Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility

Size: px
Start display at page:

Download "Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility"

Transcription

1 SUPPORTING INFORMATION Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility Min-Gu Park a,b, Dong-Hun Lee a, Heechul Jung c, Jeong-Hee Choi d and Cheol-Min Park a a School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea b Battery Research Center, Bexel, 168 Sanho-daero, Gumi, Gyeongbuk 39376, Republic of Korea c Energy Laboratory, Samsung Advanced Institute of Technology, Suwon, Gyeonggi 16678, Republic of Korea d Battery Research Center, Korea Electrotechnology Research Institute, Changwon, Gyeongnam 51543, Republic of Korea * Corresponding authors. * Jeong-Hee Choi. Tel.: ; Fax: dodgers@keri.re.kr * Cheol-Min Park. Tel.: ; Fax: cmpark@kumoh.ac.kr 1

2 1. Intermetallic compounds of Co-Sn Three main intermetallic compounds, Co3Sn2, CoSn, and CoSn2, are shown in the binary Co-Sn phase diagram (Fig. S1). Based on the binary Co-Sn phase diagram, Co3Sn2, CoSn, and CoSn2 were synthesized using a simple solid-state BM process. Figure S1. The Co-Sn binary phase diagram with the three main intermetallic Co3Sn2, CoSn, and CoSn2 compounds. 2

3 2. Cycling behaviors of Sn and Co-Sn intermetallic compound electrodes The Sn and synthesized Co3Sn2, CoSn, and CoSn2 intermetallic compounds were electrochemically tested and the cycling behaviors are compared in Fig. S2, respectively. Although the Sn electrode showed a high first discharge/charge capacity of 864/716 mah g -1, the capacity dramatically decreased after a few cycles. Although the CoSn2 electrode showed the highest reversible capacity, its cycling behavior is poor. Whereas, the CoSn electrode showed better cycling behavior than that of CoSn2 with relatively small reversible capacity. Figure S2. Gravimetric capacity vs. cycle number (cycling rate: 100 ma g -1 ) of the Sn, CoSn2, CoSn, and Co3Sn2 compound electrodes. 3

4 3. Electrochemically driven phase-change mechanism of the CoSn2 electrode To understand the electrochemically driven phase-change mechanism of the CoSn2 electrode, ex situ Co K-edge EXAFS was performed based on the dq/dv plot and the results are shown in Fig. S3a and S3b, respectively. At the fully Li-inserted state (0.0 V), the two main EXAFS peaks (approximately 2.0 and 2.5 Å, Fig. S3b i) of CoSn2 were transformed to the main EXAFS peak (approximately 2.2 Å, Fig. S3b ii) of Co metal. In addition, at the fully Li-extracted state (2.0 V), the main Co EXAFS peak (approximately 2.2 Å) still remained (Fig. S3b iii). The EXAFS results demonstrate that the CoSn2 was converted into Li4.25Sn and Co after full Li insertion. Then, the Li4.25Sn and Co transformed into Sn and Co after full Li extraction. Based on the ex situ Co K-edge EXAFS results, the following electrochemical conversion/non-recombination reaction of the CoSn2 electrode during Li insertion/extraction was demonstrated and shown schematically using the crystallographic phase-change representations in Fig. S3c. Figure S3. Electrochemically driven phase-change mechanism of the CoSn2 electrode during Li insertion/extraction. (a) dq/dv vs. potential (Li + /Li) plots of the CoSn2 electrode during the 1st and 2nd cycles. (b) Co K-edge EXAFS spectra of the CoSn2 electrode during the 1st Li insertion/extraction. (c) Crystallographic conversion/non-recombination mechanism of CoSn2 electrode during Li insertion/extraction. 4

5 4. Cycling behaviors of Co-Sn intermetallics and their nanocomposite electrodes The Sn, CoSn, CoSn2, CoSn/C nanocomposite, and CoSn2/C nanocomposite electrodes were electrochemically tested and the cycling behaviors are compared in Fig. S4, respectively. The cycling behavior of CoSn/C nanocomposite electrode was better than that of CoSn2/C nanocomposite electrode, which was caused by the different electrochemical phase-change mechanism results of CoSn2/C (conversion/partial-recombination reaction) and CoSn/C (conversion/full-recombination reaction) electrodes. The conversion/full-recombination reaction during Li insertion/extraction contributes considerably to good cycling performance (Fig. S4). Figure S4. Gravimetric capacity vs. cycle number (cycling rate: 100 ma g -1 ) of the Sn, CoSn, CoSn2, CoSn/C nanocomposite, and CoSn2/C nanocomposite electrodes. 5

6 5. Cycling behaviors of Co-Sn intermetallics and their nanocomposite electrodes TiC was simply synthesized by the BM process (6 h) using Ti and C powders, which was confirmed by XRD result (Fig. S5a). Additionally, the voltage profile of TiC demonstrates that it did not react with Li (Fig. S5b), which demonstrates that it serves as an inactive matrix within the composite and reduces irreversible capacity originated from BM-treated C. Figure S5. Synthesis and electrochemical performance of TiC. (a) XRD data of the TiC and its standard (JCPDS No ). (b) Voltage profile of the TiC electrode (current rate: 100 ma g -1 ). 6

7 6. Electrochemical performance of the ball-milled carbon (Super P) electrode Fig. S6 shows the electrochemical performance of the ball-milled amorphous-c (Super P) electrode. Fig. S6a shows the voltage profile of the ball-milled amorphous-c electrode at a current density of 100 ma g -1. The ball-milled amorphous-c electrode showed high initial discharge and charge capacities of 916 and 560 mah g -1, respectively, with a Coulombic efficiency of 61.1%. The ball-milled amorphous-c electrode also showed relatively stable capacity retention, corresponding to approximately 81.1% of the initial charge capacity after the 100th cycle (Fig. S6b). Figure S6. Electrochemical performances of BM-treated C (Super P) electrode. (a) Voltage profile at current rate of 100 ma g -1. (b) Cycling behavior at cycling rate of 100 ma g -1. 7

8 7. Voltage profiles at different C rates of the CoSn2/a-TiC/C nanocomposite electrode Fig. S7 shows the voltage profiles at different C-rates of the CoSn2/a-TiC/C nanocomposite electrode. It showed large volumetric capacities at fast C-rates: 1290, 1190, and 1110 mah cm -3 at 1, 2, and 3 C-rates, respectively. The fast C-rate capability was attained by the provision of tiny Li-alloy-able CoSn2 nanocrystallites through the straightforward BM process and repeated conversion/full-recombination reactions during cycling, which results in a shorter Li-ion diffusion path. Figure S7. Voltage profiles at different C-rates of the CoSn2/a-TiC/C nanocomposite electrode (1C-rate: 500 ma g -1 ). 8

9 8. Morphologies for the CoSn/C, CoSn2/C, and CoSn2/a-TiC/C nanocomposites To analyze the morphologies and particle size for the CoSn/C, CoSn2/C, and CoSn2/a-TiC/C nanocomposites, SEM and particle size distribution analyses were performed and the results are shown in Fig. S8a-S8c, respectively. The average particle sizes of the CoSn/C, CoSn2/C, and CoSn2/a-TiC/C nanocomposites were 4.9, 5.0, and 5.7 µm, respectively. The secondary nanocomposite particles were comprised of the various small-sized primary particles agglomerated. Figure S8. SEM and particle size analyses for the various nanocomposites. (a) SEM and particle size distribution result for CoSn/C nanocomposite. (b) SEM and particle size distribution result for CoSn2/C nanocomposite. (c) SEM and particle size distribution result for CoSn2/a- TiC/C nanocomposite. 9

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Layered Sb 2 Te 3 and its nanocomposite: A new

More information

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries Electronic Supplementary Material (ESI for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supplementary Information Effective Strategies for Improving Electrochemical

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201600121 Discovering a Dual-Buffer Effect for Lithium Storage:

More information

R echargeable Li-ion batteries are representative energy storage systems owing to their high operating voltage

R echargeable Li-ion batteries are representative energy storage systems owing to their high operating voltage OPEN SUBJECT AREAS: MATERIALS FOR ENERGY AND CATALYSIS BATTERIES ELECTROCHEMISTRY Received 15 September 2014 Accepted 2 December 2014 Published 22 January 2015 Correspondence and requests for materials

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Porous MoS 2 @C hetero shell with Si yolk structure

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Na3V2(PO4)2F3-SWCNT: A High Voltage Cathode for

More information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion Supporting Information A Scalable Synthesis of Few-layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-performance Li and Na Ion Battery Anodes Seung-Keun Park, a,b Jeongyeon Lee,

More information

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Electronic Supplementary Information. Surfactant-assisted ammonium vanadium oxide as superior cathode for calcium ion batteries

Electronic Supplementary Information. Surfactant-assisted ammonium vanadium oxide as superior cathode for calcium ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Surfactant-assisted ammonium vanadium

More information

Department of Materials Science and Engineering, Research Institute of Advanced

Department of Materials Science and Engineering, Research Institute of Advanced Supporting Information High Energy Organic Cathode for Sodium Rechargeable Batteries Haegyeom Kim 1, Ji Eon Kwon 2, Byungju Lee 1, Jihyun Hong 1, Minah Lee 3, Soo Young Park 2*, and Kisuk Kang 1,4 * 1.

More information

Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries

Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries Supporting Information for Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries De Pham-Cong, Jun Hee Choi,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis and electrochemical properties of spherical and hollow-structured

More information

High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices

High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices Supporting Information for High Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices Chanhoon Kim,#, Bok Yeop Ahn,,#, Teng-Sing Wei, Yejin Jo, Sunho Jeong, Youngmin Choi, Il-Doo Kim*, and

More information

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium-

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Supporting Information Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Cobalt-Oxide Lithium-Ion Battery Xiuwan Li, Zhibo Yang, Yujun Fu, Li Qiao, Dan Li, Hongwei Yue, and Deyan

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Directly anchoring 2D NiCo metal-organic frameworks

More information

Supporting Information

Supporting Information Supporting Information Iron Telluride Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties Jung Sang Cho 1, Seung Yeon Lee 1, Jung-Kul Lee 2,

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries Supporting Information Self-rearrangement of silicon nanoparticles embedded in micron carbon sphere framework for high-energy and long-life lithium-ion batteries Min-Gi Jeong,, Hoang Long Du, Mobinul Islam,,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

SUPPLEMENTARY INFORMATION. Lamuel David, Romil Bhandavat and Gurpreet Singh*

SUPPLEMENTARY INFORMATION. Lamuel David, Romil Bhandavat and Gurpreet Singh* SUPPLEMENTARY INFORMATION MoS 2 /graphene Composite Paper For Sodium-Ion Battery Electrodes Lamuel David, Romil Bhandavat and Gurpreet Singh* Mechanical and Nuclear Engineering Department, Kansas State

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) LiTi 2 (PO 4 ) 3 /reduced graphene oxide nanocomposite

More information

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer Electronic Supplementary information High-Performance Si Anodes with Highly Conductive and Thermally Stable Titanium Silicide Coating Layer kji Park, Jung-In Lee, Myung-Jin Chun, Jin-Tak Yeon, Seungmin

More information

Preparation and characterization of Li 4 Ti 5 O 12 synthesized using hydrogen titanate nanowire for hybrid super capacitor

Preparation and characterization of Li 4 Ti 5 O 12 synthesized using hydrogen titanate nanowire for hybrid super capacitor Journal of Advanced Ceramics 2013, 2(3): 285 290 ISSN 2226-4108 DOI: 10.1007/s40145-013-0073-x CN 10-1154/TQ Research Article Preparation and characterization of Li 4 Ti 5 O 12 synthesized using hydrogen

More information

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries ARTICLE NUMBER: 16113 DOI: 10.1038/NENERGY.2016.113 Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries Minseong Ko, Sujong Chae, Jiyoung Ma, Namhyung Kim, Hyun-Wook

More information

Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter

Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter Electronic Supplementary information Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter Hee Sung Lee, a Kwang H. Lee, a Chan Ho Park, b Pyo Jin

More information

Lithography-Free Broadband Ultrathin Film. Photovoltaics

Lithography-Free Broadband Ultrathin Film. Photovoltaics Supporting Information Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi 1, Gumin Kang 1, Dongheok Shin 1, Nilesh Barange 2, Chang-Won

More information

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Rational design of oxide/carbon composite

More information

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Supporting Information to Silicon/Carbon Nanotube/BaTiO 3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential Byoung-Sun Lee a, Jihyun Yoon b, Changhoon

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI

More information

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight poly(vinyl alcohol) (MMW-PVA) (b) and low-molecular-weight poly(vinyl

More information

Supporting Information. One-step Synthesis of Sulphur-impregnated Graphene Cathode for Lithium-Sulphur Batteries. Seongnam , Republic of Korea.

Supporting Information. One-step Synthesis of Sulphur-impregnated Graphene Cathode for Lithium-Sulphur Batteries. Seongnam , Republic of Korea. Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics Supporting Information One-step Synthesis of Sulphur-impregnated Graphene Cathode for Lithium-Sulphur Batteries Min-Sik Parka,

More information

[Supporting information]

[Supporting information] [Supporting information] Proof of ionic transport in interparticles of LiMPO 4 electrodes Kyu T. Lee, Wang H. Kan, Linda F. Nazar *. University of Waterloo, Department of Chemistry, Waterloo, Ontario,

More information

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Supporting Information Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Ji Yong Lee, a Jieun Lee, a Yu Jin Jang, a Juyon

More information

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Supporting Information High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Alloy Anode in Noncorrosive Electrolyte Yi-Hong Tan,, Wei-Tang Yao,*, Tianwen Zhang, Tao Ma, Lei-Lei Lu, Fei Zhou,

More information

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes Int. J. Electrochem. Sci., 1(2006)110-121 www.electrochemsci.org A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes J. Hassoun, S. Panero, P. Reale and B. Scrosati Department

More information

Supporting Information. Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas. Phase with a Solid Membrane Cell

Supporting Information. Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas. Phase with a Solid Membrane Cell Supporting Information Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas Phase with a Solid Membrane Cell Sung Ki Cho 1, Fu-Ren F. Fan, and Allen J. Bard * Center for Electrochemistry,

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells Electronic Supplementary Information for One-Pot Synthesis of Core-Shell-like 3 Co Nanoparticle Electrocatalyst with -enriched Surface for Oxygen Reduction Reaction in Fuel Cells Ji-Hoon Jang b, Juyeong

More information

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Super Flexible, High-efficiency Perovskite

More information

PEER REVIEW FILE. Reviewers' Comments: Reviewer #2 (Remarks to the Author):

PEER REVIEW FILE. Reviewers' Comments: Reviewer #2 (Remarks to the Author): PEER REVIEW FILE Reviewers' Comments: Reviewer #2 (Remarks to the Author): Odziomek et al. reported a method for preparing hierarchically-structured LTO-type nanosized spinel through scalable and facile

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Topotactically synthesized TiO 2 nanowires as promising anode materials for high-performance lithium-ion batteries

Topotactically synthesized TiO 2 nanowires as promising anode materials for high-performance lithium-ion batteries Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 2562 2566 The 6 th International Conference on Applied Energy ICAE2014 Topotactically synthesized TiO 2 nanowires as promising

More information

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information: High Tap Density Secondary Silicon

More information

PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES

PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES J. H. Hwang 1, D. Cho 1 *, L. T. Drzal

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Saltwater as the energy source for low-cost, safe rechargeable. batteries

Saltwater as the energy source for low-cost, safe rechargeable. batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Saltwater as the energy source for

More information

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study Supplementary Information Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study A. Rajkamal, 1,# E. Mathan Kumar, 2,# V. Kathirvel 1, Noejung Park**, 3 and Ranjit Thapa*

More information

A Highly Reversible Lithium Metal Anode

A Highly Reversible Lithium Metal Anode SUPPLEMENTARY INFORMATION A Highly Reversible Lithium Metal Anode Min Sik Park 1,,*, Sang Bok Ma 1,, Dong Joon Lee 1, Dongmin Im 1,*, Seok-Gwang Doo 1, Osamu Yamamoto 2 1 Energy Lab., Samsung Advanced

More information

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb 2 S 3 on Sulfur-Doped Graphene Sheets Xunhui Xiong, Guanhua Wang, Yuwei Lin, Ying Wang, Xing Ou, Fenghua Zheng, Chenghao Yang,*,a

More information

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi

More information

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped

More information

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long- Cycle and High-Rate Lithium Ion Batteries

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long- Cycle and High-Rate Lithium Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Phenyl-Rich Silicone Oil as a Precursor for SiOC

More information

Electrochemical Properties of Hollow, Spherical Li 2 O-SnO 2 -Cu- C Nanocomposite Powders Prepared by Spray Pyrolysis

Electrochemical Properties of Hollow, Spherical Li 2 O-SnO 2 -Cu- C Nanocomposite Powders Prepared by Spray Pyrolysis Int. J. Electrochem. Sci., 8 (2013) 6807-6817 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Electrochemical Properties of Hollow, Spherical Li 2 O-SnO 2 -Cu- C Nanocomposite Powders

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Title: A sulfonated polyaniline with high density and high rate Na-storage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 16066 DOI: 10.1038/NENERGY.2016.66 Rational design of redox mediators for advanced Li-O 2 batteries Hee-Dae Lim, 1, Byungju Lee, 1, Yongping Zheng, 2 Jihyun Hong, 1 Jinsoo Kim, 1 Hyeokjo

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES 1 Electrodes & Jelly roll 2 3 Types of Lithium ion batteries 원형, 원통형, cylindrical 각형, prismatic 폴리머, polymer (pouch type) 4 Materials composing electrodes 5 6 Terminology-1

More information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Supplementary Information Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Sang Jun Kim, a Yeob Lee, a Dong Ki Lee, a Jung Woo Lee a and Jeung Ku Kang* a,b

More information

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Dimensional Black TiO 2-x Nanoflakes for High-Performance Rechargeable Magnesium Batteries Authors: Yanrong Wang,

More information

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Supporting information High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Kent J. Griffith, Alexander C. Forse, John M. Griffin, Clare P. Grey Department of Chemistry, University

More information

>1000-Fold Lifetime Extension of Nickel Electromechanical Contact Device via Graphene

>1000-Fold Lifetime Extension of Nickel Electromechanical Contact Device via Graphene Supporting Information >1000-Fold Lifetime Extension of Nickel Electromechanical Contact Device via Graphene Min-Ho Seo, Jae-Hyeon Ko, Jeong Oen Lee,, Seung-Deok Ko,, Jeong Hun Mun, Byung Jin Cho, Yong-Hyun

More information

A new, high performance CuO/LiNi 0.5 Mn 1.5 O 4 lithium-ion battery

A new, high performance CuO/LiNi 0.5 Mn 1.5 O 4 lithium-ion battery A new, high performance /LiNi 0.5 Mn 1.5 O 4 lithium-ion battery Roberta Verrelli and Jusef Hassoun Department of Chemistry, University Sapienza of Rome, Italy Attila Farkas, Timo Jacob and Bruno Scrosati

More information

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Byungwoo Park Department of Materials Science and Engineering http://ep.snu.ac.kr 1 Nanoscale Control for

More information

Planar Supercapacitors with Buckled Carbon Nanotube. /Mn-Mo Mixed Oxide Electrodes and Air-Stable Organic Electrolyte

Planar Supercapacitors with Buckled Carbon Nanotube. /Mn-Mo Mixed Oxide Electrodes and Air-Stable Organic Electrolyte [ Supporting Information ] Skin-Like, Dynamically Stretchale, Planar Supercapacitors with Buckled Caron Nanotue /Mn-Mo Mixed Oxide Electrodes and Air-Stale Organic Electrolyte Geumee Lee, Jung Wook Kim,

More information

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel Mol. Cryst. Liq. Cryst., Vol. 531: pp. 73=[373] 81=[381], 2010 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421406.2010.499331 Improvement of MgO Characteristics

More information

Lithium Alloying Potentials of Silicon as Anode of Lithium Secondary Batteries

Lithium Alloying Potentials of Silicon as Anode of Lithium Secondary Batteries Asian Journal of Chemistry; Vol. 25, No. 10 (2013), 57395743 http://dx.doi.org/10.14233/ajchem.2013.oh78 Lithium Alloying Potentials of Silicon as Anode of Lithium Secondary Batteries CHILHOON DOH 1,*,

More information

Biologically Inspired Organic Light-Emitting Diodes

Biologically Inspired Organic Light-Emitting Diodes Supporting Information Biologically Inspired Organic Light-Emitting Diodes Jae-Jun Kim,, Jaeho Lee, Sung-Pyo Yang, Ha Gon Kim, Hee-Seok Kweon ǁ, Seunghyup Yoo, and Ki-Hun Jeong*, Department of Bio and

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Supporting Information Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Wei Tian a, Han Hu b, Yixian Wang a, Peng Li c, Jingyan

More information

Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries

Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries A1452 0013-4651/2005/152 7 /A1452/6/$7.00 The Electrochemical Society, Inc. Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries Yoon Seok Jung, a Kyu T. Lee, a Ji Heon Ryu, a Dongmin Im,

More information

Supplementary Information for. Red Phosphorus as High-Performance Anode Materials for Naion. Batteries

Supplementary Information for. Red Phosphorus as High-Performance Anode Materials for Naion. Batteries Supplementary Information for Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Naion Batteries Marc Walter, 1, 2 Rolf Erni, 3 and Maksym

More information

Supplementary Materials for. Incommensurate Graphene Foam as a High Capacity Lithium. Intercalation Anode

Supplementary Materials for. Incommensurate Graphene Foam as a High Capacity Lithium. Intercalation Anode Supplementary Materials for Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode Tereza M. Paronyan* 1, Arjun Kumar Thapa 2, Andriy Sherehiy 3, Jacek B. Jasinski 2, John Samuel Dilip

More information

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries 2162 Bull. Korean Chem. Soc. 2013, Vol. 34, No. 7 Jaepyeong Jung et al. http://dx.doi.org/10.5012/bkcs.2013.34.7.2162 The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium

More information

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Three-Dimensional Carbon Foam/N-doped

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supporting Information

Supporting Information Supporting Information MoS 2 Nanosheets Vertically Grown on Graphene Sheets for Lithium Ion Battery Anodes Yongqiang Teng 1, Hailei Zhao 1, 2,*, Zijia Zhang 1, Zhaolin Li 1, Qing Xia 1, Yang Zhang 1, Lina

More information

Low Power Phase Change Memory via Block Copolymer Self-assembly Technology

Low Power Phase Change Memory via Block Copolymer Self-assembly Technology Low Power Phase Change Memory via Block Copolymer Self-assembly Technology Beom Ho Mun 1, Woon Ik Park 1, You Yin 2, Byoung Kuk You 1, Jae Jin Yun 1, Kung Ho Kim 1, Yeon Sik Jung 1*, and Keon Jae Lee 1*

More information

Supporting Information of

Supporting Information of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information of Synthesis of Hard Carbons from Argan Shell for

More information

Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications

Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for Fabrication of a One-dimensional

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Mg, Zn) as High Voltage Layered Cathodes for

Mg, Zn) as High Voltage Layered Cathodes for Supporting Information for Honeycomb-Ordered Na 3 Ni 1.5 M 0.5 BiO 6 (M = Ni, Cu, Mg, Zn) as High Voltage Layered Cathodes for Sodium-Ion Batteries Peng-Fei Wang, a,d, Yu-Jie Guo, a,d, Hui Duan, a,d Tong-Tong

More information

Effect of Capping Agents in Tin Nanoparticles on Electrochemical Cycling

Effect of Capping Agents in Tin Nanoparticles on Electrochemical Cycling A34 1099-0062/2005/9 1 /A34/5/$15.00 The Electrochemical Society, Inc. Effect of Capping Agents in Tin Nanoparticles on Electrochemical Cycling Yoojung Kwon, a Min Gyu Kim, b Yoojin Kim, a,b Youngil Lee,

More information

Self-assembled and intercalated film of reduced. graphene oxide for a novel vacuum pressure sensor

Self-assembled and intercalated film of reduced. graphene oxide for a novel vacuum pressure sensor Supplementary Information for Self-assembled and intercalated film of reduced graphene oxide for a novel vacuum pressure sensor Sung Il Ahn *, Jura Jung, Yongwoo Kim, Yujin Lee, Kukjoo Kim, Seong Eui Lee

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Electronic Supplementary Information. N-doped Graphitic Self-Encapsulation for High. Performance Silicon Anodes in Lithium-Ion Batteries

Electronic Supplementary Information. N-doped Graphitic Self-Encapsulation for High. Performance Silicon Anodes in Lithium-Ion Batteries Electronic Supplementary Information N-doped Graphitic Self-Encapsulation for High Performance Silicon Anodes in Lithium-Ion Batteries Won Jun Lee, ab Tae Hoon Hwang, c Jin Ok Hwang, ab Hyun Wook Kim,

More information

Development of graphene composite materials for lithium ion batteries

Development of graphene composite materials for lithium ion batteries University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2013 Development of graphene composite materials for lithium ion batteries

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Supporting Information:

Supporting Information: Supporting Information: High Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots Sensitized TiO 2 Nanotube Arrays Meidan Ye, Jiaojiao Gong, Yuekun Lai, Changjian Lin,*,

More information

for Magnesium-Ion Batteries

for Magnesium-Ion Batteries [Supporting Information] Cointercalation of Mg 2+ Ions into Graphite for Magnesium-Ion Batteries Dong Min Kim, Sung Chul Jung, Seongmin Ha, Youngjin Kim, Yuwon Park, Ji Heon Ryu ǂ, Young Kyu Han*,, Kyu

More information

Intermetallic Insertion Anodes for Lithium Batteries

Intermetallic Insertion Anodes for Lithium Batteries Intermetallic Insertion Anodes for Lithium Batteries by M. M. Thackeray, J. T. Vaughey, C. S. Johnson Chemical Technology Division, Electrochemical Technology Program Argonne National Laboratory Argonne,

More information

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Electronic Supplementary Information Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Yi-Chun Lu, a Betar M. Gallant, b David G. Kwabi, b Jonathon R. Harding, c Robert

More information

Supporting Information

Supporting Information Supporting Information Dynamic Crosslinking of Polymeric Binders Based on Host- Guest Interactions for Silicon Anodes in Lithium Ion Batteries Tae-woo Kwon,, You Kyeong Jeong,, Erhan Deniz, Siham Y. AlQaradawi,

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information