WELCOME!! LABORATORY MATH PERCENT CONCENTRATION. Things to do ASAP: Concepts to deal with:

Size: px
Start display at page:

Download "WELCOME!! LABORATORY MATH PERCENT CONCENTRATION. Things to do ASAP: Concepts to deal with:"

Transcription

1 WELCOME!! Things to do ASAP: Read the course syllabus; information regarding testing, homework, lecture schedules, expectations and course objectives are all there Read the weekly overview; lecture objectives are there Look at the study guides which are for EXAM STUDY GUIDING ONLY! These are NOT assignments! LABORATORY MATH Concepts to deal with: 1. Percent concentration 2. Molarity 3. Inverse proportions 4. Statistics!! PERCENT CONCENTRATION An expression of concentration that does not give molecule information; does not require mw info Described as parts per 100 parts; percent (%) is weight in grams per volume in 100 mls (w/v) or grams/100 To determine how much of a substance to add to a solvent, use a ratio equation: grams/100 mls = grams needed/volume needed

2 Problem: How much NaCl do you need to make 600 mls of 0.9% solution of NaCl? Answer: 0.9 = x = 100x 5.4 = x So add 5.4 grams of NaCl to 600 mls of solvent MOLARITY Describes the concentration of solute within a solution by stating the relative number of reactant particles tells the number of "moles" of solute in a specific amount of solution; this is the number of molecules available for interaction A mole contains 6.02 X particles; it is different for each element...this is also the molecular weight of the element A mole of an element is its molecular weight; for example, a mole of sodium is 23 grams A mole of a compound is the total of the molecular weights of each element in the compound; for example, a mole of NaOH is = 40 grams Molarity is expressed as mol/l or M; this refers to the number of moles in one liter of solvent

3 Thusly, one mole (1M) of NaOH in one liter of solvent is equal to 40 grams of solid NaOH dissolved in 1 liter (1 mol/l)...2 moles would be 80 grams of NaOH, etc. CALCULATING MOLARITY Quick and Simple (use this formula): Molarity = [grams/liter] / molecular weight or grams/liter = Molarity X molecular weight Problem: What is the molarity of a solution containing 24 grams H 2 SO 4 (MW = 98 gm) in 150 mls of buffer? Answer: 24 grams/0.15 liters = M X = M X = Molarity Problem: One liter of a solution is labeled 24 grams NaOH What is the molarity of this solution? Answer: 24 grams/1 liter = M X = Molarity

4 The Inverse Proportion Calculation Used in determining how to make solutions of lesser concentration from solutions of greater concentration Formula is: V1 X C1 = V2 X C2 where V is volume and C is concentration Both V units must be the same and both C units must be the same Problem: Make 500 mls of an 0.8M solution from a 15M solution. Solution: V1 X C1 = V2 X C2 500 mls X 0.8M = V2 X 15M 400 = 15X X = mls Add 26.7 mls of the 15M solution to a flask and add solvent up to 500 mls STATISTICS Statistics is the mathematical analysis and evaluation of collected data a statistic is a number summarizing data Used daily in clinical lab to evaluate quality control (QC) data QC statistical data must be kept on file for inspections and equipment maintenance

5 Two types of stats: 1. Descriptive: summarizes features of a single group of data or things; describes the relationship of each piece of data to a central value (usually the mean) 2. Inferential: allows one to infer findings from small groups to large populations using, in part, descriptive stats (mostly research) Descriptive Stats When data points are plotted in a specific way, they will form a symmetrical (bell-shaped) curve called the Normal Curve, Gaussian Distribution, or normal distribution To plot the normal curve, data is collected, the mean and the standard deviation are calculated; values are plotted on the curve If the distribution is normal, then 68.2% of values lie between ±1 standard deviation away from the mean, 95.5% lie between ±2 standard deviations away from the mean, and 99.7% are ±3 standard deviations away

6 Inferential Stats Compares certain features of two or more groups of data to determine similarities or differences usually looks at small samples and infers the findings of this group to large populations Used more in research designs Common Descriptive Stats Mean: the arithmetic average of a set of numbers...symbolized by x-bar Calculate mean by adding all values and then dividing that sum by the number of values Dispersion or range: a not very useful simple statistic that describes the spread of data around the mean obtained by subtracting the smallest value in a set of data from the largest value Standard deviation (SD or σ): A commonly used stat that describes the dispersion of groups around the mean...the square root of the variance; allows one to determine which values lie within certain deviations from the mean Where Σ is sum of, x is an individual value, x bar is the mean value of all the scores; and N is the population size

7 Calculate mean and standard deviation of the following values: 1, 2, 3, 4, 5 x bar equals = 15 5 = 3 (x x bar) 2 equals: 1 3 = -2, -2 2 = = -1, -1 2 = = 0, 0 2 = = 1, 1 2 = = 2, 2 2 = 4 Sum of (Σ) squared values = = 10 Sum of squared values = 10 N = 5 10/5 = 2, find the square root of 2 SD (or σ) = So 1 standard deviation is 1.41, what are 2 standard deviations? 3 standard devs? Coefficient of Variation: a statistic used to compare the relative variability in two sets of values not expressed in the same units; it relates the standard deviation to the mean and is expressed as a percentage Calculate the CV using this formula: SD X 100 = CV% mean Mode: the value in a set of data that occurs most frequently Median: the values that occurs in the middle of all of the values (least affected by outlier values) when values are arranged from high to low

84 PERCENTAGE COMPOSITION

84 PERCENTAGE COMPOSITION 84 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Lecture 2. Descriptive Statistics: Measures of Center

Lecture 2. Descriptive Statistics: Measures of Center Lecture 2. Descriptive Statistics: Measures of Center Descriptive Statistics summarize or describe the important characteristics of a known set of data Inferential Statistics use sample data to make inferences

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS 84 CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances.

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances. Solutions Objectives: 1. Learn the various methods of expressing concentrations of solutions. 2. Learn to make percent and molar solutions from solids, liquids, and stock solutions. 3. Learn the various

More information

Molarity, ph, and Buffers

Molarity, ph, and Buffers Molarity, ph, and Buffers BTEC 1015 A bit of chemistry review ELEMENT - a substance that cannot be broken down to other substances by chemical reactions ATOM - the smallest unit of matter that still retains

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

Example: How would we prepare 500. ml of M sodium sulfate in water?

Example: How would we prepare 500. ml of M sodium sulfate in water? 95 Example: How would we prepare 500. ml of 0.500 M sodium sulfate in water? Dissolve the appropriate amount of sodium sulfate into enough water to make 500. ml of solution. A VOLUMETRIC FLASK is a flask

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 52 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Reminders. Homework due tomorrow Quiz tomorrow

Reminders. Homework due tomorrow Quiz tomorrow Reminders Homework due tomorrow Quiz tomorrow 1 Warm Up - ACT Math Scores Distribution of ACT Math Scores Density 0 5 10 15 20 25 30 35 scores What percent of scores are between 12 and 24? Options: 38%,

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

These numbers are the masses of each element in a mole of the compound!

These numbers are the masses of each element in a mole of the compound! 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Preparation of Biological Solutions and Serial Dilutions

Preparation of Biological Solutions and Serial Dilutions Preparation of Biological Solutions and Serial Dilutions - Objective: 1- To learn how to prepare solutions. 2-To get familiar with solution dilutions. - Introduction: - It is very important to understand

More information

1.2: Mole, Conversion Factors, Empirical & Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL

1.2: Mole, Conversion Factors, Empirical & Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL 1.2: Mole, Conversion Factors, Empirical & Molecular Formulas Ms. Kiely Coral Gables Senior High IB Chemistry SL TURN IN the Signed Syllabus and Topic 1 Exercises Bell-Ringer #2 What amount in grams is

More information

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics Last Lecture Distinguish Populations from Samples Importance of identifying a population and well chosen sample Knowing different Sampling Techniques Distinguish Parameters from Statistics Knowing different

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

Required math skills:

Required math skills: Quantitative Chemical Analysis Required math skills: ACCURATE ACCURATE NOT Accurate PRECISE NOT precise PRECISE Add Add Subtract Multiply Divide Powers Powers Logarithms Random error systematic error 1

More information

Dr. Jennifer Weller WORKFLOW DURING THE B3 CAMP MAKING SOLUTIONS FROM STOCKS. B3 Summer Science Camp at Olympic High School

Dr. Jennifer Weller WORKFLOW DURING THE B3 CAMP MAKING SOLUTIONS FROM STOCKS. B3 Summer Science Camp at Olympic High School Dr. Jennifer Weller WORKFLOW DURING THE B3 CAMP MAKING SOLUTIONS FROM STOCKS B3 Summer Science Camp at Olympic High School LAB WORKFLOW OVERVIEW Collect Samples (June 12 th ) Extract DNA from the samples

More information

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts!

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements 1. Mid-term grades will be posted soon (just used scaled exam 1 score

More information

The Mole. One mole = x things Avogadro s number: N A = x 10 23

The Mole. One mole = x things Avogadro s number: N A = x 10 23 The Mole 1 atom or 1 molecule is a very small entity not convenient to operate with The masses we usually encounter in chemical experiments vary from milligrams to kilograms Just like one dozen = 12 things

More information

Unit 15 Solutions and Molarity

Unit 15 Solutions and Molarity Unit 15 s and Molarity INTRODUCTION In addition to chemical equations chemists and chemistry students encounter homogeneous mixtures or solutions quite frequently. s are the practical means to deliver

More information

Unit 5 Percent Composition, Empirical Formulas, and Reactions

Unit 5 Percent Composition, Empirical Formulas, and Reactions Chemistry 1 West Linn High School Unit 5 Packet and Goals Name: Period: Unit 5 Percent Composition, Empirical Formulas, and Reactions Unit Goals: As you work through this unit, you should be able to: 1.

More information

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition Chemistry for Changing Times, Thirteenth Edition Lecture Outlines Chemical Accounting John Singer, Jackson Community College Chemical Sentences: Equations Chemical equations represent the sentences in

More information

STOICHIOMETRY HONORS CHEMISTRY

STOICHIOMETRY HONORS CHEMISTRY STOICHIOMETRY HONORS CHEMISTRY MOLE RATIO A mole ratio is the ratio of coefficients used to compare amounts of reactants and products. 1 ZnCl 2 (aq) + 2 NaOH (aq) 1 Zn(OH) 2 (aq) + 2 NaCl (aq) What is

More information

DETERMINATION OF ACETIC ACID IN VINEGAR

DETERMINATION OF ACETIC ACID IN VINEGAR DETERMINATION OF ACETIC ACID IN VINEGAR 1 INTRODUCTION Juices from plants and fruits contain sugar. When these juices are fermented, the sugar molecules are converted into ethyl alcohol molecules (C 2

More information

Chapter 2 Stoichiometry

Chapter 2 Stoichiometry Chapter 2 Stoichiometry 2-1 Writing Balanced Chemical Equations 2-2 Using Balanced Chemical Equations 2-3 Limiting Reactant and Percentage Yield 2-4 The Stoichiometry of Reactions in Solution 2-5 the Scale

More information

Molarity Revised 2011

Molarity Revised 2011 Molarity Revised 2011 Molarity Is the number of moles of solute dissolved in one liter of solution. The unit is moles/l Specifically, moles of solute/liter of solution. Rather than writing out moles per

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Lecture No. 2 Date :2 /12/ 2012 Dr. Mohammed Hamed --------------------------------------------------------------------------------------------------------------------------------------

More information

Unit 7. Solution Concentrations and Colligative Properties

Unit 7. Solution Concentrations and Colligative Properties Unit 7 Solution Concentrations and Colligative Properties Molarity Most widely used concentration unit [HCl] means concentration of HCl in mol/l Notice volume is total volume of solution Molarity (M)=

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chem 1515 Section 2 Problem Set #4. Name Spring 1998 Chem 1515 Section 2 Problem Set #4 Name Spring 1998 TA Name Lab Section # ALL work must be shown to receive full credit. Due Wednesday, February 4th PS4.1. Describe all the energy changes which must be

More information

SOLUTIONS. Engr. Yvonne Ligaya F. Musico

SOLUTIONS. Engr. Yvonne Ligaya F. Musico SOLUTIONS SOLUTION A homogeneous mixture of two or more substances, the relative proportion of which may vary within certain limits. COMPONENTS OF SOLUTION SOLUTE component which is in small quantity SOLVENT

More information

Types of Concentration Expressions

Types of Concentration Expressions Chapter 12 Lecture Chapter 12 Solutions 12.4 Concentrations of Solutions Learning Goal Calculate the concentration of a solute in a solution; use concentration as a conversion factor to calculate the amount

More information

Lab 7: Metathesis Reactions. Pre-lab: Pages Post-Lab: Pages 164

Lab 7: Metathesis Reactions. Pre-lab: Pages Post-Lab: Pages 164 Lab 7: Metathesis Reactions Pre-lab: Pages 159-160 Post-Lab: Pages 164 Lab Objectives Careful observation and detailed description of chemical reactions in solution Inferring from observation and from

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Copyright McGraw-Hill Education. Permission required for reproduction or display Percent Composition

Copyright McGraw-Hill Education. Permission required for reproduction or display Percent Composition Chemical Composition 4-1 4.1 Percent Composition composition of a sample. : a method for expressing For any element, E, in a compound, the percent composition by mass is given by the following equation:

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Unit 6: Chemical Quantities. Understanding The Mole

Unit 6: Chemical Quantities. Understanding The Mole Unit 6: Chemical Quantities Understanding The Mole 1 How do We Typically Measure Matter? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters.

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

Summer Review for AP Biology

Summer Review for AP Biology Summer Review for AP Biology These questions are to help you review the knowledge from your previous science classes that you should already know. AP science classes refer to this as previous knowledge

More information

BCH312 [Practical] 1

BCH312 [Practical] 1 BCH312 [Practical] 1 Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment. What is SOLUTIONS? A simple

More information

Solutions. Why does a raw egg swell or shrink when placed in different solutions?

Solutions. Why does a raw egg swell or shrink when placed in different solutions? Solutions 1 Why does a raw egg swell or shrink when placed in different solutions? Classification of Matter 2 Some Definitions 3 If a compound is soluble it is capable of being dissolved. A solution is

More information

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each Name: Score: /100 Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each 1. Which of the following contains the greatest number of moles of O? A) 2.3 mol H 2 O

More information

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

9.1 Water. Chapter 9 Solutions. Water. Water in Foods Chapter 9 s 9.1 Water 9.1 Properties of Water 9.2 s 9.3 Electrolytes and Nonelectrolytes 9.6 Percent Concentration 9.7 Molarity Water is the most common solvent. The water molecule is polar. Hydrogen bonds

More information

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity 93 MOLAR CONCENTRATION - unit: MOLARITY (M): moles of dissolved substance per LITER of solution dissolved substance moles of SOLUTE molarity L SOLUTION If you have 0.250 L (250 ml) of 6.0 M HCl, how many

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Table Of Contents Section.1 Measuring Matter Section.2 Mass and the Mole Section.3 Moles of Compounds Chapter : Section.4 Empirical and Molecular Formulas Section.5 Formulas

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 5 - Formulae, Equations and Amounts of Substance Flashcards What is the symbol for amount of substance? What is the symbol for amount of substance? n What is the unit used

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

Chapter 7 Solutions and Colloids

Chapter 7 Solutions and Colloids Chapter 7 Solutions and Colloids 7.1 Physical States of Solutions Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms, molecules, or ions. Properties

More information

6 atomic # C symbol Carbon name of element atomic mass. o Examples: # 1 mol C = g # 1 mol O = g # 1 mol H = 1.

6 atomic # C symbol Carbon name of element atomic mass. o Examples: # 1 mol C = g # 1 mol O = g # 1 mol H = 1. 7.1 AVOGADRO S NUMBER AND MOLAR CONVERSIONS CHEMISTRY NOTES Identify the mole as the unit used to count particles, whether atoms, ions, or molecules. Use Avogadro s number to convert between amount in

More information

Solutions, mixtures, and media

Solutions, mixtures, and media Chapter2 Solutions, mixtures, and media n Introduction Whether it is an organism or an enzyme, most biological activities function optimally only within a narrow range of environmental conditions. From

More information

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a As you enter... What is the definition and formula for molarity? (hint: check out your brochure) Big Idea:

More information

MgtOp 215 Chapter 3 Dr. Ahn

MgtOp 215 Chapter 3 Dr. Ahn MgtOp 215 Chapter 3 Dr. Ahn Measures of central tendency (center, location): measures the middle point of a distribution or data; these include mean and median. Measures of dispersion (variability, spread):

More information

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water.

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. 16.1 Properties of Solutions 16. Concentrations of Solutions 16. Colligative

More information

If you're given a mass percent, you can use it as a conversion factor between the element and the compound

If you're given a mass percent, you can use it as a conversion factor between the element and the compound Announcements Wednesday, September 23, 2009 MasteringChemistry due dates (all at 11:59 pm): Ch 3: Fri, Sep 25 Exam 1: next Mon, Sep 28. 20-25 multiple choice questions Short answer (naming, chemical equations)

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

SOLVING EMPIRICAL FORMULA PROBLEMS

SOLVING EMPIRICAL FORMULA PROBLEMS SOLVING EMPIRICAL FORMULA PROBLEMS Why do we want to use Empirical Formulas? 1)Substances that do not consist of discrete units, such as in a crystal (ionic solid) of NaCl---we dont want to write Na456Cl910

More information

MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS MEASURES OF CENTRAL TENDENCY. In an experiment, these are applied to the dependent variable (DV)

MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS MEASURES OF CENTRAL TENDENCY. In an experiment, these are applied to the dependent variable (DV) MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS Descriptive statistics Inferential statistics MEASURES OF CENTRAL TENDENCY In an experiment, these are applied to the dependent variable (DV) E.g., MEASURES

More information

REACTANTS - materials that are needed fot a reaction. PRODUCTS - materials that are formed in a reaction

REACTANTS - materials that are needed fot a reaction. PRODUCTS - materials that are formed in a reaction 79 CHEMICAL EQUATIONS - are the "recipes" in chemistry - show the substances going into a reaction, substances coming out of the reaction, and give other information about the process "yields" REACTANTS

More information

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab. 4.2: Concentration Units of Concentration (v/v, w/v, w/w and ppm) These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

More information

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions.

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions. 1 INTRODUCTION TO CONCENTRATION Practice Problems You must know the differences among the following terms to be successful making solutions. Solution: A solution is a homogeneous mixture in which one or

More information

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37 Ch 1-5 to 1-6 Significant Figures pp 22-37 Know how significant digits are found and used in calculations. Ch 1-6 Working With Numbers; Scientific Notation pp 30-32 Know how to use the calculator exponent

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY UNIT 3 IB MATERIAL Name: BONDING, MOLES & STOICHIOMETRY ESSENTIALS: Know, Understand, and Be Able To Apply the mole concept to substances. Determine the number of particles and the amount of substance

More information

Molar Mass to Moles Conversion. A mole is an amount of substance. The term can be used for any substance and 23

Molar Mass to Moles Conversion. A mole is an amount of substance. The term can be used for any substance and 23 Molar Mass to Moles Conversion A mole is an amount of substance. The term can be used for any substance and 23 indicates the presence of 6.02 x 10 particles. (this is known as Avogadro s Number) Particles

More information

Factors that Effect the Rate of Solvation

Factors that Effect the Rate of Solvation Factors that Effect the Rate of Solvation Rate of Solvation there are three ways to increase collisions between the solvent and the solute. agitating the mixture increasing the surface area of the solute

More information

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity:

Announcement: Chemistry 6A F2007. Dr. J.A. Mack 11/9/07. Molarity: The ratio of moles of solvent to liters of solute. Moles/Liters and Molarity: Chemistry 6A F007 Dr. J.A. Mack Announcement: This weeks experiment (Atomic Spectra/Flame Test) is due next week, even though there is no lab scheduled for the next two weeks. Monday s Lab must turn in

More information

X Unit 15 HW Solutions Acids & Bases. Name:

X Unit 15 HW Solutions Acids & Bases. Name: X Unit 15 HW Solutions Acids & Bases Name: Homework #1: Solubility Curve Worksheet Use the solubility chart below to answer the following questions: Graph from U. Va Department of Physics. 1) What is the

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Name Class Date = + 1 S atom 32.1 amu +

Name Class Date = + 1 S atom 32.1 amu + Molar Mass 10. What is the atomic mass of an element? 11. Circle the letter of the phrase that completes this sentence correctly. The atomic masses of all elements a. are the same. b. are based on the

More information

Give 6 different types of solutions, with an example of each.

Give 6 different types of solutions, with an example of each. Warm up (Jan 5) Give 6 different types of solutions, with an example of each. 1 Warm Up (Jan 6) 1. Write the reaction showing the dissolving of the following solids (be sure to note whether they are covalent

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE*

CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE* CHEMISTRY 101 COURSE POLICIES 15 CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE* *Refer to textbook homework assignment and pre-lecture assignment for corresponding chapters to read.

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Lecture Outline 3.1 Chemical Equations The quantitative nature of chemical formulas and reactions is called stoichiometry. Lavoisier

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Stats Review Chapter 3. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 3. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter Revised 8/16 Note: This review is composed of questions similar to those found in the chapter review and/or chapter test. This review is meant to highlight basic concepts from the

More information

5.65 g = kg m = mm 174 ml = L. 711 kg = g 3.79 km = m L = μl g = mg 745 μm = cm 127 μl = ml 302 C = K 185 K = C 100 C = K

5.65 g = kg m = mm 174 ml = L. 711 kg = g 3.79 km = m L = μl g = mg 745 μm = cm 127 μl = ml 302 C = K 185 K = C 100 C = K WLHS / AP Bio / UNIT 1 Chemistry of Life Name AP Biology Summer Assignment Use Campbell CH 2-4 Biology is the study of life and living things. Before we can study and understand many biological principles,

More information

CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE *

CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE * CHEMISTRY 101 COURSE POLICIES 15 CHEMISTRY 101 DETAILED WEEKLY TEXTBOOK HOMEWORK & READING SCHEDULE * * Refer to textbook homework assignment and pre-lecture assignment for corresponding chapters to read.

More information

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol) Avogadro s Number and the Mole Molecular weight: The sum of atomic weights of all atoms in a molecule. Formula weight: The sum of atomic weights of all atoms in one formula unit of any compound. Mole:

More information

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 15 SOLUTIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 15

More information

Describing Distributions With Numbers

Describing Distributions With Numbers Describing Distributions With Numbers October 24, 2012 What Do We Usually Summarize? Measures of Center. Percentiles. Measures of Spread. A Summary Statement. Choosing Numerical Summaries. 1.0 What Do

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

Mole ratio- conversion factor that relates what you have to what you want

Mole ratio- conversion factor that relates what you have to what you want Stoichiometry -Stoichiometry is the branch of science that deals with mass relationships between reactants and products. It uses molar and mass-mole ratios to find amounts. Steps: 1. Write a balanced chemical

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance

INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions. Chemical Reaction Atoms are REARRANGED to form a different substance INTRO AND BACKGROUND: Reactions, Moles, Stoichiometry, and Solutions Chemical Reaction Atoms are REARRANGED to form a different substance Changes the way atoms are joined together Atoms CANNOT be created

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information

CHEMISTRY Matter and Change. Chapter 10: The Mole

CHEMISTRY Matter and Change. Chapter 10: The Mole CHEMISTRY Matter and Change Chapter 10: The Mole CHAPTER 10 Table Of Contents Section 10.1 Measuring Matter Section 10.2 Mass and the Mole Section 10.3 Moles of Compounds Section 10.4 Empirical and Molecular

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information