays Nobel Price in Physics 1991: Pierre-Gilles de Gennes Alexander Kleinsorge FHI Berlin, Dec. 7th 2004 Outline Survey of Liquid Crystals Anisotropy properties

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

Inverted and multiple nematic emulsions

Inverted and multiple nematic emulsions PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998 Inverted and multiple nematic emulsions P. Poulin* and D. A. Weitz Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street,

More information

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh Alignment of Liquid Crystal Director Fields Using Monolayers Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh 5CB Liquid Crystals (LCs) CN Flow like liquids; Anisotropic like solid crystals; Crystal

More information

Mechanical effects of light spin and orbital angular momentum in liquid crystals

Mechanical effects of light spin and orbital angular momentum in liquid crystals Mechanical effects of light spin and orbital angular momentum in liquid crystals E.Santamato Università degli Studi di Napoli Federico II Dipartimento di Scienze Fisiche Complesso di Monte S. Angelo via

More information

Molecular simulation and theory of a liquid crystalline disclination core

Molecular simulation and theory of a liquid crystalline disclination core PHYSICAL REVIEW E VOLUME 61, NUMBER 1 JANUARY 2000 Molecular simulation and theory of a liquid crystalline disclination core Denis Andrienko and Michael P. Allen H. H. Wills Physics Laboratory, University

More information

Three Dimensional Finite Element Modelling of Liquid Crystal Electro-Hydrodynamics

Three Dimensional Finite Element Modelling of Liquid Crystal Electro-Hydrodynamics Three Dimensional Finite Element Modelling of Liquid Crystal Electro-Hydrodynamics by Eero Johannes Willman A thesis submitted for the degree of Doctor of Philosophy of University College London Faculty

More information

Order Parameters and Defects in Liquid Crystals

Order Parameters and Defects in Liquid Crystals Order Parameters and Defects in Liquid Crystals Ferroelectric phenomena in liquid crystals June, 2007 Liquid Crystal-substance with a degree of electronic-liquid Crystal Crystal Presentations crystalline

More information

Summary of Fourier Optics

Summary of Fourier Optics Summary of Fourier Optics Diffraction of the paraxial wave is described by Fresnel diffraction integral, u(x, y, z) = j λz dx 0 dy 0 u 0 (x 0, y 0 )e j(k/2z)[(x x 0) 2 +(y y 0 ) 2 )], Fraunhofer diffraction

More information

1. what are the limitations in MD simulations? Name What are the advantages of using periodic boundary condition for MD?

1. what are the limitations in MD simulations? Name What are the advantages of using periodic boundary condition for MD? 1. what are the limitations in MD simulations? Name 2. 2. What are the advantages of using periodic boundary condition for MD? Name 2 3. what is the metropolis Monte Carlo simulation? 4. Why argon is chosen

More information

Computers and Mathematics with Applications. Moving mesh partial differential equations to describe nematic order dynamics

Computers and Mathematics with Applications. Moving mesh partial differential equations to describe nematic order dynamics Computers and Mathematics with Applications 60 (2010) 2239 2252 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Moving

More information

Short-Term Scientific Mission (STSM) Report for Nematic-Smectic Pattern Formation in Confined Geometries Action TD

Short-Term Scientific Mission (STSM) Report for Nematic-Smectic Pattern Formation in Confined Geometries Action TD Short-Term Scientific Mission (STSM) Report for Nematic-Smectic Pattern Formation in Confined Geometries Action TD1409-3915 Dr Apala Majumdar, University of Bath, United Kingdom January 5, 018 1 Purpose

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT5032 Chiral liquid crystal colloids Ye Yuan, 1 Angel Martinez, 1 Bohdan Senyuk, 1 Mykola Tasinkevych 2,3,4 & Ivan I. Smalyukh 1,5,6*

More information

MP5: Soft Matter: Physics of Liquid Crystals

MP5: Soft Matter: Physics of Liquid Crystals MP5: Soft Matter: Physics of Liquid Crystals 1 Objective In this experiment a liquid crystal display (LCD) is built and its functionality is tested. The light transmission as function of the applied voltage

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Configurations of confined nematic polymers

Configurations of confined nematic polymers SEMINAR 1 1 st YEAR, SECOND CYCLE DEGREE Configurations of confined nematic polymers Author: Danijel Vidaković Mentor: Daniel Svenšek Ljubljana, March 2018 Abstract In this seminar, I present the construction

More information

Breakdown of classical nucleation theory in nucleation kinetics

Breakdown of classical nucleation theory in nucleation kinetics Chapter 6 Breakdown of classical nucleation theory in nucleation kinetics In this chapter we present results of a study of nucleation of nematic droplets from the metastable isotropic phase. To the best

More information

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle Physical Properties Contents 1 Physical Properties 2 Scalar, Vector 3 Second Rank Tensor 4 Transformation 5 Representation Quadric 6 Neumann s Principle Physical Properties of Crystals - crystalline- translational

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Yu U. Wang Department Michigan Technological University Motivation Extend phase field method to

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Jul 2004

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Jul 2004 Europhysics Letters PREPRINT Tetravalent Colloids by Nematic Wetting arxiv:cond-mat/0407596v [cond-mat.soft] 22 Jul 2004 M. Huber,2 and H. Stark ( ) Universität Konstanz, Fachbereich Physik, D-78457 Konstanz,

More information

Key-Lock Colloids in a Nematic Liquid Crystal

Key-Lock Colloids in a Nematic Liquid Crystal Key-Lock Colloids in a Nematic Liquid Crystal late and switch photonic signals [4]. Recent experimental schemes allow for the semiassisted assembly of three-dimensional (3D) colloidal structures in LCs

More information

Ferroelectric Phenomena in Crystals

Ferroelectric Phenomena in Crystals В. А. Strukov А. Р. Levanyuk Ferroelectric Phenomena in Crystals Physical Foundations With 153 Figures and 14 Tables Springer Contents 1. General Characteristics of Structural Phase Transitions in Crystals

More information

LIQUID CRYSTAL ELECTRO-OSMOSIS

LIQUID CRYSTAL ELECTRO-OSMOSIS LIQUID CRYSTAL ELECTRO-OSMOSIS Chris Conklin and Jorge Viñals School of Physics and Astronomy University of Minnesota Acknowledgments: Chenhui Peng and Oleg Lavrentovich (LCI, Kent State). Carme Calderer

More information

Materials for soft matter photonics

Materials for soft matter photonics Materials for soft matter photonics Seminar IIb Author: Urban Mur Advisor: doc. dr. Miha Ravnik Ljubljana, May 2016 Abstract In this seminar I present three central concepts to the new developing field

More information

Kadath: a spectral solver and its application to black hole spacetimes

Kadath: a spectral solver and its application to black hole spacetimes Kadath: a spectral solver and its application to black hole spacetimes Philippe Grandclément Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

More information

Optics of Liquid Crystal Displays

Optics of Liquid Crystal Displays Optics of Liquid Crystal Displays Second Edition POCHIYEH CLAIRE GU WILEY A John Wiley & Sons, Inc., Publication Contents Preface Preface to the First Edition xiii xv Chapter 1. Preliminaries 1 1.1. Basic

More information

Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets

Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets M. Humar 1 and I. Muševič 1,2 * 1 J. Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia 2 Faculty of Mathematics

More information

Nematic Liquid Crystals: Defects

Nematic Liquid Crystals: Defects F Nematic Liquid Crystals: Defects There are two types of defects in the uniaxial nematic phase: line defects (disclinations) and point defects (hedgehogs and boojums). These are reviewed at three levels:

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

J. Fukuda and S. Žumer, Quasi two-dimensional Skyrmion lattices in a chiral nematic liquid crystal,

J. Fukuda and S. Žumer, Quasi two-dimensional Skyrmion lattices in a chiral nematic liquid crystal, Authors version of J. Fukuda and S. Žumer, Quasi two-dimensional Skyrmion lattices in a chiral nematic liquid crystal, Nature Communications 2: 246 doi: 10.1038/ncomms1250 (2011). Published article is

More information

About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers Journal of Physics: Conference Series OPEN ACCESS About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers To cite this article: A H Gevorgyan et al 04 J. Phys.: Conf.

More information

Three-dimensional colloidal crystals in liquid crystalline blue phases

Three-dimensional colloidal crystals in liquid crystalline blue phases Three-dimensional colloidal crystals in liquid crystalline blue phases Miha Ravnik a,b, Gareth P. Alexander b,c, Julia M. Yeomans b, and Slobodan Žumer a,d,1 a Faculty of Mathematics and Physics, University

More information

From molecular to continuum modelling of bistable liquid crystal devices

From molecular to continuum modelling of bistable liquid crystal devices To appear in Liquid Crystals Vol. 00, No. 00, Month 20XX, 1 22 RESEARCH ARTICLE From molecular to continuum modelling of bistable liquid crystal devices Martin Robinson a, Chong Luo b, Patrick E. Farrell

More information

Shear Flow of a Nematic Liquid Crystal near a Charged Surface

Shear Flow of a Nematic Liquid Crystal near a Charged Surface Physics of the Solid State, Vol. 45, No. 6, 00, pp. 9 96. Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 00, pp. 5 40. Original Russian Text Copyright 00 by Zakharov, Vakulenko. POLYMERS AND LIQUID

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes

More information

Numerics for Liquid Crystals with Variable Degree of Orientation

Numerics for Liquid Crystals with Variable Degree of Orientation Numerics for Liquid Crystals with Variable Degree of Orientation Ricardo H. Nochetto, Shawn W. Walker 2 and Wujun hang Department of Mathematics, University of Maryland 2 Department of Mathematics, Louisiana

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to

More information

Simple Landau model of the smectic-a isotropic phase transition

Simple Landau model of the smectic-a isotropic phase transition Eur. Phys. J. E4, 293-297 200) imple Landau model of the smectic-a isotropic phase transition Prabir K. Mukherjee,2, Harald Pleiner 3, and Helmut R. Brand a Theoretische Physik III, Universität Bayreuth,

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Defect structures in nematic liquid crystals around charged particles

Defect structures in nematic liquid crystals around charged particles EPJ manuscript No. (will be inserted by the editor) Defect structures in nematic liquid crystals around charged particles Keisuke Tojo 1, Akira Furukawa 2, Takeaki Araki 1, and Akira Onuki 1 In Section

More information

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Chap. 4. Electromagnetic Propagation in Anisotropic Media Chap. 4. Electromagnetic Propagation in Anisotropic Media - Optical properties depend on the direction of propagation and the polarization of the light. - Crystals such as calcite, quartz, KDP, and liquid

More information

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds RWE-C3-EAFIT Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds Hector Roman Quiceno E. Advisors Ph.D Jairo Alberto Villegas G. Ph.D Diego Alberto Gutierrez I. Centro de Ciencias de

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT NICOLETA ESEANU* 1, CORNELIA UNCHESELU 2, I. PALARIE 3, B. UMANSKI 4 1 Department of Physics, ''Politehnica''

More information

Dynamic Self Assembly of Magnetic Colloids

Dynamic Self Assembly of Magnetic Colloids Institute of Physics, University of Bayreuth Advanced Practical Course in Physics Dynamic Self Assembly of Magnetic Colloids A. Ray and Th. M. Fischer 3 2012 Contents 1. Abstract 3 2. Introduction 3 3.

More information

Report Number 09/10. Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Apala Majumdar, Arghir Zarnescu

Report Number 09/10. Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Apala Majumdar, Arghir Zarnescu Report Number 09/0 Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond by Apala Majumdar, Arghir Zarnescu Oxford Centre for Collaborative Applied Mathematics Mathematical

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Surface plasmon toy-model of a rotating black hole.

Surface plasmon toy-model of a rotating black hole. Surface plasmon toy-model of a rotating black hole. Igor I. Smolyaninov Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 (February 2, 2008) arxiv:cond-mat/0309356v1

More information

3. General properties of phase transitions and the Landau theory

3. General properties of phase transitions and the Landau theory 3. General properties of phase transitions and the Landau theory In this Section we review the general properties and the terminology used to characterise phase transitions, which you will have already

More information

Unusual Particle Motions. in the Liquid Crystal Phases. A thesis submitted to the University of Manchester. for the degree for PhD in the Faculty of

Unusual Particle Motions. in the Liquid Crystal Phases. A thesis submitted to the University of Manchester. for the degree for PhD in the Faculty of Unusual Particle Motions in the Liquid Crystal Phases A thesis submitted to the University of Manchester for the degree for PhD in the Faculty of Engineering and Physical Sciences 2014 JIYOUNG OH School

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device

Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device epl draft Order Reconstruction Phenomena and Temperature-Driven Dynamics in a 3D Zenithally Bistable Device A. Raisch 1 and A. Majumdar 2 1 Oxford Centre for Collaborative Applied Mathematics, University

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 08 Wave propagation in anisotropic media Now, we will discuss the propagation of electromagnetic

More information

Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents

Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents EUROPHYSICS LETTERS 15 March 2000 Europhys. Lett., 49 (6), pp. 729 734 (2000) Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents

More information