NOTE ON THE INCORPORATION OF ACETATE AND THE TCA CYCLE IN MYCORRHIZAL ROOTS OF BEECH

Size: px
Start display at page:

Download "NOTE ON THE INCORPORATION OF ACETATE AND THE TCA CYCLE IN MYCORRHIZAL ROOTS OF BEECH"

Transcription

1 New PhytoL (1968) 67, NOTE ON THE INCORPORATION OF ACETATE AND THE TCA CYCLE IN MYCORRHIZAL ROOTS OF BEECH BY B. B. CARRODUS AND J. L. HARLEY Universities of Melbourne and Sheffield {Received 26 January 1968) During the course of work upon the absorption of ammonium ions by mycorrhizal roots of beech, the progress of incorporation of [2-'*C]acetate was observed. The methods used were essentially similar to those of Harley and Beevers (1963). Samples of 1-4 g fresh weight of mycorrhizas were used. The extraction in 80 ethanol was PCA Succ. Mai. Cit. Phosphate Compound 1 r Water Fresh Amount Tube number Fig. I. Titratable acids in mycorrhizas. Tube numbers refer to samples obtained by gradient elution from Dowex AG i x io resin. 557

2 558 B. B. CARRODUS AND J. L. HARLEY Fig. 2. Incorporation of [2-''*C]acetate into total extract of mycorrbizas over a period of IO minutes.,.^mino acids; #, organic acids; x, neutral fraction. 60r Time (mmutes) Fig. 3. Incorporation of [2-'''C]acetate into non-volatile organic acids over a period of 3 hours. X, Citrate; :, succinate;, malate.

3 Acetate., TCA cycle and mycorrhiza 559 carried out at C to obviate the formation of 2,5-pyrrolidone carboxylic acid. The extract was brought to small volume under reduced pressure at 40 C and passed through Dowex AG 50W-X8 resin (hydrogen form) to remove cationic compounds and then through Dowex AG i x 10 (formate form) to remove anions. After washing, the cationic resin was eluted with N NH4OH and the eluate separated on paper in two dimensions, using «-butanol:acetic acid:water in the proportions 120:30: t;o (by volume) and saturated aqueous phenol:0.88 SG ammonia 200:1 (by volume) with a trace of KCN. The resin containing anionic compounds was subjected to gradient elution using zero-8 N formic acid. After evaporating the fractions to dryness, the acids were located by titration against ^ NaOH in a current of CO^-free air. The amounts of non-volatile organic acids were estimated in samples of 3-4 g of fresh mycorrhizas. It was confirmed that there was no significant change in their quantities over periods of up to 20 hours, when the mycorrhizas were kept in aerated water I 100 o u g 80 CL Time (minutes) Fig. 4. Changes in specific activities of acids over a period of 3 hours, x, Citrate;, malate., succinate; at 20' C (Fig. i). I'^CHjCOOH was fed to samples of i g of fresh mycorrhizas, in small Erlenmeyer flasks, at a concentration of 5 ^moles with 5 //Ci/20 ml. The temperature was 20^^ C. Fig. 2 gives the results of a study of the progress of incorporation of ' *C from acetate over a period of 10 minutes. It will be observed that the percentage labelling of the acid fraction can reasonably be assumed to extrapolate to ioo o at zero time. The radioactive labelling in the neutral fraction is low throughout but that in the basic (amino) fraction rises so as to constitute nearly 70% of the total label at 10 minutes. In samples allowed to absorb [2-' * ]acetate for longer periods up to 3 hours, about 70^0 of the total radioactivity was found in the amino fraction. Fig. 3 shows that after 30 minutes, citrate is the acid most heavily labelled and that succinate is slightly more heavily labelled than

4 560 B. B. CARRODUS AND J. L. HARLEY rnalate. This is irrespective of the fact that the sizes of the pools of these acids are in the diminishing order malate, citrate and succinate. The rise in radioactivity is then in the order expected for the operation of the TCA cycle irrespective of the pool sizes. Fig. 4 gives the calculated specific activities of these three acids from the experiment shown in Fig. 3. The values for citrate and succinate rise fairly steadily but there is a lag in the rise of specific activity in malate. These results give evidence of the probable operation of the TCA cycle in mycorrhizal roots of beech. Future work is aimed at determining the relative parts played by sheath and core in this process. REFFRENCE HARLEV, J. L. & BEEVERS, H. (1963). Acetate utilization by maize roots. PL Physiol., Lancaster, 38, 117.

5

Chem 321 Name Answer Key D. Miller

Chem 321 Name Answer Key D. Miller 1. For a reversed-phase chromatography experiment, it is noted that the retention time of an analyte decreases as the percent of acetonitrile (CH 3 CN) increases in a CH 3 CN/H 2 O mobile phase. Explain

More information

Hints for Strong Ion Exchange Resins

Hints for Strong Ion Exchange Resins Hints for Strong Ion Exchange Resins Chromatography Application Note AN98 Abstract Ion exchange columns are a powerful means of isolating and purifying compounds, but their use is limited due to lack of

More information

THE EFFECT OF CATIONS ON THE ABSORPTION OF PHOSPHATE BY BEECH MYCORRHIZAL ROOTS

THE EFFECT OF CATIONS ON THE ABSORPTION OF PHOSPHATE BY BEECH MYCORRHIZAL ROOTS THE EFFECT OF CATIONS ON THE ABSORPTION OF PHOSPHATE BY BEECH MYCORRHIZAL ROOTS BY D. H. JENNINGS Botany Department, Leeds University {Received 30 April 1964) SUMMARY Pretreatment of beech mycorrhizal

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH

THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH [ 24O ] THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH VI. ACTIVE TRANSPORT OF PHOSPHORUS FROM THE FUNGAL SHEATH INTO THE HOST TISSUE BY J. L. HARLEY AND J. K. BRIERLEY Department of

More information

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione The purpose of this experiment was to synthesize 5-isopropyl-1,3-cyclohexanedione from commercially available compounds. To do this, acetone and

More information

CHANGES IN THE SIZE OF ORTHOPHOSPHATE POOLS IN MYCORRHIZAL ROOTS OF BEECH WITH REFERENCE TO ABSORPTION OF THE ION FROM THE EXTERNAL MEDIUM

CHANGES IN THE SIZE OF ORTHOPHOSPHATE POOLS IN MYCORRHIZAL ROOTS OF BEECH WITH REFERENCE TO ABSORPTION OF THE ION FROM THE EXTERNAL MEDIUM CHANGES IN THE SIZE OF ORTHOPHOSPHATE POOLS IN MYCORRHIZAL ROOTS OF BEECH WITH REFERENCE TO ABSORPTION OF THE ION FROM THE EXTERNAL MEDIUM BY D. H. JENNINGS The Botany Department, Leeds Universitv {Received

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet

Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet C h e m i s t r y 1 2 U n i t 3 R e v i e w P a g e 1 Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet 1. What is miscible? Immiscible? 2. What is saturated? Unsaturated? Supersaturated? 3. How does

More information

Chemical synthesis (see also reaction scheme, bold underlined numbers in this text refer to the bold underlined numbers in the scheme)

Chemical synthesis (see also reaction scheme, bold underlined numbers in this text refer to the bold underlined numbers in the scheme) Supplementary Note This section contains a detailed description of the chemical procedures and the characterization of products. The text is followed by a reaction scheme explaining the synthetic strategies

More information

THE UTILIZATION OF ACETATE BY NEOCOSMOSPORA VASINEECTA

THE UTILIZATION OF ACETATE BY NEOCOSMOSPORA VASINEECTA THE UTILIZATION OF ACETATE BY NEOCOSMOSPORA VASINEECTA BY K. BUDD Department of Botany, University of Michigan, Ann Arbor, Michigan, U.S.A. {Received 4 May 1965) SUMMARY Mycelium of Neocosmospora vasinfecta,

More information

DETERMINATION OF ACETIC ACID IN VINEGAR

DETERMINATION OF ACETIC ACID IN VINEGAR DETERMINATION OF ACETIC ACID IN VINEGAR 1 INTRODUCTION Juices from plants and fruits contain sugar. When these juices are fermented, the sugar molecules are converted into ethyl alcohol molecules (C 2

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions Partner: Alisa 1 March 2012 Preparation and Properties of Buffer Solutions Purpose: The purpose of this experiment is to compare the ph effect on buffered and non-buffered solutions as well as making a

More information

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA?

Consider a normal weak acid equilibrium: Which direction will the reaction shift if more A is added? What happens to the % ionization of HA? ch16blank Page 1 Chapter 16: Aqueous ionic equilibrium Topics in this chapter: 1. Buffers 2. Titrations and ph curves 3. Solubility equilibria Buffersresist changes to the ph of a solution. Consider a

More information

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers Chem 2115 Experiment #10 Acids, Bases, Salts, and Buffers OBJECTIVE: The goal of this series of experiments is to investigate the characteristics of acidic and basic solutions. We will explore the neutralization

More information

Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents

Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents Solutions Unit 6 Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents Solute: dissolved particles in a solution (i.e. NaCl) Solvent:

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Lab 8 Dynamic Soil Systems I: Soil ph and Liming

Lab 8 Dynamic Soil Systems I: Soil ph and Liming Lab 8 Dynamic Soil Systems I: Soil ph and Liming Objectives: To measure soil ph and observe conditions which change ph To distinguish between active acidity (soil solution ph) and exchangeable acidity

More information

A level Chemistry Preparation Work

A level Chemistry Preparation Work A level Chemistry Preparation Work This booklet is designed to help you prepare for you re A level studies in chemistry. Tasks have been selected to improve your grounding in key skills and concepts that

More information

Chemistry 1B Experiment 11 49

Chemistry 1B Experiment 11 49 Chemistry 1B Experiment 11 49 11 Buffer Solutions Introduction Any solution that contains both a weak acid HA and its conjugate base A in significant amounts is a buffer solution. A buffer is a solution

More information

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in Solution*

I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in Solution* Chapter 5 Reactions in Aqueous Solutions Titrations Kick Acid!!! 1 I. Properties of Aqueous Solutions A) Electrolytes and Non-Electrolytes B) Predicting Solubility* II. Reactions of Ionic Compounds in

More information

Find the ph and the degree of ionization for an 0.10 M solution of formic acid:

Find the ph and the degree of ionization for an 0.10 M solution of formic acid: 148 Find the ph and the degree of ionization for an 0.10 M solution of formic acid: Value of Ka from Ebbing, page A-13 Define "x" as the change in hydronium ion concentration Assume "x" is small compared

More information

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used.

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used. Name Index No.. Class...Candidate s Signature... CHEMISTRY 233/2 FORM 4 PAPER2 TIME: 2 HOURS Instructions to Candidates 1. Answer ALL the questions in the spaces provided 2. Mathematical tables and silent

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Synthesis and Analysis of a Coordination Compound

Synthesis and Analysis of a Coordination Compound Synthesis and Analysis of a Coordination Compound In addition to forming salts with anions, transition metal cations can also associate with neutral molecules (and ions) through a process called ligation.

More information

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43 Extraction Background Extraction is a technique that separates compounds (usually solids) based on solubility. Depending on the phases involved, extractions are either liquid-solid or liquid-liquid. If

More information

Chapter 4. Concentration of Solutions. Given the molarity and the volume, the moles of solute can be determined.

Chapter 4. Concentration of Solutions. Given the molarity and the volume, the moles of solute can be determined. Molarity Chapter 4 Concentration of Solutions Molarity (M) = moles of solute liters of solution Given the molarity and the volume, the moles of solute can be determined. Given the molarity and the moles

More information

molality: m = = 1.70 m

molality: m = = 1.70 m C h e m i s t r y 1 2 U n i t 3 R e v i e w P a g e 1 Chem 12: Chapters 10, 11, 12, 13, 14 Unit 3 Worksheet 1. What is miscible? Immiscible? Miscible: two or more substances blend together for form a solution

More information

Acids, Bases, Salts, and Buffers

Acids, Bases, Salts, and Buffers Acids, Bases, Salts, and Buffers Investigation questions Parts 1 and 2 What is ph and how is it related to the identity and concentration of the substance in a solution? What is a salt? Introduction I.

More information

2. Which of these solutions is the least acidic? a) [H 3 O + ] = 4x10-4 M b) [H 3 O + ] = 0.04 M c) ph = 0.04 d) ph = 0.40 e) ph = 4.

2. Which of these solutions is the least acidic? a) [H 3 O + ] = 4x10-4 M b) [H 3 O + ] = 0.04 M c) ph = 0.04 d) ph = 0.40 e) ph = 4. Chem 112, Test 2 -- February 13, 2004 -- page 1 START TIME END TIME Name You are allowed 2 consecutive hours (no cutting classes) for this test. You may use your calculator but NO extra scratch paper.

More information

Midterm Examination 2

Midterm Examination 2 CH 221 General Chemistry Spring 2012 Name: Midterm Examination 2 Useful Information is located on the last two pages of the Exam. Multiple Choice Questions A carton of Morton's Iodized Salt, NaCl with

More information

3. Determine the ph of a solution that is 0.75 M in hypochlorous acid and 0.35 M in sodium hypochlorite.

3. Determine the ph of a solution that is 0.75 M in hypochlorous acid and 0.35 M in sodium hypochlorite. HOMEWORK 2A 1. From the data given in Handout 3 on the class website, determine the pk a of the following acids. (a) Hydrocyanic acid (b) Hypochlorous acid (c) Formic acid 2. Determine if solutions of

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

Ch 16 and 17 Practice Problems

Ch 16 and 17 Practice Problems Ch 16 and 17 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

MOCK FINALS APPCHEN QUESTIONS

MOCK FINALS APPCHEN QUESTIONS MOCK FINALS APPCHEN QUESTIONS For questions 1-3 Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: 2 NaOH + 2 Al + 2 H2O 2 NaAlO2 + 3 H2 If 84.1 g of NaOH and 51.0 g

More information

Catalyzing thoughts: 1. How are ionic compounds different from covalent compounds when dissolved in water?

Catalyzing thoughts: 1. How are ionic compounds different from covalent compounds when dissolved in water? Name: Period: Date: General Chemistry UNIT 13: Acids and Bases Lesson 1: Theories of Acids and Bases! By the end of today, you will have an answer to: How are we able to determine which substances are

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

Time (s) [N 2 O 5 ] (mol/l)

Time (s) [N 2 O 5 ] (mol/l) Exercises #1: 1. The following data show the concentration of N 2 O 5 as a function of time in the following reaction: 2 N 2 O 5 (g) 4 NO 2 (g) + O 2 (g) Time (s) 0 50 100 200 300 400 [N 2 O 5 ] (mol/l)

More information

Conc n of A OAs present (um) Conc n of B OAs present (um)

Conc n of A OAs present (um) Conc n of B OAs present (um) Materials and Instrumentation: Acquity UPLC BEH C18 2.1 x 100 mm, 1.7 µm column, Waters Corporation, Cat. No. 186002352 O-Benzylhydroxylamine, Sigma-Aldrich Cat. No. B22984 N-(3-Dimethylaminopropyl)-N

More information

Chemistry 143 Dr. Caddell Modesto Junior College. Chemical Reactions Key

Chemistry 143 Dr. Caddell Modesto Junior College. Chemical Reactions Key Chemical Reactions Key 1.) Combine about 2 ml of 0.1 M calcium chloride with about 2 ml of 0.1 M sodium phosphate. CATEGORY: Double Replacement 3CaCl 2 (aq) + 2Na 3 PO 4 (aq) 6NaCl(aq) + Ca3(PO 4 ) 2 (s)

More information

Review of Chemistry 11

Review of Chemistry 11 Review of Chemistry 11 HCl C 3 H 8 SO 2 NH 4 Cl KOH H 2 SO 4 H 2 O AgNO 3 PbSO 4 H 3 PO 4 Ca(OH) 2 Al(OH) 3 P 2 O 5 Ba(OH) 2 CH 3 COOH 1. Classify the above as ionic or covalent by making two lists. Describe

More information

1. CYSTEIC ACID AND CYSTEIC ACID PEPTIDES FROhf OXIDIZED PAPAIN*

1. CYSTEIC ACID AND CYSTEIC ACID PEPTIDES FROhf OXIDIZED PAPAIN* CRYSTALLINE PAPAIN 1. CYSTEIC ACID AND CYSTEIC ACID PEPTIDES FROhf OXIDIZED PAPAIN* BY J. R. KIhIMEL, E. 0. P. THOMPSON, AND EMIL L. SMITH (From the Laboratory for the Study of Hereditary and Metabolic

More information

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c Chem 130 Name Exam 2, Ch 4-6 July 7, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and

More information

Chemical compounds. Types Formulas Names

Chemical compounds. Types Formulas Names Chemical compounds Types Formulas Names Learning objectives Describe the octet rule Predict number of valence electrons on atom Predict ionic charges Predict composition of simple ionic compounds Predict

More information

Ions in Solution. Solvent and Solute

Ions in Solution. Solvent and Solute Adapted from Peer-led Team Learning Begin at the beginning and go on till you come to the end: then stop." Early ideas of atoms and compounds, developed primarily through the reactions of solids and gases,

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

Name: Block: Date: Student Notes

Name: Block: Date: Student Notes Name: Block: Date: LCPS Core Experience Acids and Bases Student Notes OBJECTIVES Students will: recognize some acids and bases as common and familiar household chemicals. realize that acids and bases are

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs. 18.1 Introduction to Acids and Bases 1. Name the following compounds as acids: a. H2SO4 d. HClO4 b. H2SO3 e. HCN c. H2S 2. Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas

More information

AP Chemistry. Chapter 4

AP Chemistry. Chapter 4 AP Chemistry Chapter 4 1 Properties of Aqueous Solution Solutions Definition: Any substance (solid, liquid or gas) EVENLY distributed throughout another substance. Solutions have 2 parts: 1) Solvent the

More information

All reversible reactions reach an dynamic equilibrium state. H 2 O+ CO H 2 +CO 2. Rate of reverse reaction (H 2 + CO 2 )

All reversible reactions reach an dynamic equilibrium state. H 2 O+ CO H 2 +CO 2. Rate of reverse reaction (H 2 + CO 2 ) 4.2 Equilibria Many reactions are reversible + 3H 2 2NH 3 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at equal

More information

5.65 g = kg m = mm 174 ml = L. 711 kg = g 3.79 km = m L = μl g = mg 745 μm = cm 127 μl = ml 302 C = K 185 K = C 100 C = K

5.65 g = kg m = mm 174 ml = L. 711 kg = g 3.79 km = m L = μl g = mg 745 μm = cm 127 μl = ml 302 C = K 185 K = C 100 C = K WLHS / AP Bio / UNIT 1 Chemistry of Life Name AP Biology Summer Assignment Use Campbell CH 2-4 Biology is the study of life and living things. Before we can study and understand many biological principles,

More information

Exercise 2-4. Titration of a Buffer Solution EXERCISE OBJECTIVES

Exercise 2-4. Titration of a Buffer Solution EXERCISE OBJECTIVES Exercise 2-4 Titration of a Buffer Solution EXERCISE OBJECTIVES To define the terms buffer solution and buffer capacity; To titrate a buffer solution with a weak acid solution; To plot a graph using the

More information

Biology 1107 (ECE Biology) Summer Assignments for the School Year Mrs. Williams

Biology 1107 (ECE Biology) Summer Assignments for the School Year Mrs. Williams Biology 1107 (ECE Biology) Summer Assignments for the 2018-2019 School Year Mrs. Williams What to do before the first day of school: Complete the Biology Prefixes and Suffixes Worksheet: Because vocabulary

More information

Uranium from water sample

Uranium from water sample Uranium from water sample Analysis of uranium from water sample Determination of uranium is based on radiochemical separation and alpha spectrometric measurements. Detailed description is presented below.

More information

CHM3X. General Certificate of Education Advanced Subsidiary Examination June AS Externally Marked Practical Assignment.

CHM3X. General Certificate of Education Advanced Subsidiary Examination June AS Externally Marked Practical Assignment. Centre Number Surname Candidate Number For Examiner s Use Total EMPA mark Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Subsidiary Examination June 2010

More information

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: 1. My answers for this Chemistry 10 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E Consider the titration of 30.0 ml of 0.30 M HCN by 0.10

More information

Exercise 4-4. Titration of a Buffer Solution EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Buffer solutions

Exercise 4-4. Titration of a Buffer Solution EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Buffer solutions Exercise 4-4 Titration of a Buffer Solution EXERCISE OBJECTIVE Titrate a buffer solution, plot a graph using the titration data, and analyze the titration curve. DISCUSSION OUTLINE The Discussion of this

More information

Sample Exam Solutions. Section A. The answers provided are suggestions only and do not represent directly or otherwise official VCAA answers.

Sample Exam Solutions. Section A. The answers provided are suggestions only and do not represent directly or otherwise official VCAA answers. 1 Sample Exam 1 2008 Solutions The answers provided are suggestions only and do not represent directly or otherwise official VAA answers. Section A Q1 n(agl) = 4.85 / (107.9+35.5) = 0.00338 mol n(kl) =

More information

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3 Honors Chemistry Study Guide for Acids and Bases 1. Calculate the ph, poh, and [H3O + ] for a solution that has a [OH - ] = 4.5 x 10-5? 2. An aqueous solution has a ph of 8.85. What are the [H + ], [OH

More information

5 Acid Base Reactions

5 Acid Base Reactions Aubrey High School AP Chemistry 5 Acid Base Reactions 1. Consider the formic acid, HCOOH. K a of formic acid = 1.8 10 4 a. Calculate the ph of a 0.20 M solution of formic acid. Name Period Date / / 5.2

More information

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction How can I use an acid-base reaction to separate an acid-base-neutral mixture? Objectives 1. use

More information

5 Weak Acids, Bases and their Salts

5 Weak Acids, Bases and their Salts 5 Weak Acids, Bases and their Salts Name: Date: Section: Objectives You will be able to define an acid and a base with the Arrhenius and Brǿnsted-Lowry definitions You will be able to predict the behavior

More information

STUDIES IN THE PHYSIOLOGY OF LICHENS

STUDIES IN THE PHYSIOLOGY OF LICHENS STUDIES IN THE PHYSIOLOGY OF LICHENS V. TRANSLOCATION FROM THE ALGAL LAYER TO THE MEDULLA IN PELTIGERA POLYDACTYLA BY D. C. SMITH AND E. A. DREW Department of Agriculture, University of Oxford {Received

More information

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 AP Chemistry Laboratory #18: Buffering in Household Products Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 Goals (list in your lab book): The goals of this lab are to experiment

More information

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY Phillip Bigelow Chemists make two common types of "standard solutions": Molar solutions Normal solutions Both of these solutions are concentrations (or strengths

More information

THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS

THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS New Phytol (1972) 71, 81-84. THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A V\^ILTY MUTANT OF TOMATO, IN DARKNESS BY M. T A L AND D O R O T I M B E R Division of Life Sciences, Negev Institute

More information

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV*

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV* Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV* EPA Method 8315A UCT Part Number: EUC1812M15 (Unendcapped C18-2000 mg/15 ml cartridge) March 2013 Method

More information

CH 221 Chapter Four Part II Concept Guide

CH 221 Chapter Four Part II Concept Guide CH 221 Chapter Four Part II Concept Guide 1. Solubility Why are some compounds soluble and others insoluble? In solid potassium permanganate, KMnO 4, the potassium ions, which have a charge of +1, are

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2008 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

NICKEL-63/59 IN WATER

NICKEL-63/59 IN WATER Analytical Procedure NICKEL-63/59 IN WATER 1. SCOPE 1.1. This is a method for the separation and measurement of nickel- 63/59 in water samples. 1.2. This method does not address all aspects of safety,

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Analytical Grade AG 11 A8 Ion Retardation Resin Instruction Manual. Catalog Number

Analytical Grade AG 11 A8 Ion Retardation Resin Instruction Manual. Catalog Number Analytical Grade AG 11 A8 Ion Retardation Resin Instruction Manual Catalog Number 732-2032 Table of Contents Section 1 Introduction...1 Section 2 Technical Description...2 Section 3 Instruction For Use...5

More information

CHEMpossible. 101 Exam 2 Review

CHEMpossible. 101 Exam 2 Review CHEMpossible 1. Circle each statement that applies to thermal energy and heat: a. Thermal energy is the average kinetic energy of its molecules due to their motion b. High thermal energy is reflected in

More information

Advanced Unit 6: Chemistry Laboratory Skills II

Advanced Unit 6: Chemistry Laboratory Skills II Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Unit 6: Chemistry Laboratory Skills II Candidate Number Thursday 25 January 2018 Afternoon

More information

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, ,

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, , Chemistry 121 Lectures 20 & 21: Brønstead-Lowry Acid/Base Theory Revisited; Acid & Base Strength - Acids & Bases in Aqueous Solution; Acid Dissociation Constants and the Autoionization of Water; ph or

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

Illustrating ph Modeling in BioWin - Titrations of Acids and Bases

Illustrating ph Modeling in BioWin - Titrations of Acids and Bases Illustrating ph Modeling in BioWin - Titrations of Acids and Bases Volume 7 Number 1 : January 2018 Illustrating ph Modeling in BioWin - Titrations of Acids and Bases EnviroSim Associates McMaster Innovation

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

Acids and Bases. Feb 28 4:40 PM

Acids and Bases. Feb 28 4:40 PM Acids and Bases H O s O Cl H O O H H N H Na O H H Feb 28 4:40 PM Properties of Acids 1. Taste sour 2. Conduct electrical current 3. Liberate H 2 gas when reacted with a metal. 4. Cause certain dyes to

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Experiment 10. Acid Base Titration

Experiment 10. Acid Base Titration Experiment 10 Acid Base Titration Definitions: Titration A technique to accurately and precisely measure something, most often acids or bases Acids Most acids are molecules that behave as if they were

More information

Acid-Base Titration Acetic Acid Content of Vinegar

Acid-Base Titration Acetic Acid Content of Vinegar Acid-Base Titration Acetic Acid Content of Vinegar Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. On a separate sheet of

More information

The use of ninhydrine reaction in the quantitative determination of amino acids1

The use of ninhydrine reaction in the quantitative determination of amino acids1 The use of ninhydrine reaction in the quantitative determination of amino acids1 BY Artturi I. Virtanen and Tauno Laine (Biochemical Institute, Helsinki) The methods for the quantitative determination

More information

2002 D Required 2001 D Required

2002 D Required 2001 D Required 2002 D Required A student is asked to determine the molar enthalpy of neutralization, H neut, for the reaction represented above. The student combines equal volumes of 1.0 M HCl and 1.0 M NaOH in an open

More information

Topic 9: Acids & Bases

Topic 9: Acids & Bases Topic 9: Acids & Bases Regents Chemistry Mr. Mancuso Electrolytes Substances that conduct electricity when Include Ability to conduct electricity is due to the presence of Dissociation: ~ 1 ~ Acids and

More information

Available online Research Article

Available online  Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(4):1069-1073 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Development of extractive spectrophotometric method

More information

1 Answer. 2 Answer A B C D

1 Answer. 2 Answer A B C D 216 W10-Exam #1 Page 1 of 9. I. (8 points) 1) Given below are infrared (IR) spectra of four compounds. The structures of compounds are given below. Assign each spectrum to its compound by putting the letter

More information

Dr. Arrington Exam 3 (100 points), Thermodynamics and Acid Base Equilibria Thursday, March 24, 2011

Dr. Arrington Exam 3 (100 points), Thermodynamics and Acid Base Equilibria Thursday, March 24, 2011 Chemistry 124 Honor Pledge: Dr. Arrington Exam 3 (100 points), Thermodynamics and Acid Base Equilibria Thursday, March 24, 2011 Show all work on numeric problems in Section II to receive full or partial

More information

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction.

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction. 9 (i) State the time taken for all the peroxodisulfate ions to react. [1].............................. minutes (ii) Suggest a method of measuring the rate of this reaction. [1]............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak

More information

Appendix 1. Analytical Methods

Appendix 1. Analytical Methods 189 Appendix 1 Analytical s 1. Total nitrogen (AOAC, 2000) Sample preparation Samples (20 ml) were diluted with 180 ml of distilled water Reagents 1. Kjedahl catalyst: Mix 10 part of potassium sulphate

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

I Write the reference number of the correct answer in the Answer Sheet below.

I Write the reference number of the correct answer in the Answer Sheet below. (2016) Nationality No. CHEMISTRY Name (Please print full name, underlining family name) Marks I Write the reference number of the correct answer in the Answer Sheet below. (1) Which of the atoms 1) to

More information