A Simple Measurement Technique of the Equilibrium. Equivalent Thoron Concentration with a CR-39 Detector

Size: px
Start display at page:

Download "A Simple Measurement Technique of the Equilibrium. Equivalent Thoron Concentration with a CR-39 Detector"

Transcription

1 Jpn. J. Health Phys., 37 (1), (2002) Technical Paper A Simple Measurement Technique of the Equilibrium Equivalent Thoron Concentration with a CR-39 Detector Shinji TOKONAMI*1, Quanfu SUN*1, Hidenori YONEHARA*1 and Yuji YAMADA*1 (Received on July 25, 2001) (Accepted on December 28, 2001) A simple alpha-track measurement technique for the equilibrium equivalent thoron concentration (hereafter called EETC) using a CR-39 detector was discussed. Detection properties of the CR-39 detector were examined with regard to detection efficiencies for incident energy and angles, respectively. Since more than 90% of the EETC is dominated by the 212Pb concentration, its practical evaluation can be achieved even though the 212Bi concentration is ignored. In this technique, the CR-39 detector is directly placed on a filter after an air sample is taken and an adequate time elapses (radon progeny completely decay). In order to confirm the reliability of measured values, the technique was compared with an alpha spectroscopic method. There was a relatively good agreement between the two. KEY WORDS: equilibrium equivalent thoron concentration, solid-state nuclear track detector, CR-39 detector, alpha track, 212Pb concentration, air sampling I INTRODUCTION Although a lot of studies on radon were conducted all over the world, there are a few studies on thoron. It is considered that doses from thoron progeny are generally smaller than those from radon progeny in the natural environment. Since recent studies have shown that high thoron concentrations were observed in some areas though specifically, however, the dose from thoron progeny is significant in such areas'-4. According to some recent study5, occupational exposure to thoron progeny became significant and the protection against thoron progeny inhalation should be considered in the near future. In the case of radon exposure, the dose can be estimated by the radon concentration under several assumptions. The equilibrium equivalent radon concentration (hereafter called EERC) can be obtained by the product of the radon concentration and equilibrium factor. On the other hand, it is impossible to follow the same *1 Radon Research Group, Research Center for Radiation Safety, National Institute of Radiological Sciences; Anagawa, Inage-ku, Chiba , Japan. procedure as the case of thoron exposure. Since the thoron concentration observed is exponentially decreased with a distance from the source for its short half-life (55. 6s)6), use of the thoron concentration will be meaningless unless the position of measurement is known. Therefore, the equilibrium equivalent thoron concentration (hereafter called EETC) should be directly measured from the viewpoint of the dose assessment. A simple measurement technique for determining thoron progeny concentrations is proposed in the present study though several techniques have been reported'-9. II MATERIALS AND METHODS In order to easily measure the EETC any, the followings should be taken into account: 1. Sampling and measurement are completely separated. 2. Structure of the measuring system and its procedure are simple. 3. There is no limitation on electric condition when taking air samples and making measurements. In order to satisfy the above three conditions, a solid-state nuclear alpha track detector (SSNATD) is used as the

2 60 S. TOKONAMI, Q. SUN, H. YONEHARA and Y. YAMADA Fig. 1 Experimental procedure for alpha-track registration in the proposed measurement technique. detector. CR-39 detector is the most stable and reliable among SSNATDs. The CR-39 detectors named "BAR- YOTRAK#" are commercially available in Japan. When air samples are taken with a DC driving pump, a glass microfiber filter (Whatman GF/F*) is used as the collecting medium. In order to determine thoron progeny concentrations, the information on thoron progeny has to be distinguished from that on radon progeny. Therefore, the filter is left until radon progeny completely decay (more than 6 h). An Al foil with the thickness of 15,um (4. 0 mg cm-2) is then placed on the filter so as to reduce alpha particle energy emitted from 212Po for effective detection. The reason why the energy absorber has to be used is mentioned later. By placing a CR-39 detector directly on the filter covered with the Al foil, subsequently, registration of alpha tracks is made on the CR-39 detector. Fig. 1 illustrates the experimental procedure for alpha-track registration in the present study. Following the manner of etching and reading on the SSNATD, the thoron progeny concentration is eventually determined. III RESULTS AND DISCUSSION 1. Characteristics of CR-39 detector The alpha particle energy dependence of the CR-39 detector was first investigated. An alpha standard source of 241Am was used for evaluating the energy dependence in the range below 5. 5 MeV. As for the range above 5. 5 MeV, a filter radon or thoron progeny were collected was used. The CR-39 detector was irradiated with alpha particles emitted from 214Po (7. 7 MeV) for radon # Fukuvi Chemical Industry Co., Ltd., Fukui, Japan. *Whatman International Ltd., Maidstone, England. Fig. 2 Incident alpha particle energy dependence of progeny, 212Bi (6. 0 MeV) and 212Po (8. 8 MeV) for thoron progeny. When 7. 7 MeV alpha particles are exposed to the detector, a filter is left for about 30 min after sampling until 6. 0 MeV alpha particles emitted from 218Po completely vanish. In order to obtain alpha particles emitted from thoron progeny, a filter is left for around 6 h after sampling until radon progeny completely decay as mentioned above. Although a single energy particle emission is desirable for precise evaluation on energy dependence, it is impossible to separate two alpha particles from 212Bi and 212Po. In the experimental work, therefore, simultaneous exposure of two different alpha particles was used. When evaluating detection efficiencies of alpha particles emitted from these progeny, a part of the filter was used for alpha registration with the CR-39 detector after air samples were taken. The rest was used for the alpha spectroscopic10 measurement so as to obtain an original alpha emission rate. All the detectors exposed were chemically etched for 24 h in a 6 M NaOH solution at 60C. the CR-39 detector. Fig. 2 illustrates the incident alpha particle energy dependence of the CR-39 detector. The minimum detectable energy was estimated to be 0. 6 MeV and the detectable region ranged up to 5. 5 MeV with the 241Am source. Since alpha particles emitted from 214Po were detected, detection of 6. 0 MeV particles could be estimated. When two kinds of alpha particles from thoron progeny were exposed to the CR-39 detector, on the other hand, track density obtained was lower than expected. Reanalyzing the number of alpha tracks and the alpha emission rate, it was reasonable that alpha particles from 212Bi were detected but those from 212Po were not. Based on these energy dependence results, the incident angle dependence corresponding to alpha particle energy

3 A Measurement Technique of the Equilibrium Equivalent Thoron Concentration 61 Fig. 3 Incident angle dependence of the CR-39 detector at the alpha particle energy of 5. 5 MeV. Fig. 5 Pulse height distribution of alpha particles emitted from thoron progeny under the same geometric arrangement as shown in Fig. 1. inserting an Al foil between the two. To be highly sensitive, detection of alpha particles from both 212Bi and 212Po are desirable. Since 8. 8 MeV alpha particles emitted from 212Po cannot be detected as aforementioned, however, a sheet of 15,um thickness Al foil was inserted between the CR-39 detector and fiberglass filter. Fig. 5 illustrates the pulse height distribution of alpha particles emitted from thoron progeny under the same geometric arrangement as shown in Fig. 1. Since the mean energies of 212Bi and 212Po were estimated to be 3. 2 MeV and 6. 8 MeV, respectively, both alpha particles could be detected with the Fig. 4 Relationship between the incident alpha particle energy and the critical angle. was also investigated. Fig. 3 exemplifies the incident angle dependence when the incident energy is 5. 5 MeV. The critical angle is defined as the angle the detection efficiency is 50%. From Fig. 3, the critical angle corresponding to 5. 5 MeV was estimated to be 54%. After following the same procedure on different incident energies, the relationship between the incident energy and the critical angle was obtained as shown in Fig. 4. Those critical angles were distributed from 40% to 65% in the range of 2. 0 to 7. 7 MeV. Consequently the higher the incident energy, the smaller the critical angle as shown in another paper Determination of the EETC 212Pb is the main measuring subject in the measurement system. The reason can be explained as follows: 212Pb can be easily separated from mixed radon progeny because of its long half-life. Since more than 90% of the EETC depends on the 212Pb concentration, the EETC will not be overestimated even if the 212Bi concentration is roughly assumed. As the standard alpha-track registration, after air sample is taken on a glass microfiber filter and 6 h elapse, a CR-39 detector, is directly placed for 24 h after present technique. The geometric detection efficiency is given by the following equation: fi: geometric detection efficiency; O: critical angle. The detection efficiencies of 212Bi and 212Po were derived from the relationship between the incident angle and critical angle in Fig. 4. These detection efficiencies were estimated to be 28. 9% and 17. 2%, respectively, The number of alpha tracks registered results from 212Pb decay. With a unit concentration and unit flow rate, the number of alpha disintegrations of 212Pb decay registered after sampling is stopped (IbC[Bqs])) can be given by eqn (2): IbC21e-AbTw(1e-AbTS)(1-e-AbTm) C 21ae-AcTw(1e-AcTs)(1-e-AcTm) TS: sampling period [s]; Tw: elapsed time after sampling [s]; Tm: measurement period [s]; 2b, AC: decay constants of 212Pb and 212Bi, respectively. (2)

4 62 S. TOKONAMI, Q. SUN, H. YONEHARA and Y. YAMADA Using the above values and timetable, the relationship between 212Pb concentration and alpha track density can be expressed as the following equation: (N-Nbg)A-IbcXXPb212XvXBi-212X IbcXXPb212XVXl7Po-212X (3) N: alpha-track density [mm 2]; Nbg: background alpha-track density [mm-2]; A: effective area of filter [mm2]; XPb212: 212Pb concentration [Bqm-3]; v: flow rate [m3 s-1]; nbi-212, 7Po212: detection efficiency for 212Bi and 212Po alpha particles, respectively. Assuming that these detection efficiencies are equal to geometric detection efficiencies aforementioned with given values, eqn (3) can be rewritten as follows: XPb212-Tvfl)1Za (4) The detection limit of the 212Pb concentration with the proposed technique was evaluated with Currie's formula12. For instance, when the sampling period is 8 h with the flow rate of 1. 0 L min-1, the elapsed time after sampling is 6 h, the measurement period is 24 h and the background track density is mm-2, the lowest detectable concentration was estimated to be Bq m-3. Since more than 90% of the EETC depends on the 212Pb concentration, the EETC can be approximately estimated from 212Pb concentration as below. Even though the concentration ratio of 212Pb to 212Bi changes from 1: 0 to 1:1, the EETC will scarcely change. Since it is reasonable that 212Pb: 212Bi=1: 0. 5, the EETC can be determined with the following equation: EETC=0.957Xpb212 (5) In order to verify the validity of the proposed measurement technique, this method was compared with the alpha spectroscopic method. Fig. 6 shows the comparison between the proposed technique and alpha spectroscopic Fig. 6 Comparison of the EETC with between the proposed technique and the alpha spectroscopy. method. Since there is a relatively good agreement between the two, this technique is applicable to the practical EETC determination Iv CONCLUSION at field measurements. For the purpose of the practical EETC determination, a simply measurement technique with a CR-39 detector was discussed. The technique can provide unlimited use any as long as air sampling is carried out with a DC driving pump. Although the measurement of thoron concentrations is useful for screening of high thoron exposure, thoron progeny concentrations have to be determined in any case for dose assessment. Such data are of great interest all over the world, this simple technique will facilitate their data accumulation. The authors are grateful to Ryuhei Kurosawa (Professor Emeritus at Waseda University) for his useful suggestions throughout the present work. REFERENCES 1) M. Doi and S. KOBAYASHI; Characterization of Japanese wooden houses with enhanced radon and thoron concentrations, Health Phys., 66, (1994). 2) J. MA, H. YONEHARA, T. AOYAMA, M. DOI, S. KOBAYASHI and M. SAKANOUE; Influence of air flow on the behavior of thoron and its progeny in a traditional Japanese house, Health Phys., 72, (1997). 3) W. CHUNG, S. TOKONAMI and M. FURUKAWA; Preliminary survey on radon and thoron concentrations in Korea, Radiat. Prot. Dosim., 80, (1998). 4) L. F. TOUSSAINT, S. TOKONAMI, M. DOI, S. B. SOLOMON and JR. PEGGIE; The measurement of thoron concentrations in Australia using the Japanese passive R-T dosimeter, In Proc. of the 7th Tohwa University International Symposium (ed. by A. KATASE and M. SHIMO), pp (1998), World Scientific, Singapore. 5) A. REICHELT, K.-H. LEHMANN, W. HAUK and FL. LEHR; Unrestricted release of a thorium-contaminated building, In Proc. of the 10th International Congress of the International Radiation Protection Association, May , Hiroshima, Japan (2000). 6) M. DOI, K. FUJIMOTO, S. KOBAYASHI and H. YONEHARA; Spatial distribution of thoron and radon concentrations in the indoor air of a traditional Japanese wooden house, Health Phys., 66, (1994). 7) T. YAMASAKI and T. IIDA; Measurements of thoron progeny concentration using a potential alpha-energy monitor in Japan, Health Phys., 68, (1995). 8) W. ZHUO and T. IIDA; An instrument for measuring

5 A Measurement Technique of the Equilibrium Equivalent Thoron Concentration 63 equilibrium equivalent concentrations of az2rn and 220Rn with etched track detectors, Health Phys., 77, (1999). 9) W. ZHUO and T. IIDA; Estimation of thoron progeny concentrations in dwellings with their deposition rate measurements, J. Health Phys., 35, (2000). 10) D. E. MARTZ, D. F. HOLLEMAN, D. E. McCURDY and K. J. SCHAGER; Analysis of atmospheric concentrations of RaA, RaB and RaC by alpha spectroscopy, Health Phys., 17, (1969). 11) R. BARILLON, M. FROMM and A. CHAMBAUDET; Variation of the critical registration angle of alpha particles in CR-39: Implication for radon dosimetry, Radiat. Meas., 25, (1995). 12) L. A. CURRIE; Limits for qualitative detection and quantitative determination, Analyst. Chem., 40, (1968). Shinji TOKONAMI Senior Researcher at National Institute of Radiological Sciences. Speciality; 1) environmental monitoring on radon and its progeny. 2) Relevant environmental dosimetry. Doctor's degree in applied physics from the Waseda University.

Measurements of Thoron Concentration by Passive Cup Method and Its Application to Dose Assessment

Measurements of Thoron Concentration by Passive Cup Method and Its Application to Dose Assessment Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[8], pp. 794-803 (August 1995). Measurements of Thoron Concentration by Passive Cup Method and Its Application to Dose Assessment Qiuju GUO õ, Takao IIDA, Katsumi

More information

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

RADON EQUILIBRIUM MEASUREMENT IN THE AIR * RADON EQUILIBRIUM MEASUREMENT IN THE AIR * SOFIJA FORKAPIĆ, DUŠAN MRĐA, MIROSLAV VESKOVIĆ, NATAŠA TODOROVIĆ, KRISTINA BIKIT, JOVANA NIKOLOV, JAN HANSMAN University of Novi Sad, Faculty of Sciences, Department

More information

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell NUKLEONIKA 2007;52(4):167 171 ORIGINAL PAPER Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell Bronisław Machaj, Piotr Urbański, Jakub Bartak Abstract.

More information

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS Monte Carlo Simulation Code T. Nishikawa, Y. Tamagawa and M. Miyajima Faculty of Engineering, Fukui University, Bunkyo,

More information

Committed Effective Dose from Thoron Daughters Inhalation

Committed Effective Dose from Thoron Daughters Inhalation Committed Effective Dose from Thoron Daughters Inhalation M.P. Campos and B.R.S. Pecequilo Instituto de Pesquisas Energéticas e Nucleares - Departamento de Radioproteção Ambiental Travessa R, 400 Cidade

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

EXPERIMENTAL TECHNIQUE TO MEASURE THORON GENERATION RATE OF BUILDING MATERIAL SAMPLES USING RAD7 DETECTOR

EXPERIMENTAL TECHNIQUE TO MEASURE THORON GENERATION RATE OF BUILDING MATERIAL SAMPLES USING RAD7 DETECTOR Published in: Radiation Measurements 59 (2013) 201 204. DOI: http://dx.doi.org/10.1016/j.radmeas.2013.07.003 EXPERIMENTAL TECHNIQUE TO MEASURE THORON GENERATION RATE OF BUILDING MATERIAL SAMPLES USING

More information

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece Radon in the Living Environment, 39 MEASUREMENTS OF DEPOSITION VELOCITY OF RADON DECAY PRODUCTS FOR EXAMINATION OF THE CORRELATION BETWEEN AIR ACTIVITY CONCENTRATION OF RADON AND THE ACCUMULATED Po-0 SURFACE

More information

M. Rogozina, M. Zhukovsky, A. Ekidin, M. Vasyanovich. Institute of Industrial Ecology, Ural Branch Russian Academy of Sciences

M. Rogozina, M. Zhukovsky, A. Ekidin, M. Vasyanovich. Institute of Industrial Ecology, Ural Branch Russian Academy of Sciences THORON PROGENY SIZE DISTRIBUTION IN MONAZITE STORAGE FACILITY M. Rogozina, M. Zhukovsky, A. Ekidin, M. Vasyanovich Institute of Industrial Ecology, Ural Branch Russian Academy of Sciences Thoron ( 220

More information

INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS *

INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS * Romanian Reports in Physics, Vol. 63, No. 2, P. 376 382, 11 INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS * ELENA ROBU 1, FRANZ JOSEF MARINGER 2, MASSIMO GARAVALIA 3, LUCA

More information

ALPHA AND GAMMA SPECTROSCOPY METHODS FOR THORON PROGENY IMPLANTED IN GLASSES AND OTHER MATERIALS

ALPHA AND GAMMA SPECTROSCOPY METHODS FOR THORON PROGENY IMPLANTED IN GLASSES AND OTHER MATERIALS ALPHA AND GAMMA SPECTROSCOPY METHODS FOR THORON PROGENY IMPLANTED IN GLASSES AND OTHER MATERIALS C. Cosma 1 and I. Chereji 2 1 University of Babes-Bolyai, Faculty of Physics, 3400-Cluj-Napoca, Romania

More information

Measurement of indoor radon, thoron and annual effective doses in the some dwellings of Jaipur city, Rajasthan, India

Measurement of indoor radon, thoron and annual effective doses in the some dwellings of Jaipur city, Rajasthan, India ISSN: 2347-3215 Volume 2 Number 8 (August-2014) pp. 112-117 www.ijcrar.com Measurement of indoor radon, thoron and annual effective doses in the some dwellings of Jaipur city, Rajasthan, India Jyoti Sharma

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site

Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site Shafik S. Shafik 1, Aamir A. Mohammed 2 1, 2 Department of Physics, College of Science,

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: , ISSN(Online): Vol.9, No.9, pp , 2016

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: , ISSN(Online): Vol.9, No.9, pp , 2016 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304, ISSN(Online): 2455-9563 Vol.9, No.9, pp 231-235, 2016 Measurement of radon concentration in some of cosmetics by using

More information

Radon Determination by Activated Charcoal Adsorption and Liquid Scintillation Measurement. Canoba, A.C.; López, F.O. and Oliveira, A.A.

Radon Determination by Activated Charcoal Adsorption and Liquid Scintillation Measurement. Canoba, A.C.; López, F.O. and Oliveira, A.A. Radon Determination by Activated Charcoal Adsorption and Liquid Scintillation Measurement Canoba, A.C.; López, F.O. and Oliveira, A.A. Publicado en: Journal of Radioanalytical and Nuclear Chemistry, vol.

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

Research Article Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods

Research Article Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods The Scientific World Journal Volume 2013, Article ID 269168, 6 pages http://dx.doi.org/10.1155/2013/269168 Research Article Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods

More information

Am-241 as a Metabolic Tracer for Inhaled Pu Nitrate in External Chest Counting

Am-241 as a Metabolic Tracer for Inhaled Pu Nitrate in External Chest Counting Am-24 as a Metabolic Tracer for Inhaled Pu Nitrate in External Chest Counting Nobuhito ISHIGURE, Takashi NAKANO, Hiroko ENOMOTO, Akira KOIZUMI, Harozo IIDA, Kumiko FUKUTSU, Yumi ABE 2, Yuji YAMADA, Katsuhiro

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

A COMPUTER PROGRAM FOR THE DECONVOLUTION OF THERMOLUMINESCENCE GLOW CURVES K. S. Chung 1,, H. S. Choe 1, J. I. Lee 2, J. L. Kim 2 and S. Y.

A COMPUTER PROGRAM FOR THE DECONVOLUTION OF THERMOLUMINESCENCE GLOW CURVES K. S. Chung 1,, H. S. Choe 1, J. I. Lee 2, J. L. Kim 2 and S. Y. Radiation Protection Dosimetry (200), Vol. 11, No. 1, pp. 3 39 doi:10.1093/rpd/nci073 A COMPUTER PROGRAM FOR THE DECONVOLUTION OF THERMOLUMINESCENCE GLOW CURVES K. S. Chung 1,, H. S. Choe 1, J. I. Lee

More information

Radon Activity And Exhalation Rate In Building Materials From Crushing Zone Of Shivalik Foothills In India

Radon Activity And Exhalation Rate In Building Materials From Crushing Zone Of Shivalik Foothills In India Radon Activity And Exhalation Rate In Building Materials From Crushing Zone Of Shivalik Foothills In India Sunil Kamboj, Vakul Bansal, Anil Pundir, R.P. Chauhan Sunil Kamboj & Vakul Bansal Department of

More information

RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER. A. Vargas, X. Ortega, I.

RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER. A. Vargas, X. Ortega, I. RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER A. Vargas, X. Ortega, I. Serrano Institut de Tècniques Energètiques (INTE), Universitat Politècnica de

More information

Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data. Todd Davidson

Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data. Todd Davidson Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data Todd Davidson Introduction According to Regulatory Guide 8.34 Monitoring Criteria and Methods

More information

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar A. T. Al-Kinani*, M. A. Amr**, K. A. Al-Saad**, A. I. Helal***, and M. M. Al Dosari* *Radiation and Chemical

More information

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po Nuclear Instruments and Methods in Physics Research A 450 (2000) 568} 572 Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po D. NikezicH, K.N. Yu* Department of Physics

More information

J. Rad. Nucl. Appl. 2, No. 1, (2017) 11 Journal of Radiation and Nuclear Applications An International Journal

J. Rad. Nucl. Appl. 2, No. 1, (2017) 11 Journal of Radiation and Nuclear Applications An International Journal J. Rad. Nucl. Appl. 2, No. 1, 11-15 (2017) 11 Journal of Radiation and Nuclear Applications An International Journal http://dx.doi.org/10.18576/jrna/020102 Measurement of Radium Concentration and Radon

More information

Radon Measurement Using a Liquid Scintillation Spectrometer

Radon Measurement Using a Liquid Scintillation Spectrometer Vol. 29 (1992) I Original I Radon Measurement Using a Liquid Scintillation Spectrometer Taeko KOGA *1, Hiroshige MORISHIMA *1, Hiroshi KA W AI*1, Sohei KONDO*1, Masaki MIFUNE, Masanobu KONISHI*2 and Chiaki

More information

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS 2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 MATHEMATICAL MODEL OF RADON ACTIVITY

More information

2) Explain why the U-238 disintegration series shown in the graph ends with the nuclide Pb-206.

2) Explain why the U-238 disintegration series shown in the graph ends with the nuclide Pb-206. Name: 3156-1 - Page 1 Questions 1 and 2 refer to the following: A U-238 atom decays to a Pb-206 atom through a series of steps. Each point on the graph below represents a nuclide and each arrow represents

More information

The Effects of Exposing UltraLo-1800 Samples to Room Air

The Effects of Exposing UltraLo-1800 Samples to Room Air The Effects of Exposing UltraLo-1800 Samples to Room Air Document: Release Date: 07/19/2010 Version: 1.0 Contact Name: Stuart Coleman Email: stuart@xia.com Phone: (510) 401 5760 Fax: (510) 401 5761 XIA,

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

An attachable alpha spectrometer for research, fast retrospective dosimetry, and measurement of low-level surface contamination +

An attachable alpha spectrometer for research, fast retrospective dosimetry, and measurement of low-level surface contamination + An attachable alpha spectrometer for research, fast retrospective dosimetry, and measurement of low-level surface contamination + Jürgen Putzger and Henning von Philipsborn A B S T R A C T Large-area,

More information

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half-lives so long

More information

Research about the quantity of Radon in our everyday places

Research about the quantity of Radon in our everyday places Research about the quantity of Radon in our everyday places Riccardo Giussani & Riccardo Pasina & Mattia Ruo Liceo Ballerini Abstract The idea of our project comes from our school (Collegio Ballerini);

More information

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA A. STOCHIOIU 1, F. MIHAI 1, C. STOCHIOIU 2 1 Horia Hulubei National Institute for Physics and Nuclear Engineering,

More information

Sensitivity of LR 115 detectors in hemispherical chambers for radon measurements

Sensitivity of LR 115 detectors in hemispherical chambers for radon measurements Nuclear Instruments and Methods in Physics Research B 217 (2004) 637 643 www.elsevier.com/locate/nimb Sensitivity of LR 115 detectors in hemispherical chambers for radon measurements D. Nikezic 1, F.M.F.

More information

RADIOACTIVITY IN THE AIR

RADIOACTIVITY IN THE AIR RADIOACTIVITY IN THE AIR REFERENCES M. Sternheim and J. Kane, General Physics (See the discussion on Half Life) Evans, The Atomic Nucleus, pp. 518-522 Segre, Nuclei and Particles, p. 156 See HEALTH AND

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE Marian Romeo Călin, Adrian Cantemir Călin Horia Hulubei National Institute of Physics and Nuclear Engineering

More information

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal NORM and TENORM: Occurrence, Characterizing, Handling and Disposal Ionizing Radiation and Hazard Potential John R. Frazier, Ph.D. Certified Health Physicist May 12, 2014 Radiation Radiation is a word that

More information

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1 Ion Chamber Radon Measurements Theremino System Rev.1 Theremino System IonChamber_ENG Page 1 Table of Contents Misure con Camera a Ioni... 3 Theory... 3 Equipment... 3 Radon in Buildings - Rn 222... 4

More information

Influence of aerosol concentration and multivariate processing on the indication of radon progeny concentration in air

Influence of aerosol concentration and multivariate processing on the indication of radon progeny concentration in air NUKLEONIKA 2004;49(3):123 129 PROCEEDINGS Influence of aerosol concentration and multivariate processing on the indication of radon progeny concentration in air Bronisław Machaj, Piotr Urbański Abstract

More information

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables ELENA SIMION 1,2 *, ION MIHALCEA 2, FLORIN SIMION 1,3, CRISTIAN PACURARU 4 1 National Environmental Protection

More information

Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of Mysore city

Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of Mysore city Indian Journal of Pure & Applied Physics Vol. 43, September 2005, pp. 679-683 Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of

More information

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration.

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Raffaele Buompane Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi

More information

CARBOXEN 564 A NEW CARBON MOLECULAR SIEVE SORBENT USED FOR RADON AND THORON MONITORING

CARBOXEN 564 A NEW CARBON MOLECULAR SIEVE SORBENT USED FOR RADON AND THORON MONITORING CARBOXEN 564 A NEW CARBON MOLECULAR SIEVE SORBENT USED FOR RADON AND THORON MONITORING C. Cosma 1, T. Jurcut 2, V. Benea 1, M. Moldovan 1, Alida Timar 1 1 Faculty of Environmental Science, Babes-Bolyai

More information

Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3

Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3 Performance Characterization of A New Cam System M.J. Koskelo 1, J.C. Rodgers 2, D.C. Nelson 2, A.R. McFarland 3 and C.A. Ortiz 3 1 CANBERRA Industries, Meriden, CT 06450 2 Los Alamos National Laboratory,

More information

Page 4 of 14 Thoron exhalation rates in areas of Japan Radiat Prot Dosimetry (2010) 141(4): 473-476 first published online September 16, 2010 doi:10.1093/rpd/ncq247 Abstract Full Text (PDF) Abstract 37

More information

LONG-TERM MEASUREMENTS OF RADON PROGENY CONCENTRATIONS WITH SOLID STATE NUCLEAR TRACK DETECTORS

LONG-TERM MEASUREMENTS OF RADON PROGENY CONCENTRATIONS WITH SOLID STATE NUCLEAR TRACK DETECTORS In: Nuclear Track Detectors: Design, Methods and Applications ISBN: 978-1-60876-826-4 Editor: Maksim Sidorov and Oleg Ivanov 2009 Nova Science Publishers, Inc. Chapter 2 LONG-TERM MEASUREMENTS OF RADON

More information

Study of Radium and Radon Exhalation Rate in Some Sand Samples Using Solid State Nuclear Track Detectors

Study of Radium and Radon Exhalation Rate in Some Sand Samples Using Solid State Nuclear Track Detectors Study of Radium and Radon Exhalation Rate in Some Sand Samples Using Solid State Nuclear Track Detectors Amal Mohamed 1 Tarfa.H.Alsheddi 2 and Shaffa. Almansour 3 1 Department of physics, Faculty of Science,

More information

Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq

Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq Nuclear Science 2018; 3(2): 23-27 http://www.sciencepublishinggroup.com/j/ns doi: 10.11648/j.ns.20180302.11 Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq Zaki A.

More information

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM A. S. ROUSSETSKI P.N. Lebedev Physical Institute Russian Academy of Sciences, 3 Leninsky prospect, 119991 Moscow,

More information

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. ATOMS AND NUCLEAR RADIATION PART II Q1. The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. Two different types of absorber are

More information

CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE. N. Michielsen, V. Voisin

CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE. N. Michielsen, V. Voisin Radon in the Living Environment, 011 CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE N. Michielsen, V. Voisin Institut de Protection et de Sûreté Nucléaire, Département de Prévention

More information

ARMUG New CAM Developments. Arran Morgan MSc Physicist

ARMUG New CAM Developments. Arran Morgan MSc Physicist New CAM Developments Arran Morgan MSc Physicist Topics Particulate sampling considerations Alpha spectral analysis Concentration calculation Spectrum stabilisation Beta measurement Loose filter Bi detection

More information

Chemical etching characteristics for cellulose nitrate

Chemical etching characteristics for cellulose nitrate Materials Chemistry and Physics 95 (2006) 307 312 Chemical etching characteristics for cellulose nitrate C.W.Y. Yip, D. Nikezic 1, J.P.Y. Ho, K.N. Yu Department of Physics and Materials Science, City University

More information

Journal of American Science 2013;9(12)

Journal of American Science 2013;9(12) Journal of American Science 213;9(12) http://www.jofamericanscience.org Estimation of the Radiation Dose for Some Individuals Working With Naturally Occurring Radioactive Materials Tarek Mahmoud Morsi,

More information

Science of the Total Environment

Science of the Total Environment Science of the Total Environment 49 (211) 3613 3619 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Mitigation of radon and

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Atomic Structure Summary

Atomic Structure Summary Atomic Structure Summary All atoms have: a positively charged nucleus and negatively charged electrons around it Atomic nucleus consists of: positively charged protons and neutrons that have no electric

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 11665-6 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 6: Spot measurement method of the activity concentration Mesurage de la radioactivité

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code Progress in NUCLEAR SCIENCE and ECHNOLOGY, Vol. 2, pp.432-436 (20) ARICLE Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 03 Using the PHIS Code atsuhiko

More information

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Application Note The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Introduction The increasing demand for safety in nuclear installations calls for continuous survey of airborne

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 11665-5 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration Mesurage de

More information

Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements

Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements Indian Journal of Pure & Applied Physics Vol. 48, July 2010, pp. 473-477 Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements Rati Varshney a, A K Mahur c,

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Results of the 2015 national indoor radon intercomparison measurements in Serbia

Results of the 2015 national indoor radon intercomparison measurements in Serbia NUKLEONIKA 2016;61(3):321325 doi: 10.1515/nuka-2016-0053 ORIGINAL PAPER Results of the 2015 national indoor radon intercomparison measurements in Serbia Sofija Forkapić, Kristina Bikit, Vesna Arsić, Jovana

More information

SECTION 8 Part I Typical Questions

SECTION 8 Part I Typical Questions SECTION 8 Part I Typical Questions 1. For a narrow beam of photons, the relaxation length is that thickness of absorber that will result in a reduction of in the initial beam intensity. 1. 1/10. 2. 1/2.

More information

RADIOCHEMISTRY AND NUCLEAR CHEMISTRY Environmental Thoron and Related Issues Jing Chen ENVIRONMENTAL THORON AND RELATED ISSUES

RADIOCHEMISTRY AND NUCLEAR CHEMISTRY Environmental Thoron and Related Issues Jing Chen ENVIRONMENTAL THORON AND RELATED ISSUES ENVIRONMENTAL THORON AND RELATED ISSUES Jing Chen Radiation Protection Bureau, Health Canada, Ottawa K1A 0K9, Canada Keywords: radon, thoron, 222 Rn, 220 Rn, naturally occurring radiation, public exposure,

More information

Neutron dosimetry and microdosimetry with track etch based LET spectrometer

Neutron dosimetry and microdosimetry with track etch based LET spectrometer Neutron dosimetry and microdosimetry with track etch based LET spectrometer František Spurný*, Kateřina Brabcová and Iva Jadrníčková Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce,

More information

Scientific Highlight February 2011

Scientific Highlight February 2011 Scientific Highlight February 2011 co-ordinated with the Director of the Institute / Research Unit Institute/ Research Unit / Clinical Co-operation Group / Junior Research Group: Institute of Radiation

More information

ISO Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration

ISO Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration INTERNATIONAL STANDARD ISO 11665-5 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration Mesurage de

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164 PVT and LaBr3(Ce)-based Radon Express Analyzers 864 Vladislav Kondrashov *, Stephen Steranka* and Glenn Paulson** * RadComm Systems Corp. 293 Portland Dr, Oakville, Ontario L6H 5S4, CANADA ** Paulson and

More information

Selection of Reference Method for Thoron Measurements Performed for Calibration of CR-39 Based SSNTDs

Selection of Reference Method for Thoron Measurements Performed for Calibration of CR-39 Based SSNTDs Radiation Environment and Medicine 2018 Vol.7, No.1 53 57 Note Selection of Reference Method for Thoron Measurements Performed for Calibration of CR-39 Based SSNTDs Anita Csordás, Ferenc Fábián, Gerg Bátor,

More information

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation 1.1 Natural radiation 3 1 What happens when we are exposed to radiation? 1.1 Natural radiation For as long as humans have walked the earth, we have continually been exposed to naturally-occurring radiation.

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

POSTER EVIDENCE FOR FAST NEUTRON EMISSION DURING SRI S SPAWAR/GALILEO TYPE ELECTROLYSIS EXPERIMENTS #7 AND #5, BASED ON CR-39 TRACK DETECTOR RECORD

POSTER EVIDENCE FOR FAST NEUTRON EMISSION DURING SRI S SPAWAR/GALILEO TYPE ELECTROLYSIS EXPERIMENTS #7 AND #5, BASED ON CR-39 TRACK DETECTOR RECORD POSTER P_21 EVIDENCE FOR FAST NEUTRON EMISSION DURING SRI S SPAWAR/GALILEO TYPE ELECTROLYSIS EXPERIMENTS #7 AND #5, BASED ON CR-39 TRACK DETECTOR RECORD A.S. Roussetski 1* A.G. Lipson 2, F. Tanzella 3,

More information

Calibration and optimization of a low cost diffusion chamber for passive separated measurements of radon and thoron in soil by Lexan PC SSNTD

Calibration and optimization of a low cost diffusion chamber for passive separated measurements of radon and thoron in soil by Lexan PC SSNTD Volume 12, No 1 International Journal of Radiation Research, January 2014 Calibration and optimization of a low cost diffusion chamber for passive separated measurements of radon and thoron in soil by

More information

Characteristics of the Environmental Radon and Thoron in Minamidaito-jima, a Comparatively High Background Radiation Island in Japan

Characteristics of the Environmental Radon and Thoron in Minamidaito-jima, a Comparatively High Background Radiation Island in Japan Radiation Emergency Medicine 2015 Vol. 4 No. 1 27-33 Regular Article Characteristics of the Environmental Radon and Thoron in Minamidaito-jima, a Comparatively High Background Radiation Island in Japan

More information

Adsorption of Radon at different gamma energies using different activated carbon

Adsorption of Radon at different gamma energies using different activated carbon Adsorption of Radon at different gamma energies using different activated carbon Oyeyemi Samuel.Mofolorunsho and Gaiya Stephen. Applied science Department, College of Science and Technology.Kaduna Polytechnic,Kaduna

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Study of CR-39 SSNDs irradiated with different types of radiation by FTIR spectroscopy and α-range determination

Study of CR-39 SSNDs irradiated with different types of radiation by FTIR spectroscopy and α-range determination American Journal of Environmental Protection 2013; 2(2): 53-57 Published online May 30, 2013 (http://www.sciencepublishinggroup.com/j/ajep) doi: 10.11648/j.ajep.20130202.14 Study of CR-39 SSNDs irradiated

More information

A coincidence method of thorium measurement

A coincidence method of thorium measurement A coincidence method of thorium measurement Nevenka Antovic a*, Perko Vukotic a and Nikola Svrkota b a Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica,

More information

y loo Physics Essentials Workbook Stage 2 Physics Exercises

y loo Physics Essentials Workbook Stage 2 Physics Exercises 238 Physics Essentials Workbook Stage 2 Physics 15.1 2 Exercises P Explain why stable nuclei of high mass have a higher proportion of neutrons than stable nuclei of low mass. 2 Name four types of spontaneous

More information

Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension

Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension Shaun Marshall 1, Charles Potter 2, David Medich 1 1 Worcester Polytechnic Institute, Worcester, MA 01609 2

More information

Atomic Structure and Radioactivity

Atomic Structure and Radioactivity Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain why the evidence from the scattering experiment

More information

DYNAMICS OF OUTDOOR RADON AND THORON PROGENY CONCENTRATIONS IN SOME GEOGRAPHICAL AREAS OF ROMANIA *

DYNAMICS OF OUTDOOR RADON AND THORON PROGENY CONCENTRATIONS IN SOME GEOGRAPHICAL AREAS OF ROMANIA * DYNAMICS OF OUTDOOR RADON AND THORON PROGENY CONCENTRATIONS IN SOME GEOGRAPHICAL AREAS OF ROMANIA * E. SIMION 1,2, I. MIHALCEA 2, V. CUCULEANU 3,4, F. SIMION 1,3 1 National Environmental Protection Agency,

More information

Responses of Low Pressure Andersen Sampler for Collecting Substrates

Responses of Low Pressure Andersen Sampler for Collecting Substrates Responses of Low Pressure Andersen Sampler for Collecting Substrates K.Yamasaki 1, Y.Yamada 2, K.Miyamoto 2 and M.Shimo 2 1 Research Reactor Institute, Kyoto University Noda, Kumatori-cho, Sennan-gun,

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom.

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. AnswerIT! Atoms and isotopes Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. Atoms and isotopes - AnswerIT 1. The diameter of an atom is about 0.000 000

More information

Measurement of Gamma Radiation at Junior High School Sites in Fukushima City

Measurement of Gamma Radiation at Junior High School Sites in Fukushima City Radiation Environment and Medicine 2018 Vol.7, No.1 21 27 Regular Article Measurement of Gamma Radiation at Junior High School Sites in Fukushima City Yasutaka Omori*, Atsuyuki Sorimachi and Tetsuo Ishikawa

More information

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay What does it mean to be radioactive? Some atoms have nuclei that are unstable. These atoms spontaneously decompose

More information

DETERMINATION OF RADON USING SILICONE OIL SCINTILLATOR

DETERMINATION OF RADON USING SILICONE OIL SCINTILLATOR DETERMINATION OF RADON USING SILICONE OIL SCINTILLATOR Yukio Yoshizawa, Haruka Minowa and Makoto Takiue The Jikei University School of Medicine Summary Silicone oil was used as a scintillation solven t

More information