PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer

Size: px
Start display at page:

Download "PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer"

Transcription

1 PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer Di-Jia Liu, Argonne National Laboratory November 14, 2017 HydroGEN Kick-Off Meeting, National Renewable Energy Laboratory

2 HydroGEN Kick-Off Meeting PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer Lead: Di-Jia Liu, Argonne National Laboratory Sub: Gang Wu, U. of Buffalo, Hui Xu, Giner Inc. Award # Year 1 Funding EE $250,000 Project Vision To lower the capital cost of PEME by adopting precious-metal free OER electro-catalysts Project Impact MOF Current density / macm H 2 O 2H + + ½ O e E (V) / RHE To reduce the anode catalyst cost by 20 folds by developing one or more PGMfree OER catalysts with the performance approaching to that of Ir catalyst, demonstrated at PEME level. PNNE O 2 H + e - H 2 O HydroGEN: Advanced Water Splitting Materials 2

3 Innovation and Objectives Project history Both ANL and UB teams are the pioneers in the MOF derived PGM-free catalysts for oxygen redox reactions. The proposed concepts have been supported by preliminary data obtained at both institutes. Giner is a world leader in PEMWE technology development and commercialization. Barriers Activity: although PGM-free catalysts have been demonstrated respectable activity in alkaline media, few reported for acidic application. Durability: instability of most conductive supports under high polarization potential limits the lifetime of supported catalysts at present Proposed targets Metric State of the Art Proposed Difference in overpotentia ls against Ir black by RDE Current density in operating PEME Overpotential of PGM-free catalyst in acid ~530 10mA/cm 2 Non-existing for PGM-free catalyst in PEME Overpotential <350 mv or 15 mv higher than Ir 10mA/cm 2 in acidic electrolyte PEME/MEA with target performance of > 200 ma/cm 1.80 V Partnerships Computational chemistry and predictive modeling by LLNL and LBNL groups Advanced electron microscopic imaging by SNL group High throughput electrode and electrocatalyst synthesis support / characterization by NREL group. HydroGEN: Advanced Water Splitting Materials 3

4 Technology Innovation Metal-Organic Framework (MOF) Derived PGM-free OER Catalysts TM ion (SBU) Solvothermal High- Temperature + or Solid-state Reaction N-containing Organic Ligand Metal-Organic Framework (MOF) Pyrolysis & Treatment TM Composite Catalyst MOF derived TM composite catalysts can significantly reduce the cost and improve surface property / catalytic activity HydroGEN: Advanced Water Splitting Materials 4

5 Technology Innovation Porous Nano-Network Electrode (PNNE) via Electrospin at ANL Electrospinning Conversion to catalyst H + O 2 e - H 2 O Fabrication to electrode MOF embedded PNNE can improve OER mass-charge transfers and connectivity against oxidative corrosion HydroGEN: Advanced Water Splitting Materials 5

6 Technology Innovation Preliminary RDE ANL SEM/TEM Investigation Preliminary RDE investigation shows ANL s embedded PNNE catalyst with very promising activity and durability; validation at MEA level is needed HydroGEN: Advanced Water Splitting Materials 6

7 Technology Innovation UB s MOF-derived Fe x /N y /C z catalyst showing encouraging activity and stability for the OER in 0.5 M H 2 SO M H 2 SO 4, 900 rpm 50 Current Density (ma/mg) MOF-0.6 mg/cm 2 Current Density, ma/cm Ir loading: 60 g/cm 2 Ir Black_cycle 1 Ir Black_cycle 100 Ir Black_cycle 200 Ir Black_cycle 300 Ir Black_cycle Potential (V vs RHE) Ir-10 g/cm Potential (V vs. RHE) HydroGEN: Advanced Water Splitting Materials 7

8 Technology Innovation FeCoNiMn-derived carbon composites, which have shown remarkable stability in alkaline, will be studied in acids for PEM electrolyzers j / ma/cm Intial After 20k After 30k After 60k j 1.6V = (+) 79.5 NC-FeCoNiMn E 4 onset (mv) = (+) 50 E 1/2 (mv)= (+) E / V vs RHE Before cycling, (0-1.9 V) in 0.1 M NaOH 5 nm 5 nm After cycling 5 nm 5 nm HydroGEN: Advanced Water Splitting Materials 8

9 From RDE to MEA (Giner) Electrode design and development using a variety of aqueous and nonaqueous ionomer dispersions Catalyst ink processing and characterization (rheology, dynamic light scattering, zeta potential, and surface energy) Mitigated membranes to lower hydrogen crossover Dimension-stabilized membranes towards reduced membrane swelling and enhanced membrane mechanical stability Special anode gas diffusion media and bipolar plates for enhanced corrosion resistance HydroGEN: Advanced Water Splitting Materials 9

10 Electrolyzer Test Station and Hardware (Giner) Test Station Three cells can be tested simultaneously Up to 5000 ma/cm 2 for cm 2 hardware HFR embedded to measure cell resistance Remote control and H2 sensor Hardware HydroGEN: Advanced Water Splitting Materials 10

11 Effective Leveraging of the EMN Resource Nodes Computational Materials Diagnostics (LLNL) Predicative modeling to support better OER catalyst design; initial project discussion carried out in October Ab initio & DFT Calculation on OER Catalysis (LBNL) Improved understanding on active site structure & transition state during catalysis; Informal discussion carried out in August Advanced Electron Microscopy (SNL) High resolution imaging support to better understanding on catalyst morphology and composition; initial project discussion carried out in October Catalyst Characterization & High-throughput MEA/ Electrode Development (NREL) Surface and electrocatalytic characterization to support catalyst development; Informal discussion carried out in August Support MEA /electrode scale-up and testing; Informal discussion carried out in August HydroGEN: Advanced Water Splitting Materials 11

12 Acknowledgement Argonne National Laboratory Lina Chong Hao Wang University of Buffalo, SUNY Gang Wu Giner Inc. Hui Xu US DOE Office of Fuel Cell Technologies Eric Miller Program Manager Dave Peterson Project Manager HydroGEN: Advanced Water Splitting Materials 12

13 Thank You! HydroGEN: Advanced Water Splitting Materials 13

Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices

Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices PI: Thomas Jaramillo 1, co-pi: Jim Harris 2 1 Dept. of Chemical Engineering,

More information

V.A.11 Development of Ultra-Low Platinum Alloy Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells

V.A.11 Development of Ultra-Low Platinum Alloy Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells V.A.11 Development of Ultra-Low Platinum Alloy Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells Branko N. Popov University of South Carolina (USC) 301 Main Street Columbia, SC 29208 Phone:

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

V.A.12 Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design

V.A.12 Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design V.A.12 Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design Piotr Zelenay (Primary Contact), R. Borup, H. Chung, D. Langlois, Q. Li, G. Wu Materials Physics and Applications

More information

Cross Section of Proton Exchange Membrane Fuel Cell

Cross Section of Proton Exchange Membrane Fuel Cell PEMFC Electrodes 1 Cross Section of Proton Exchange Membrane Fuel Cell Anode Cathode 2 Typical PEMFC Electrodes: - Anode Hydrogen Oxidation - Pt Ru / C - Cathode Oxygen reduction - Pt / C Pt is alloyed

More information

HydroGEN Kick-Off Meeting University of Colorado, Boulder STCH. Charles Musgrave, University of Colorado - Boulder November 14, 2017 NREL, Golden, CO

HydroGEN Kick-Off Meeting University of Colorado, Boulder STCH. Charles Musgrave, University of Colorado - Boulder November 14, 2017 NREL, Golden, CO HydroGEN Kick-Off Meeting University of Colorado, Boulder STCH Charles Musgrave, University of Colorado - Boulder November 14, 2017 NREL, Golden, CO HydroGEN Kick-Off Meeting Computationally Accelerated

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Scalable Elastomeric Membranes for Alkaline Water Electrolysis. Author Name: Yu Seung Kim Date: November 13, 2017 Venue: NREL

Scalable Elastomeric Membranes for Alkaline Water Electrolysis. Author Name: Yu Seung Kim Date: November 13, 2017 Venue: NREL Scalable Elastomeric Membranes for Alkaline Water Electrolysis Author ame: Yu Seung Kim Date: ovember 13, 2017 Venue: REL HydroGE Kick-Off Meeting Scalable Elastomeric Membranes for Alkaline Water Electrolysis

More information

CURRICULUM VITAE. 1. Synthesis and characterizations of Pd Modified Pt/C Catalysts for. Proton Exchange Membrane Fuel Cell.

CURRICULUM VITAE. 1. Synthesis and characterizations of Pd Modified Pt/C Catalysts for. Proton Exchange Membrane Fuel Cell. CURRICULUM VITAE Haifeng Lv, Candidate for PhD Gender: male Birth: Jun.25, 1984 Citizenship: People s Republic of China Place of Birth: Qiqihar city, Heilongjiang province Major: Materials Physics and

More information

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nitrogen and sulfur co-doped porous

More information

A Comparison of Oxygen Reduction Reaction (ORR) Performance for Iron- Nitrogen-Carbon (FeNC) Catalysts in Acidic and Alkaline Media

A Comparison of Oxygen Reduction Reaction (ORR) Performance for Iron- Nitrogen-Carbon (FeNC) Catalysts in Acidic and Alkaline Media A Comparison of Oxygen Reduction Reaction (ORR) Performance for Iron- Nitrogen-Carbon (FeNC) Catalysts in Acidic and Alkaline Media Kuldeep Mamtani 1, Christopher Bruening 1, Anne C Co 2 and Umit S Ozkan

More information

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Supplementary Information Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Ok-Hee Kim 1, Yong-Hun Cho 2, Dong Young Chung 3,4, Minjeong Kim 3,4, Ji

More information

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Amorphous carbon supported MoS 2 nanosheets as effective

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface.

Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface. Synopsis Synopsis of the thesis entitled Titanium Nitride-ased Electrode Materials for Oxidation of Small Molecules: pplications in Electrochemical Energy Systems submitted by Muhammed Musthafa O. T under

More information

Department of Bioengineering, 815C Benedum Hall, 3700 O Hara Street, Pittsburgh, PA

Department of Bioengineering, 815C Benedum Hall, 3700 O Hara Street, Pittsburgh, PA 1 Supplementary information 2 3 Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro- catalysts 4 5 6 Prasad Prakash Patel 1, Moni Kanchan Datta 2,3, Oleg I. Velikokhatnyi

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Fig. S1 XRD patterns of a-nifeo x

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction Supporting Information: Magnesiothermic synthesis of sulfur-doped as an efficient metal-free electrocatalyst for oxygen reduction Jiacheng Wang, 1,2,3, * Ruguang Ma, 1,2,3 Zhenzhen Zhou, 1,2,3 Guanghui

More information

EnzHyd Enzymes and organometallic catalysts in hydrogen fuel cells PAN-H 2008 Vincent Artero irtsv/cbm CEA Grenoble

EnzHyd Enzymes and organometallic catalysts in hydrogen fuel cells PAN-H 2008 Vincent Artero irtsv/cbm CEA Grenoble EnzHyd Enzymes and organometallic catalysts in hydrogen fuel cells PAN-H 2008 Vincent Artero irtsv/cbm CEA Grenoble The EnzHyd project Title: Enzymes and organometallic catalysts in hydrogen fuel cells

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C a 2 15 before cycle test mean particle size: 3.8 ± 1.2 nm b 2 15 after.6v - 1.V 1k cycle test mean particle size: 4.1 ± 1.5 nm Number 1 total number: 558 Number 1 total number: 554 5 5 1 2 3 4 5 6 7 8

More information

Review of temperature distribution in cathode of PEMFC

Review of temperature distribution in cathode of PEMFC Project Report 2008 MVK 160 Heat and Mass Transport May 08, 2008, Lund, Sweden Review of temperature distribution in cathode of PEMFC Munir Ahmed Khan Department of Energy Sciences, Lund Institute of Technology,

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction Supporting Information Electronic Modulation of Electrocatalytically Active Center of Cu 7 S 4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction Qun Li, Xianfu Wang*, Kai Tang,

More information

Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction Mmalewane Modibedi, Eldah Louw, MKhulu Mathe, Kenneth Ozoemena mmodibedi@csir.co.za

More information

Fuel Cell Activities in MME Waterloo

Fuel Cell Activities in MME Waterloo Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario,

More information

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Raja Swaidan The Cooper Union Advisor: Dr. Branko N. Popov Electrochemical Engineering 26 July 2007 Overview of Research Studied

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Guangfu Li, PhD. Room 230H, Science and Engineering Building 2

Guangfu Li, PhD. Room 230H, Science and Engineering Building 2 Curriculum Vitae Education Room 230H, Science and Engineering Building 2 Thermal and Electrochemical Energy Laboratory University of California, Merced, CA, 95343 Phone: 209-7772351 Email: gli27@ucmerced.edu

More information

General Energy PEM Membrane Tests

General Energy PEM Membrane Tests General Energy PEM Membrane Tests Date 11/03/2016 Author Annette Mosdale, R&D PaxiTech Client Ms. Sophia Hu General Energy Room 404, 321 Talent Building, No. 1009 East Tianyuan Road Nanjing 210000 PR China

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Supporting Information Mesoporous N-Doped Carons Prepared with Thermally Removale Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Wenhan Niu, a Ligui Li,* a Xiaojun Liu,

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary information for Self-assembled Two-dimensional Copper Oxide

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Trifunctional Ni-N/P-O-codoped graphene electrocatalyst

More information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information 4 Activity 1-2 class sessions Modeling the uel Cell Reaction 2011 Regents of the University of California Overview n order to understand the chemistry of fuel cells, students are introduced to oxidation-reduction

More information

Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non- Precious Electrocatalyst Systems.

Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non- Precious Electrocatalyst Systems. S1 Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non- Precious Electrocatalyst Systems. Urszula Tylus a, Qingying Jia a, Kara Strickland a, Nagappan Ramaswamy a, #,

More information

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon.

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon. Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2015 Achieving Stable and Efficient Water Oxidation by Incorporating NiFe Layered Double Hydroxide

More information

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 114 Roger Adams Laboratory, MC-712, 600

More information

CARBON. Electrochemical ond Physicochemicol Properties KIM KINOSHITA. Lawrence Berkeley Laboratory Berkeley, California

CARBON. Electrochemical ond Physicochemicol Properties KIM KINOSHITA. Lawrence Berkeley Laboratory Berkeley, California CARBON Electrochemical ond Physicochemicol Properties KIM KINOSHITA Lawrence Berkeley Laboratory Berkeley, California A Wiley-Interscience Publicotion JOHN WILEY & SONS New York / Chichester / Brisbane

More information

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells Fuel Cells Instructor James M. Fenton, Professor, Chemical Engineering University of Connecticut Teaching Assistants: 1.

More information

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Supporting Information MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Nanoparticles: Low Pt Contents and Robust Activity towards Electrocatalytic Oxygen Reduction Reaction Li-Li Ling,

More information

High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured. Copper Electrodes

High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured. Copper Electrodes Supporting Information High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured Copper Electrodes Yuxuan Wang, David Raciti, Chao Wang * Department of Chemical and Biomolecular Engineering, Johns

More information

Supporting information

Supporting information a Supporting information Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron- Embedded Porous Carbons Derived from Metal Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and

More information

The Curious Case of Au Nanoparticles

The Curious Case of Au Nanoparticles The Curious Case of Au Nanoparticles Industrial reactions performed by metals 1 Low Au reactivity Predictions are typically based on d-band model Hold well for polycrystalline materials Coinage metals

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/332/6028/443/dc1 Supporting Online Material for High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt Gang Wu, Karren L.

More information

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Seonbaek Ha Professor : Carlo U. Segre 12. 06. 2013 Department of Chemical

More information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Self-Growth-Templating Synthesis of

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Polyoxometalate Coupled Graphene Oxide-Nafion Composite. Membrane for Fuel Cell Operating at Low Relative Humidity

Polyoxometalate Coupled Graphene Oxide-Nafion Composite. Membrane for Fuel Cell Operating at Low Relative Humidity Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Polyoxometalate Coupled Graphene

More information

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell by Ibrahim Alaefour A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Supporting Information Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Teng Wang, Yanru Guo, Zhenxing Zhou, Xinghua Chang, Jie Zheng *,

More information

Catalyst Development Needs

Catalyst Development Needs Catalyst Development Needs (presented at the NSF Workshop in Washington DC, Nov. 14-15, 2001) Hubert Gasteiger 1) Mark Mathias 2) Susan Yan 3) Cathode Catalysts cathode related MEA performance losses cathode

More information

Supporting Information

Supporting Information Supporting Information Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur Drew C. Higgins, Md Ariful Hoque, Fathy Hassan, Ja-Yeon Choi, Baejung Kim, Zhongwei

More information

produce water. Figure 1. Basic Diagram of a PEMFC. [1]

produce water. Figure 1. Basic Diagram of a PEMFC. [1] Effects of Graphene Oxide on Proton Exchange Membrane Fuel Cells Henry Ho, Jesse Matsuda, Mailun Yang, Likun Wang, Miriam Rafailovich Materials Science and Chemical Engineering Department, Stony Brook,

More information

Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density

Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, F. Fouda-Onana Univ.

More information

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral Supporting Information Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction Polyansky* Yu-Chi Hsieh, Sanjaya D. Senanayake,

More information

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL S. Beharry 1 1 University of the West Indies, St. Augustine, Trinidad and Tobago Abstract: In recent years, scientists

More information

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell A. H. Sadoughi 1 and A. Asnaghi 2 and M. J. Kermani 3 1, 2 Ms Student of Mechanical Engineering, Sharif University of Technology Tehran,

More information

Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis

Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis This journal is The Royal Society of Chemistry 04 Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis Electronic Supplementary Information Javier Parrondo

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 195 (2010) 5875 5881 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour H 2 /air alkaline membrane fuel cell

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

Tuning electronic structures of non-precious ternary alloys. encapsulated in graphene layers for optimizing overall water splitting

Tuning electronic structures of non-precious ternary alloys. encapsulated in graphene layers for optimizing overall water splitting Tuning electronic structures of non-precious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity Yang Yang,a Zhiyu Lin,a Shiqi Gao,a Jianwei Su,a Zhengyan Lun,a

More information

Title: Electrochemical studies for oxygen reduction reaction using Zn 1-x Co x O for fuel cell applications.

Title: Electrochemical studies for oxygen reduction reaction using Zn 1-x Co x O for fuel cell applications. Title: Electrochemical studies for oxygen reduction reaction using Zn 1-x Co x O for fuel cell applications. Authors: Alonso-Sevilla, Suheily; Martínez-Torres, Dinorah; Estrada-Álvarez, Ana G.; Sánchez-Zalduondo,

More information

Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction

Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction Hoon Chung, Gang Wu, Drew Higgins, Pouyan Zamani, Zhongwei Chen and Piotr Zelenay 1 Introduction 1.1 Polymer Electrolyte Fuel Cells The Cathode

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Connected nanoparticle catalysts possessing a porous,

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

This paper reports a very well executed insitu study of core shell nanoparticles of Pt and Pd that are used for ORR.

This paper reports a very well executed insitu study of core shell nanoparticles of Pt and Pd that are used for ORR. Reviewers' comments: Reviewer #1 (Remarks to the Author): This paper reports a very well executed insitu study of core shell nanoparticles of Pt and Pd that are used for ORR. these experiments are not

More information

V.A.2 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes

V.A.2 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes V.A.2 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes Bryan Pivovar (Primary Contact), Shyam Kocha, KC Neyerlin, Jason Zack, Shaun Alia, Arrelaine Dameron, Svitlana Pylypenko, Justin

More information

Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions. Eiji Endoh a. Yokohama, JAPAN

Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions. Eiji Endoh a. Yokohama, JAPAN 10.1149/1.2356118, copyright The Electrochemical Society Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions Eiji Endoh a a Research Center, Asahi Glass Co., Ltd. 1150 Hazawacho,

More information

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Facile synthesis of multiporous CuCo2O4 microspheresas efficient electrocatalysts for rechargeable Li-O2

More information

Review A Perspective on Low-Temperature Water Electrolysis Challenges in Alkaline and Acidic Technology

Review A Perspective on Low-Temperature Water Electrolysis Challenges in Alkaline and Acidic Technology Int. J. Electrochem. Sci., 13 (2018) 1173 1226, doi: 10.20964/2018.02.26 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Review A Perspective on Low-Temperature Water Electrolysis

More information

PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review

PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review J Appl Electrochem (2013) 43:119 136 DOI 10.1007/s10800-012-0513-2 REVIEW PAPER PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review A. Brouzgou A. Podias P. Tsiakaras Received:

More information

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Supporting information for Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Lei Dai, 1 Qing Qin, 1 Xiaojing Zhao,

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique Supporting Information Design 3D hierarchical architectures of carbon and highly active transition-metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithiumair batteries Dongxiao Ji, Shengjie

More information

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 )

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 ) Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes Shizhang Qiao ( 乔世璋 ) s.qiao@adelaide.edu.au The University of Adelaide, Australia 18 19 January 216, Perth 1.

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References and Sources: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 1982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley,

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

Supporting Information for

Supporting Information for Supporting Information for Iridium-tungsten Alloy Nanodendrites as ph-universal Water Splitting Electrocatalysts Fan Lv, Jianrui Feng, Kai Wang, Zhipeng Dou, Weiyu Zhang, Jinhui Zhou, Chao Yang, Mingchuan

More information

Supporting information

Supporting information Supporting information Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions Yinlong Zhu, Wei Zhou*, Jie Yu, Yubo Chen, Meilin

More information

Electrochemical Dinitrogen Fixation

Electrochemical Dinitrogen Fixation Electrochemical Dinitrogen Fixation Investigators Matthew W. Kanan, Assistant Professor, Department of Chemistry, Stanford University Thomas Veltman, Graduate Researcher, Department of Chemistry, Stanford

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Alcohol Oxidation Reactions on Porous PtCu/C Catalysts THESIS. the Graduate School of The Ohio State University. Heewon J. Choi, B.S.

Alcohol Oxidation Reactions on Porous PtCu/C Catalysts THESIS. the Graduate School of The Ohio State University. Heewon J. Choi, B.S. Alcohol Oxidation Reactions on Porous PtCu/C Catalysts THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By

More information

A Novel Photo-electrochemical Approach for the Chemical Recycling of Carbon Dioxide to Fuels

A Novel Photo-electrochemical Approach for the Chemical Recycling of Carbon Dioxide to Fuels A Novel Photo-electrochemical Approach for the Chemical Recycling of Carbon Dioxide to Fuels Claudio Ampelli*, Rosalba Passalacqua, Chiara Genovese, Siglinda Perathoner, Gabriele Centi Department of Industrial

More information

Final Publishable Executive Summary

Final Publishable Executive Summary Project no.: NMP3-CT-2004-505906 Project acronym: NENA Project title: Nanostructures for Energy and Chemicals Production Instrument: STREP Thematic Priority: Nanoscience and nanotechnology Final Publishable

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Elektrochemie Prof. Petr Novàk WS 2017/2018 Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Assistant: Laura Höltschi (laura.hoeltschi@psi.ch) Exercise 1 In a very diluted aqueous

More information

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods G. Schiller, E. Gülzow, M. Schulze, N. Wagner, K.A. Friedrich German Aerospace Center (DLR), Institute of Technical

More information

Cobalt Ferrite bearing Nitrogen Doped Reduced. Graphene Oxide Layers Spatially Separated with. Electrocatalyst

Cobalt Ferrite bearing Nitrogen Doped Reduced. Graphene Oxide Layers Spatially Separated with. Electrocatalyst Supporting Information Cobalt Ferrite bearing Nitrogen Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst Varchaswal Kashyap,,

More information

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ; i i : L4 0 t DSCLAMER Portions of this document may be illegible in electronic image products. mages are produced from the best available original document. EVALUATON OF THE HUMDFCATON REQTJREMENTS OF

More information