Introduction to Thermodynamics. Introduction to Thermodynamics

Size: px
Start display at page:

Download "Introduction to Thermodynamics. Introduction to Thermodynamics"

Transcription

1 So what kind of intuition do we have about heat and temperature and energy? Discuss the DCI. DCI15.1. Two containers of water are at 20 C initially. One contains 50 mls and the other 100 mls. They are each heated with the same source of heat for the same amount of time. If the final temperature of the 50 mls sample is 50 C what would be the final temperature of the 100 mls sample? A. 50 C B. 80 C C. 25 C D. 100 C E. 35 C 1

2 DCI15.1. Two containers of water are at 20 C initially. One contains 50 mls and the other 100 mls. They are each heated with the same source of heat for the same amount of time. If the final temperature of the 50 mls sample is 50 C what would be the final temperature of the 100 mls sample? A. 50 C B. 80 C C. 25 C D. 100 C E. 35 C Same amount of heat to both beakers, but different mass. T = 30 for beaker on the lea, so T is half or 15. Mass α 1/ T Two containers each have 50 mls of water at 20 C initially. They are each heated with the same source of heat. One is heated for ten minutes and the other for five minutes. If the container that was heated for five minutes has a final temperature 30 C what would be the final temperature of the other sample? A. 35 C C. 60 C D. 25 C E. 30 C 2

3 Two containers each have 50 mls of water at 20 C initially. They are each heated with the same source of heat. One is heated for ten minutes and the other for five minutes. If the container that was heated for five minutes has a final temperature 30 C what would be the final temperature of the other sample? A. 35 C C. 60 C D. 25 C E. 30 C Both beakers contain the same amount of water. Twice the heat to one. T is 10 for smaller amount of heat, than T = 20 for larger amount. Q(heat) α T Two containers of water are at 20 C initially. One contains 50 g of water and is heated by a source for a specified time to a final temperature of 30 C. The second container has an unknown amount of water and is heated with the same source to 30 C. However, it takes twice as long to get to this final temperature. How much water is in this container? A. 100 g B. 25 g C. 30 g D. 50 g E. 75 g 3

4 Two containers of water are at 20 C initially. One contains 50 g of water and is heated by a source for a specified time to a final temperature of 30 C. The second container has an unknown amount of water and is heated with the same source to 30 C. However, it takes twice as long to get to this final temperature. How much water is in this container? A. 100 g B. 25 g C. 30 g D. 50 g E. 75 g Twice the heat is added to one beaker to reach the same final temperature ( T). So the beaker must have twice the mass. Q(heat) α Mass So we have established the following relanonships; Mass α 1/ T q(heat) α T q(heat) α mass So q(heat) α mass T Heat is directly propornonal to the mass Nmes the change in temperature. 4

5 50 mls of water at 80 C is added to 50 mls of water at 20 C. What would be the final temperature? A. 60 C C. 30 C D. 20 C E. 50 C 50 mls of water at 80 C is added to 50 mls of water at 20 C. What would be the final temperature? A. 60 C C. 30 C D. 20 C E. 50 C 5

6 50 mls of water at 80 C is added to 50 mls of water at 20 C. What would be the final temperature? A. 60 C C. 30 C D. 20 C E. 50 C q hot water + q cold water = 0 q hot water = q cold water mass hot water T hot water = mass cold water T cold water 50. g T hot water = 50. g T cold water 50. g (T final 80.0 ) = 50. g (T final 20.0 ) 2T final = 100 T final = mls of water at 80 C is added to 100 mls of water at 20 C. What would be the final temperature? A. 70 C C. 30 C D. 60 C E. 50 C 6

7 50 mls of water at 80 C is added to 100 mls of water at 20 C. What would be the final temperature? A. 70 C C. 30 C D. 60 C E. 50 C 50 mls of water at 80 C is added to 100 mls of water at 20 C. What would be the final temperature? A. 70 C C. 30 C D. 60 C E. 50 C q hot water = q cold water mass hot water T hot water = mass cold water T cold water 50. g T hot water = 100. g T cold water 50. g (T final 80.0 ) = 100. g (T final 20.0 ) (T final 80.0 ) = 2 (T final 20.0 ) 3T final = 120 T final = 40 7

8 50 g of water at 80 C is added to 50 g of ethyl alcohol at 20 C. What would be the approximate final temperature? A. 60 C C. 30 C D. 20 C E. 50 C 50 g of water at 80 C is added to 50 g of ethyl alcohol at 20 C. What would be the approximate final temperature? A. 60 C C. 30 C D. 20 C E. 50 C TWO DIFFERENT SUBSTANCES! Experimentally the final temperature is determined to be close to 60. 8

9 q(heat) α mass T How do we make this an equality? We must introduce a constant.in this case the constant is called the specific heat, SH, q(heat) = mass SH T Specific heat is the amount of heat required to raise the temperature of 1 gram of a substance 1 C. Specific Heats of Substances Compound Specific Heat (J C -1 g -1 ) H 2 O(l) H 2 O(s) 2.03 Al(s) 0.89 C(s) 0.71 Fe(s) 0.45 Hg(l) 0.14 O 2 (g) CH 3 CH 2 OH

10 q(heat) = mass SH T A 175 g sample of water, initially at C absorbs some heat. The final temperature of the sample after absorbing the heat is C. Calculate the amount of heat absorbed by the sample of water. (NOTE: The specific heat for water is J g -1 C -1.) q = mass water SH water T water q(heat) = mass SH T A 175 g sample of water, initially at C absorbs some heat. The final temperature of the sample after absorbing the heat is C. Calculate the amount of heat absorbed by the sample of water. (NOTE: The specific heat for water is J g -1 C -1.) q = mass water SH water T water q = 175. g J g-1 C -1 ( ) q = 2.49 x 10 3 J 10

11 q(heat) = mass SH T A piece of iron weighing 80.0 g initially at a temperature of 92.6 C released the same amount of heat to the 175 g sample of water in DCI16.4. Assume the final temperature of the metal is the same as the final temperature of the water in DCI16.4. What is the specific heat for iron? q(heat) = mass SH T A piece of iron weighing 80.0 g initially at a temperature of 92.6 C released the same amount of heat to the 175 g sample of water in DCI16.4. Assume the final temperature of the metal is the same as the final temperature of the water in DCI16.4. What is the specific heat for iron? The metal is absorbing 2.49 x 103 J of heat 11

12 q(heat) = mass SH T A piece of iron weighing 80.0 g initially at a temperature of 92.6 C released the same amount of heat to the 175 g sample of water in DCI16.4. Assume the final temperature of the metal is the same as the final temperature of the water in DCI16.4. What is the specific heat for iron? The metal is absorbing 2.49 x 103 J of heat q = mass Fe SH Fe T Fe q(heat) = mass SH T A piece of iron weighing 80.0 g initially at a temperature of 92.6 C released the same amount of heat to the 175 g sample of water in DCI16.4. Assume the final temperature of the metal is the same as the final temperature of the water in DCI16.4. What is the specific heat for iron? The metal is absorbing 2.49 x 103 J of heat q = mass Fe SH Fe T fe 2.49 x 10 3 J = 80.0 g SH Fe (26.85 C C) SH Fe = 2.49 x 10 3 J /(80.0 g ( C)) SH Fe = J g -1 C -1 12

13 q(heat) = mass SH T The four pictures shown below summarize an experiment. A zinc cylinder of mass g was placed in boiling water at 100 C then plunged into a beaker containing g of water at C. The temperature of the water and zinc cylinder finally levels off at C. Calculate the specific heat of zinc metal. Check out the movie Check out the movie q(heat) = mass SH T The four pictures shown below summarize an experiment. A zinc cylinder of mass g was placed in boiling water at 100 C then plunged into a beaker containing g of water at C. The temperature of the water and zinc cylinder finally levels off at C. Calculate the specific heat of zinc metal. q metal = q water q water = mass water SH water T water q water = g J g-1 C-1 ( ) q water = J q metal = J mass metal SH metal T metal = J g SH metal ( ) = J SH = 1608 J g C SH metal = J g-1 C-1 13

14 IMPORTANT RELATIONSHIPS q = mass*sh* T (can use q hot, q cold, q metal, q rxn ) q hot = -q cold q metal = -q cold Coffee Cup Calorimeter q (lost by reaction) = -q (gained by water) q (lost by reaction) = -q (H 2 O) = m SH (H 2 O) t (H 2 O) 14

15 A ml sample of M CsOH is mixed with 100. ml of M HCl in an OSU calorimeter the following reaction occurs CsOH(aq) + HCl(aq) CsCl(aq) + H 2 O(l) The temperature before mixing of both solutions is C. After mixing the final temperature is 25.6 C. The heat capacity of the calorimeter is 50. J C -1 and the specific heat of the solution is 4.20 J g -1 C -1. Calculate the heat released in the reaction. A ml sample of M CsOH is mixed with 100. ml of M HCl in an OSU calorimeter the following reaction occurs CsOH(aq) + HCl(aq) CsCl(aq) + H 2 O(l) The temperature before mixing of both solutions is C. After mixing the final temperature is 25.6 C. The heat capacity of the calorimeter is 50. J C -1 and the specific heat of the solution is J g -1 C -1. Calculate the heat released in the reaction. (Assume the density of the solution is 1.00 g ml -1 ) q rxn = -(q solution + q calorimeter ) 15

16 A ml sample of M CsOH is mixed with 100. ml of M HCl in an OSU calorimeter the following reaction occurs CsOH(aq) + HCl(aq) CsCl(aq) + H 2 O(l) The temperature before mixing of both solutions is C. After mixing the final temperature is 25.6 C. The heat capacity of the calorimeter is 50. J C -1 and the specific heat of the solution is J g -1 C -1. Calculate the heat released in the reaction. (Assume the density of the solution is 1.00 g ml -1 ) q rxn = -(q solution + q calorimeter ) q rxn = -(mass soln *SH soln * T solution + HC cal * T calorimeter ) A ml sample of M CsOH is mixed with 100. ml of M HCl in an OSU calorimeter the following reaction occurs CsOH(aq) + HCl(aq) CsCl(aq) + H 2 O(l) The temperature before mixing of both solutions is C. After mixing the final temperature is 25.6 C. The heat capacity of the calorimeter is 50. J C -1 and the specific heat of the solution is J g -1 C -1. Calculate the heat released in the reaction. (Assume the density of the solution is 1.00 g ml -1 ) q rxn = -(q solution + q calorimeter ) q rxn = -(200.g* J g -1 C -1 *( ) J C-1 * ( ) ) q rxn = -(200.g* J g -1 C -1 *(1.3 C) J C-1 * (1.3 C) ) q rxn = J q rxn = J/0.02 mol = kj/mol 16

17 A g sample of glucose, C 6 H 12 O 6, is burned in a constant volume bomb calorimeter and the following reaction occurs C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O(l) The temperature change of the water and the calorimeter is 1.80 C. The calorimeter contains 1.05 kg of water and the dry calorimeter has a heat capacity of 650 J C -1 and the specific heat of the water is J g -1 C -1. Calculate the heat released in the reaction. A g sample of glucose, C 6 H 12 O 6, is burned in a constant volume bomb calorimeter and the following reaction occurs C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O(l) The temperature change of the water and the calorimeter is 1.80 C. The calorimeter contains 1.05 kg of water and the dry calorimeter has a heat capacity of 650 J C -1 and the specific heat of the water is J g -1 C -1. Calculate the heat released in the reaction. q rxn = -(q water + q calorimeter ) 17

18 A g sample of glucose, C 6 H 12 O 6, is burned in a constant volume bomb calorimeter and the following reaction occurs C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O(l) The temperature change of the water and the calorimeter is 1.80 C. The calorimeter contains 1.05 kg of water and the dry calorimeter has a heat capacity of 650 J C -1 and the specific heat of the water is J g -1 C -1. Calculate the heat released in the reaction. q rxn = -(q water + q calorimeter ) q rxn = -(1050.g* J g -1 C -1 *(1.8 C) J C-1 * (1.8 C) ) q rxn = 9078 J q rxn = J/0.692 g C 6 H 12 O 6 *(180 g C 6 H 12 O 6 /1 mol C 6 H 12 O 6 ) = kj/ mol IMPORTANT RELATIONSHIPS q = mass*sh* T (can use q hot, q cold, q metal, q rxn ) q hot = -q cold q hot = -(q cold + q calorimeter ) OSU calorimeter q metal = -q cold q metal = -(q cold + q calorimeter ) OSU calorimeter q rxn = -(q solution + q calorimeter ) OSU calorimeter q rxn = -(q water + q calorimeter ) bomb calorimeter 18

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy of motion:

More information

Thermodynamics I. Prep Session

Thermodynamics I. Prep Session Thermodynamics I Prep Session Dr. John I. Gelder Department of Chemistry Oklahoma State University Stillwater, OK 74078 john.gelder@okstate.edu http://intro.chem.okstate.edu 12/5/09 1 Thermo I Prep Session

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

Specific Heat of a Metal

Specific Heat of a Metal Specific Heat of a Metal Purpose The objective of this experiment is to determine the specific heat of zinc sample using coffeecup calorimeter. Theory In a chemical reaction, the quantity of heat that

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law Object: To measure the standard heat of formation, f, of MgO (s), and to become familiar with calorimetry as a toll for measuring

More information

Chapter 6 Review. Part 1: Change in Internal Energy

Chapter 6 Review. Part 1: Change in Internal Energy Chapter 6 Review This is my own personal review, this should not be the only thing used to study. You should also study using notes, PowerPoint, homework, ect. I have not seen the exam, so I cannot say

More information

DETERMINING AND USING H

DETERMINING AND USING H DETERMINING AND USING H INTRODUCTION CHANGES IN CHEMISTRY Chemistry is the science that studies matter and the changes it undergoes. Changes are divided into two categories: physical and chemical. During

More information

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process.

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process. 31. This is an endothermic reaction so heat must be absorbed in order to convert reactants into products. The high temperature environment of internal combustion engines provides the heat. 33. a. Heat

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

AP CHEMISTRY. Unit 5 Thermochemistry. Jeff Venables Northwestern High School

AP CHEMISTRY. Unit 5 Thermochemistry. Jeff Venables Northwestern High School AP CHEMISTRY Unit 5 Thermochemistry Jeff Venables Northwestern High School Kinetic Energy and Potential Energy Kinetic energy - the energy of motion: Ek = 1 mv 2 Potential energy - the energy an object

More information

Class work on Calorimetry. January 11 and 12, 2011

Class work on Calorimetry. January 11 and 12, 2011 Class work on Calorimetry January 11 and 12, 2011 Name 1. The number of calories needed to raise the temperature of 100 grams of water 10 degrees Celsius is the same as the number of calories needed to

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

Calorimetry: Heat of Solution

Calorimetry: Heat of Solution Calorimetry: Heat of Solution When a substance undergoes a change in temperature, the quantity of heat lost or gained can be calculated using the following relationship: (heat) = m s T (1) The specific

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Activity Calorimetry

Activity Calorimetry Activity 201 5 Calorimetry Directions: This GLA worksheet goes over the concepts of heat and calorimetry. Part A introduces the concepts of heat and specific heat capacity. Part B introduces calorimetry

More information

Activity Calorimetry

Activity Calorimetry Activity 201 5 Calorimetry Directions: This GLA worksheet goes over the concepts of heat and calorimetry. Part A introduces the concepts of heat and specific heat capacity. Part B introduces calorimetry

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Thermochemistry AP Chemistry Lecture Outline

Thermochemistry AP Chemistry Lecture Outline Thermochemistry AP Chemistry Lecture Outline Name: thermodynamics: the study of energy and its transformations -- thermochemistry: the subdiscipline involving chemical reactions and energy changes Energy

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

The Enthalpies of Reactions

The Enthalpies of Reactions The Enthalpies of Reactions Collect 2 Styrofoam cups & a cup lid Digital thermometer Stop watch (from TA) Prepare 400 ml beaker 50 ml graduated cylinder * Take the warm water heated in hood (2015/09/20

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6. Thermochemistry 1 1. Terms to Know: thermodynamics thermochemistry energy kinetic energy potential energy heat heat vs. temperature work work of expanding gases work of expanding gases under

More information

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0 Thermochemistry Part 2: Calorimetry p p If you leave your keys and your chemistry book sitting in the sun on a hot summer day, which one is hotter? Why is there a difference in temperature between the

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

Calorimetry. Chapter 5. Week 2 Unit 1. Calorimetry. Since we cannot know the of the reactants and products, we measure H through, the of.

Calorimetry. Chapter 5. Week 2 Unit 1. Calorimetry. Since we cannot know the of the reactants and products, we measure H through, the of. Chapter 5 Week 2 Unit 1 Calorimetry John D. Bookstaver St. Charles Community College Cottleville, MO Calorimetry Since we cannot know the of the reactants and products, we measure H through, the of. 1

More information

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT Chemical and physical changes usually involve the absorption or liberation of heat, given the symbol

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (g) H 2 O (l) + energy Endothermic process is any process in which heat has to

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Thermodynamics - Energy Relationships in Chemical Reactions:

Thermodynamics - Energy Relationships in Chemical Reactions: Thermodynamics - Energy Relationships in Chemical Reactions: energy - The capacity to do work. Types of Energy: radiant-energy from the sun. potential-energy due to an objects position. chemical-energy

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Calorimetry: Heats of Solution Objective: Use calorimetric measurements to determine heats of solution of two ionic compounds. Materials: Solid ammonium nitrate (NH 4 NO 3 ) and anhydrous calcium chloride

More information

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermochemistry. Chapter 6. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermochemistry Chapter 6 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Energy is the capacity to do work. Radiant energy comes from the sun and is earth s

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy AP Chemistry: Thermochemistry Lecture Outline 5.1 The Nature of Energy Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationships between chemical

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

AP Chemistry Big Idea Review

AP Chemistry Big Idea Review Name: AP Chemistry Big Idea Review Background The AP Chemistry curriculum is based on 6 Big Ideas and many Learning Objectives associated with each Big Idea. This review will cover all of the Big Ideas

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

2. What is a measure of the average kinetic energy of particles? (A) heat capacity (B) molar enthalpy (C) specific heat (D) temperature

2. What is a measure of the average kinetic energy of particles? (A) heat capacity (B) molar enthalpy (C) specific heat (D) temperature Thermochemistry #1 Chemistry 3202 Name: 1. Classify the following systems as open or closed a) glass of cold water b) a gel filled freezer pack c) a burning candle d) a fluorescent lightbulb e) hot water

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

Experiment #7 CALORIMETRY AND THE SPECIFIC HEAT OF METALS

Experiment #7 CALORIMETRY AND THE SPECIFIC HEAT OF METALS PURPOSE: Experiment #7 CALORIMETRY AND THE SPECIFIC HEAT OF METALS To experimentally determine the specific heat of a metal. INTRODUCTION When a substance is heated, the motion of its individual particles

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

matter/index.html

matter/index.html http://www.colorado.edu/physics/2000/index.pl http://www.harcourtschool.com/activity/states_of_ matter/index.html Thermal Energy Ch 6-1 Temperature and Heat Objectives Explain the kinetic theory of matter

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

More information

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or Page III-5-1 / Chapter Five Lecture Notes Energy & Chemistry Energy and Chemical Reactions: Thermochemistry or Thermodynamics Chapter Five Burning peanuts supplies sufficient energy to boil a cup of water

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

CHEM J-11 June /01(a)

CHEM J-11 June /01(a) CHEM1001 2014-J-11 June 2014 22/01(a) Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kj) absorbed

More information

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal.

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Student Name Partner s Name Date College Chem I 2045C Specific Heat of a Metal-SL Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Materials: Metal Sample Bunsen

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3 ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, 11.5-11.7, 13.3 Thermochemistry Prediction and measurement of energy transfer, in the form of heat, that accompanies chemical and physical processes. Chemical

More information

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change Notepack 1 Section 11.1: The Flow of Energy Heat (Pages 293 299) 1. Define the following terms: a. Thermochemistry b. Energy

More information

Thermochemistry deals with the heat involved in chemical and physical changes. 2 H2(g) + O2(g) 2 H2O(g) + energy. Two types of energy

Thermochemistry deals with the heat involved in chemical and physical changes. 2 H2(g) + O2(g) 2 H2O(g) + energy. Two types of energy All course materials, including lectures, class notes, quizzes, exams, handouts, presentations, and other materials provided to students or this course are protected intellectual property. As such, the

More information

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Name: Student Number Instructions: Ensure that this exam contains all eight pages including this page.

More information

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY.

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY. !! www.clutchprep.com CONCEPT: ENERGY CHANGES AND ENERGY CONSERVATION is the branch of physical science concerned with heat and its transformations to and from other forms of energy. is the branch of chemistry

More information

Chapter 6. Heat Flow

Chapter 6. Heat Flow Chapter 6 Thermochemistry Heat Flow Heat (q): energy transferred from body at high T to body at low T Two definitions: System: part of universe we are interested in Surrounding: the rest of the universe

More information

Thermochemistry: Part of Thermodynamics

Thermochemistry: Part of Thermodynamics Thermochemistry: Part of Thermodynamics Dr. Vickie M. Williamson @vmwilliamson Student Version 1 Chemical Thermodynamics! Thermodynamics: study of the energy changes associated with physical and chemical

More information

Study Guide Chapter 5

Study Guide Chapter 5 Directions: Answer the following 1. When writing a complete ionic equation, a. what types of substances should be shown as dissociated/ionized? soluble ionic compounds, acids, bases b. What types of substances

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Chapter 11 Thermochemistry Heat and Chemical Change

Chapter 11 Thermochemistry Heat and Chemical Change Chemistry/ PEP Name: Date: Chapter 11 Thermochemistry Heat and Chemical Change Chapter 11:1 35, 57, 60, 61, 71 Section 11.1 The Flow of Energy - Heat 1. When 435 of heat is added to 3.4 g of olive oil

More information

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13 Chemical Thermodynamics n Thermodynamics is the study of the energetics and order of a system. n A system is the thing we want to study it can be a chemical reaction, a solution, an automobile, or the

More information

THERMODYNAMICS. Energy changes in reactions Text chapter 3, 4, 5, 6 & 7

THERMODYNAMICS. Energy changes in reactions Text chapter 3, 4, 5, 6 & 7 1 THERMODYNAMICS Energy changes in reactions Text chapter 3, 4, 5, 6 & 7 TERMINOLOGY: Thermodynamics: study of heat changes that occur during chemical reactions. Energy (J): Cannot be seen, touched, smelled,

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Name SUNY Chemistry Practice Test: Chapter 5

Name SUNY Chemistry Practice Test: Chapter 5 Name SUNY Chemistry Practice Test: Chapter 5 Multiple Choice 1. 1... 3. 3. 4. 4. 5. 6. 7. 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 18. 19. 0. 1 1) Calculate the kinetic energy in joules of an automobile weighing

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Chapter 5: Thermochemistry

Chapter 5: Thermochemistry Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Jeffrey Mack California State University, Sacramento Energy & Chemistry Questions that need to be addressed: How do we measure

More information

Enthalpy of Formation of Ammonium Chloride Version 6.2.5

Enthalpy of Formation of Ammonium Chloride Version 6.2.5 Enthalpy of Formation of Ammonium Chloride Version 6.2.5 Michael J. Vitarelli Jr. Department of Chemistry and Chemical Biology Rutgers University, 60 Taylor Road, Piscataway, NJ 08854 I. INTRODUCTION Enthalpy

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Experiment #12. Enthalpy of Neutralization

Experiment #12. Enthalpy of Neutralization Experiment #12. Enthalpy of Neutralization Introduction In the course of most physical processes and chemical reactions there is a change in energy. In chemistry what is normally measured is ΔH (enthalpy

More information

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016 Chapter 6 Thermochemistry Chapter 6 Chapter 6 Thermochemistry 6.1 Chemical Hand Warmers 6.2 The Nature of Energy: Key Definitions 6.3 The First Law of Thermodynamics: There is no Free Lunch 6.4 6.5 Measuring

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Calorimetery and Hess s Law

Calorimetery and Hess s Law Calorimetery and Hess s Law Overview: Calorimetry is the technique used to measure the heat required or evolved during a chemical reaction. Heat has units of joules, so one might expect to be using a joule

More information