, Fax: , Inframat Corp., Willington, CT 06279

Size: px
Start display at page:

Download ", Fax: , Inframat Corp., Willington, CT 06279"

Transcription

1 Mat. Res. Soc. Symp. Proc. Vol Materials Research Society DD Synthesis and Characterization of Structure Controlled Nano-cobalt Particles Shiqiang (Rob) Hui 1, Mingzhong Wu 1, Shihui Ge 1, Dajing Yan 1, Y.D. Zhang 1 *, T.D. Xiao 1, M. J. Yacaman 2, M. Miki-Yoshida 3, W. A. Hines 4, and J. I. Budnick 4, 1 Inframat Corporation, Farmington, CT Department of Chemical Engineering, University of Texas, Austin, TX Texas Materials Institute, University of Texas at Austin, Austin, TX Physics Department and IMS, University of Connecticut, Storrs, CT ABSTRACT Nanostructured cobalt particles with and without a ceramic coating have been synthesized using a wet chemical method. The structure and magnetic properties of synthesized powder were characterized using x-ray diffraction ( XRD ), high-resolution transmission electron microscopy ( HRTEM ), and a Quantum Design (SQUID) magnetometer. The cobalt nanoparticles are of either face-centered cubic ( fcc ) and/or hexagonally close-packed ( hcp ) crystalline structures. The average grain size is ~14 nm for cobalt (either fcc or hcp) with an amorphous silica coating, and the average grain size is ~9 nm for hcp cobalt and 26 nm for fcc cobalt without a silica coating. The effect of annealing temperature on grain size and magnetic properties are addressed. INTRODUCTION Cobalt has been known with allotropic forms including fcc, hcp, epsilon ( ), and bodycentered cubic ( bcc ). Hull first reported the existence of fcc and hcp-cobalt after analyzing different patterns of metallic powders prepared by several methods in 1921 [1]. The ε-cobalt, a complex cubic primitive structure (P4 3 32), was recently recognized by Dinega et al. through a detailed structure analysis [2]. A non-equilibrium bcc structure, which does not naturally occur in bulk materials, was also obtained using epitaxial growth [3]. The fcc structure is thermodynamically preferred at higher temperatures and the hcp structure is favored at lower temperatures. The ε-cobalt can be converted to common hcp and fcc-cobalt by annealing at temperatures of 300 o C and 500 o C, respectively [4, 5]. However, the fcc structure appears to be stable phase even below room temperature when the particle sizes are smaller than 20nm [6]. Temperatures of about 200 o C are enough to trigger atom diffusion and phase transformations for nanostructured cobalt crystals [7]. The fcc and hcp phases of cobalt are close-packed and nearly isoenergetic crystal structures that differ only in the stacking sequence of atomic planes in the [111] direction. Low activation energy for formation of stacking faults often results in the formation of both phases in the same sample under high-temperature crystallization techniques, such as melting-crystallization and evaporation-condensation. On the other hand, ε-cobalt is most often found in nanostructured particles prepared at low temperatures by solution phase * Author to whom correspondence should be addressed; yzhang@inframat.com, Tel: , Fax: , Inframat Corp., Willington, CT 06279

2 DD chemical synthesis technique, which is generally not thermodynamically controlled and thus can allow the preparation of metastable phases [2, 4]. Cobalt nanocrystals display a wealth of size-dependent structural, magnetic, electronic, and catalytic properties. There has been a considerable amount of research involving the preparation, structure, and properties of magnetic cobalt nanoparticles in the past decade [8-17]. The high magneto crystalline anisotropy of hcp Co has spurred intensive studies of Co-based nanostructures for magnetic storage purposes [18]. Cobalt nanoparticles coated with insulators have been prepared and studied for the applications in AC electrical and electronic devices [19-21]. With the growing interest in building advanced materials using nanoscale building blocks, there is a need to control the sizes, shapes, and structures. Different crystalline structures provide some practical benefits. Symmetrically structured fcc-cobalt provides higher saturation moment and lower magnetic anisotropy, which is suitable for linear applications such as converter. On the other hand, asymmetric hcp-cobalt has been a basic element for high temperature permanent magnets, and is also suitable for microwave applications such as in circulator. To date, making magnetic cobalt nanocrystals has been difficult and required costly size-selective precipitation methods. In practice, cobalt nanoparticles often possesses mixed structures in which low energy stacking faults introduce a combination of fcc and hcp character, making the synthesis of single structured cobalt a challenging task. Puntes et al achieved size and shape-controlled cobalt nanorods as well as spherically shaped nanocrystals [22]. In this work, we reported the successful preparation of structure-controlled cobalt nanoparticles with or without coating. EXPERIMENTAL Cobalt nanoparticles with or without an amorphous SiO 2 coating were synthesized by a wet chemical approach [23]. The main procedures included: (1) preparing the starting precursors containing cobalt and silicon, (2) atomizing the precursors to make colloidal solutions, (3) annealing the solutions to form a pre-composite complex, and (4) low temperature calcination to form cobalt or SiO 2 -coated cobalt nanoparticles. The cobalt concentration in the synthesized nanoparticles was found to be dependent mainly on the precursor concentration and the calcination temperature. In this paper, the nanoparticle samples were prepared by using the same precursor but different calcination temperatures of 600, 700, 800 and 900 C. The volume fraction of cobalt in these samples was targeted at 50%. The structure of the Co nanoparticles was determined by powder XRD analysis using Cu K α1 radiation. Morphology and microstructure was analyzed using HRTEM. The analysis was performed in a JEOL-2010F high resolution field emission electron microscope, with a point to point resolution of 0.19 nm. The microscope was also coupled with an EDS system to perform nanobeam analysis. Magnetic properties were studied using a SQUID magnetometer. RESULTS AND DISCUSSION A series of cobalt samples have been prepared and their XRD patterns were shown in Fig. 1. It is evident that the as-synthesized nanopowders correspond to either hcp or fcc structure of

3 DD Intensity (a) #32602 (b) #43022 (c) # Intensity (a) #52024 (b) # Fig. 1. X-ray diffraction patterns for as synthesized cobalt nanoparticles with different structures: (a) hcp, (b) mixed hcp and fcc, and (c) fcc. 2θ θ Fig. 2. X-ray diffraction patterns for assynthesized nanocobalt particles coated with silica (Co:SiO 2 50:50 in vol): (a) hcp, (b) fcc. cobalt depending on the controlled processing conditions, including starting materials, additives, and heat-treatment temperatures [23]. The average grain size of the synthesized cobalt nanoparticles was estimated by the Scherrer formula from the (101) and (111) diffraction peak for hcp and fcc-cobalt, respectively [24]. A value of 9nm for hcp-cobalt and 26nm for fcc-cobalt was obtained. It illustrates clearly from the XRD pattern that the (101) hcp-cobalt diffraction peak was further broadened than other reflection peaks. This is most likely due to the formation of stacking faults, leading to energetically growth along the b-axis, indicating that the synthesized nanoparticles might be in the shape of rods rather than other shapes. A tempt to directly observe the detailed microstructure by TEM was not successful. It is difficult to make isolated nanoparticles of cobalt for TEM observation because of large attractive van der Waals and magnetic forces between the particles. Similarly, silica-coated cobalt (Co:SiO 2 50:50 in vol) nanoparticles were prepared under different conditions and the XRD patterns for the as-synthesized samples were shown in Fig. 2. The as-synthesized samples can be signed as either hcp or fcc-cobalt with estimated being approximately the same average grain size of 14nm from the XRD peak broadening analysis. There were no peaks corresponding silica, indicating that the silica was most likely in its amorphous state. HRTEM studies were carried out to study the nanostructure of these samples. A typical nanoparticle image for sample and was shown in Fig. 3. (a) and (c), respectively. In addition, an enlarged FFT filtered image of squared zone was shown in Fig. 3. (b) for sample , which shown atomic resolution images of planes (111) and (-111), corresponding to the cubic phase of Co (PDF # ). Fig. 3. (c) shows characteristic images of a Co particle surrounded by SiO 2. A core-shell structure is clearly evident in the HRTEM image. The enlarged zone in Fig. 3. (d) shows FFT filtered image of the atomic resolution of planes (101) and (002), corresponding to a hexagonal structure (PDF # ) for sample The average particle size is about 18nm from the analysis of TEM particle distribution for both samples, which is consistent with the calculation from XRD. The slight

4 DD (a) (b) (-111) (111) 10 nm (c) (d) (002) 10 nm (101) Fig. 3. HRTEM images for: (a) sample and (c) sample Enlarged zone shows atomic resolution images of planes: (b) (111) and (-111) for sample and (d) (101) and (002) for sample difference between these two values is due to the methodology difference between XRD and TEM. The silica-coated cobalt nanoparticles with fcc structure were prepared at different temperatures form oc in order to study the property-temperature relationship. From the (111) diffraction peak, the average grain size of the inner cobalt core in the synthesized Co/SiO2 nanoparticles was estimated (see Fig. 4). The cobalt grain size increased slightly with temperature when the calcination temperature was 800 C or below. At above 800 oc, the cobalt grain size increased significantly. This indicates that when the calcination was conducted at 800 C or below, the SiO2 coating remained as an unbroken shell and prevented the coarsening of the

5 DD cobalt nanoparticles. The SiO 2 coating no longer acted as a barrier to effectively to prevent abnormal cobalt grain growth at 900 C. Magnetic properties of the synthesized cobalt nanoparticles were also studied for these samples prepared at different temperatures. Fig. 4 shows the coercivities measured at 10 K and 300 K as a function of calcination temperature. The coercivity of the cobalt/silica nanocomposite material decreases with increasing calcination temperature. Since the cobalt phase in the nanoparticles calcined at lower temperature has a smaller effective size due to the presence of the inner Cooxide core, it can be inferred from Fig. 4 that the coercivity decreased with increasing particle size. This result is consistent with the theoretical analysis given in reference [25], where R. C. 2 O Handley argued that the coercivity went as H c a r b (r, particle size) for non- interacting single-domain fine particles. The cobalt nanoparticles in our measured samples are free from interaction, and their sizes are smaller than the single-domain critical size (76 nm) of fcc cobalt particles [17]. Coercivity (Oe) Coercivity at 10 K Coercivity at 300 K Particle size (nm) Calcination temperature (C) Particle size (nm) Fig. 4. Change of magnetic property and grain size as a function of temperature for silicacoated nanoparticles of cobalt. Fig. 4 also reveals that the coercivities measured at 10 K are notably higher than those measured at 300 K for the nanoparticles calcined at 600, 700, and 800 C. This is believed to be due to the Co/CoO exchange coupling, which occurs at 10 K and disappears at 300 K. Besides, although the nanoparticles calcined at low temperatures exhibited high coercivities up to Oe, the nanoparticles calcined at 900 C exhibited low coercivities of Oe at 10 K and 63.3 Oe at 300 K. This indicates that, using the engineered wet chemical approach, the magnetic softness of the nanoparticles can be readily controlled by the calcination temperature. CONCLUSION Cobalt nanoparticles with or without silica coating were synthesized using the engineered wet chemical approach. Their structure was found to vary with preparation conditions and could be controlled as either hcp or fcc structure. For silica-coated cobalt nanoparticles, their gain size

6 DD increased slightly when the calcination temperature was lower than 800 C. The silica shell as observed by HRTEM hindered the grain growth of cobalt nanoparticles during the synthesis. ACKNOWLEDGMENTS This work was supported by DARPA through contract No. F7-6AM945-X05. REFERENCES 1. A.W. Hull, Phys. Rev. 17, 571 (1921). 2. D.P. Dinega and M.G. Bawendi, Angew. Chem. Int. Ed. Engl. 38, 1788 (1999). 3. S. Sun, C.B. Murray, and H. Doyle, in Advanced Hard and Soft Magnetic Materials, eds. M. Coey, L.H. Lewis, B.M. Ma, T. Schrefl, L. Schultz, J. Fidler, V.G. Harris, R. Gasegawa, A. Inoue, and M. McHenry, Met. Res. Soc. Symp. Proc. 577, Warrendale, PA, p.385 (1999). 4. S. Sun and C.B. Murray, J. Appl. Phys. 85, 4325 (1999). 5. A. Y. Liu and D. J. Singh, Bcc cobalt: metastable phase or forced structure? J. Appl. Phys. 73, 6189 (1993). 6. O. Kitakami, H. Satao, Y. Shimada, F. Sato and M. Tanaka, Phys. Rev. B 56, (1997). 7. M.H. Yang and C.P. Flynn, Phys. Rev. Lett. 62, 1476 (1989). 8. J.F. Loffler, H.B. Braun, W. Wagner, G. Kostorz, and A. Wiedenmann, Materials Science and Engineering A 304, 1050 (2001). 9. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, and K.J. Klabunde, IEEE Transactions on Mangnetics 28, 3174 (1992). 10. O. Kitakami, H. Sato, and Y. Shimada, Physical Review B 56, (1997). 11. C.J. Choi, X.L. Dong, and B.K. Kim, Scripta Materialia 44, 2225 (2001). 12. M. Jamet, V. Dupuis, C. Thirion, W. Wernsdorfer, P. Melinon, and A. Perez, Scripta Materialia 44, 1371 (2001). 13. S. Ram, Materials Science and Engineering A 304, 923 (2001). 14. A.H. MacDonald and C.M. Canali, Solid State Communications 119, 253 (2001). 15. E.E. Carpenter, C.T. Seip, and C.J. O Connor, J. Applied Physics 85, 5184 (1999). 16. W. Wernsdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, and D. Mailly, Physical Review Letters 78, 1791 (1997). 17. Y.D. Zhang, J.I. Budnick, W.A. Hines, S.A. Majetich, and E.M. Kirkpatrick, Applied Physics Letters 76, 94 (2000). 18. K. O, Grady and H. Laidler, J. Magnetism and Magnetic Materials 200, 616 (1999). 19. Y.D. Zhang, S.H. Wang, D.T. Xiao, J.I. Budnick, and W.A. Hines, IEEE Transactions on Magnetics 37, 2275 (2001). 20. M. Wu, Y. D. Zhang, S. Hui, S. Ge, W.A. Hines, and J.I. Budnick, J. Applied Physics 92, 491 (2002). 21. M. Wu, Y. D. Zhang, S. Hui, S. Ge, W.A. Hines, and J.I. Budnick, Applied Physics Letter 20, 4404 (2002). 22. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291, 2115 (2001). 23. Y.D. Zhang, S.H. Wang, and D.T. Xiao, Co-based magnetic nanocomposite materials and the synthesis method, U.S. Patent Appl. No. 60/243,649 (October 26, 2000). 24. H. Lipson and H. Steeple, Interpretation of X-Ray Powder Diffraction Patterns (St Martin s Press, New York, 1970), p R.C. O Handley, Modern Magnetic Materials (John Wiley & Sons, New York, 2000), p. 435.

Structure and magnetic properties of SiO 2 -coated Co nanoparticles

Structure and magnetic properties of SiO 2 -coated Co nanoparticles JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 1 1 JULY 2002 Structure and magnetic properties of SiO 2 -coated Co nanoparticles Mingzhong Wu Department of Physics and Institute of Materials Science, University

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012188 TITLE: Nanostructured NiFe204 Soft Magnetic Ferrite DISTRIBUTION: Approved for public release, distribution unlimited

More information

STRUCTURE AND MAGNETIC PROPERTIES OF SiO 2 COATED Fe 2 NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS

STRUCTURE AND MAGNETIC PROPERTIES OF SiO 2 COATED Fe 2 NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS Rev.Adv.Mater.Sci. Structure and magnetic 4 (2003) properties 55-59 of coated 55 STRUCTURE AND MAGNETIC PROPERTIES OF COATED NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS Ji-Hun Yu,

More information

Title: Magnetic chains of metal formed by assembly of small nanoparticles

Title: Magnetic chains of metal formed by assembly of small nanoparticles Title: Magnetic chains of metal formed by assembly of small nanoparticles Authors: Chen-Min Liu, Lin Guo*, Rong-Ming Wang*, Yuan Deng, Hui-Bin Xu, Shihe Yang* Supporting Information S1. Sample characterization

More information

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery Supporting information for Supplementary Material (ESI) for Journal of Materials Chemistry Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer

More information

Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications

Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications Journal of Magnetism and Magnetic Materials 293 (2005) 15 19 www.elsevier.com/locate/jmmm Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications Yuping Bao, Kannan

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 156 Copper Nanoparticles: Green Synthesis Characterization Y.Suresh*1, S.Annapurna*2, G.Bhikshamaiah*3, A.K.Singh#4 Abstract Present work describes the synthesis nanoparticles using papaya extract as a

More information

Supplementary Information

Supplementary Information Supplementary Information Fabrication of Novel Rattle-Type Magnetic Mesoporous carbon Microspheres for Removal of Microcystins Xinghua Zhang and Long Jiang* Beijing National Laboratory for Molecular Science

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Tailoring the shapes of Fe x. Pt 100 x. nanoparticles. Home Search Collections Journals About Contact us My IOPscience

Tailoring the shapes of Fe x. Pt 100 x. nanoparticles. Home Search Collections Journals About Contact us My IOPscience Home Search Collections Journals About Contact us My IOPscience Tailoring the shapes of Fe x Pt 100 x nanoparticles This content has been downloaded from IOPscience. Please scroll down to see the full

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

Structural and magnetic properties of Ni doped CeO 2 nanoparticles

Structural and magnetic properties of Ni doped CeO 2 nanoparticles *E-mail: shailuphy@gmail.com Abstract: We report room temperature ferromagnetism in Ni doped CeO 2 nanoparticles using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM),

More information

Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation

Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation Supporting information for Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation Ling-Ling Zhao a, Zhi-Ming Gao a, Hui Liu a, Jing Yang a, Shi-Zhang Qiao a,b, Xi-Wen Du a a School

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Microstructure evolution during BaTiO 3 formation by solid-state reactions on rutile single crystal surfaces

Microstructure evolution during BaTiO 3 formation by solid-state reactions on rutile single crystal surfaces Journal of the European Ceramic Society 25 (2005) 2201 2206 Microstructure evolution during BaTiO 3 formation by solid-state reactions on rutile single crystal surfaces Andreas Graff a,, Stephan Senz a,

More information

Ethylenediaminetetraacetic Acid-Assisted Synthesis of Nano Antimony Oxide by Microwave Method

Ethylenediaminetetraacetic Acid-Assisted Synthesis of Nano Antimony Oxide by Microwave Method Ethylenediaminetetraacetic Acid-Assisted Synthesis of Nano Antimony Oxide by Microwave Method Azadeh Tadjarodi*, Mohammad karimpour Department of Chemistry, Iran University of Science and Technology, Narmak,

More information

In Situ synthesis of architecture for Strong Light-Matter Interactions

In Situ synthesis of architecture for Strong Light-Matter Interactions In Situ synthesis of Ag@Cu2O-rGO architecture for Strong Light-Matter Interactions Shuang Guo 1, 2, Yaxin Wang 1, *, Fan Zhang 1, Renxian Gao 1, Maomao Liu 1, Lirong Dong 1, Yang Liu 2, Yongjun Zhang 2,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM.

STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM. CHAPTER - VI STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM. 6.1 INTRODUCTION ZnS is an important direct band gap semiconductor. It has a band gap energy of 3.6 ev[1], displays a high refractive index (2.37)

More information

Magnetic Properties of FexPtyAu100_X_y Nanoparticles

Magnetic Properties of FexPtyAu100_X_y Nanoparticles Copyright 20 American Scientific Publishers Journal of An rights reserved Nanoscience and Nanotechnology Printed in the United States of America Vol., 2979-2983, 20 Magnetic Properties of FexPtyAu0_X_y

More information

Evolution of superconductivity in LaO 1-x F x BiS 2 prepared by high pressure technique

Evolution of superconductivity in LaO 1-x F x BiS 2 prepared by high pressure technique Evolution of superconductivity in LaO 1-x F x BiS 2 prepared by high pressure technique K. Deguchi 1,2,3, Y. Mizuguchi 1,2,4, S. Demura 1,2,3, H. Hara 1,2,3, T. Watanabe 1,2,3, S. J. Denholme 1,2, M. Fujioka

More information

SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR

SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR Nanomaterials: Applications and Properties (NAP-2011). Vol. 1, Part I 107 SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR M. Salavati Niasari 1,2* 1 Department of Inorganic Chemistry, Faculty

More information

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang 1 Electronic Supplementary Information (ESI) Facile synthesis of porous nickel manganite materials and their morphologies effect on electrochemical properties Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan

More information

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics Materials Science-Poland, Vol. 27, No. 3, 2009 Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics C. FU 1, 2*, F. PAN 1, W. CAI 1, 2, X. DENG 2, X. LIU 2 1 School of Materials Science

More information

Supporting Information

Supporting Information Supporting Information Facile Synthesis of Ag@Pd Satellites-Fe 3 O 4 Core Nanocomposite as Efficient and Reusable Hydrogenation Catalysts Kun Jiang, a Han-Xuan Zhang, a Yao-Yue Yang a, Robert Mothes, b

More information

DOI: /jacs.7b02953 J. Am. Chem. Soc. 2017, 139,

DOI: /jacs.7b02953 J. Am. Chem. Soc. 2017, 139, DOI: 10.1021/jacs.7b02953 J. Am. Chem. Soc. 2017, 139, 6761 6770 Manju C K 01.07.2017 Introduction In the last several decades, colloidal chemistry has provided effective ways to synthesize inorganic nanomaterials

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Synthesis of Uniform Hollow Oxide Nanoparticles. through Nanoscale Acid Etching

Synthesis of Uniform Hollow Oxide Nanoparticles. through Nanoscale Acid Etching Supporting Information Synthesis of Uniform Hollow Oxide Nanoparticles through Nanoscale Acid Etching Kwangjin An, Soon Gu Kwon, Mihyun Park, Hyon Bin Na, Sung-Il Baik, Jung Ho Yu, Dokyoon Kim, Jae Sung

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information One-pot synthesis of ultralong coaxial Au@Pt nanocables with

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis and electrochemical properties of spherical and hollow-structured

More information

Supplementary information

Supplementary information Supplementary information Electrochemical synthesis of metal and semimetal nanotube-nanowire heterojunctions and their electronic transport properties Dachi Yang, ab Guowen Meng,* a Shuyuan Zhang, c Yufeng

More information

Supporting information

Supporting information Supporting information Manipulating the Concavity of Rhodium Nanocubes Enclosed with High-index Facets via Site-selective Etching Yumin Chen, Qing-Song Chen, Si-Yan Peng, Zhi-Qiao Wang, Gang Lu, and Guo-Cong

More information

The materials used in this study were Iron (III) chloride hexahydrate (AR grade) and

The materials used in this study were Iron (III) chloride hexahydrate (AR grade) and Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information Synthesis of Metastable Hard-Magnetic ε-fe 2 O 3 Nanoparticles from Silica-Coated

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

Crystallographic ordering studies of FePt nanoparticles by HREM

Crystallographic ordering studies of FePt nanoparticles by HREM Journal of Magnetism and Magnetic Materials 266 (2003) 215 226 Crystallographic ordering studies of FePt nanoparticles by HREM Mihaela Tanase a, *, Noel T. Nuhfer a, David E. Laughlin a, Timothy J. Klemmer

More information

Fluorescent silver nanoparticles via exploding wire technique

Fluorescent silver nanoparticles via exploding wire technique PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 815 819 Fluorescent silver nanoparticles via exploding wire technique ALQUDAMI ABDULLAH and S ANNAPOORNI Department

More information

Chemical Transformations in Ultrathin Chalcogenide Nanowires

Chemical Transformations in Ultrathin Chalcogenide Nanowires Chemical Transformations in Ultrathin Chalcogenide Nanowires Geon Dae Moon, Sungwook Ko, Younan Xia, and Unyong Jeong Department Biomedical Engineering Washington University, St. Louis, Missouri 63130

More information

Synthesis of magnetic nanoparticles via the sol-gel technique

Synthesis of magnetic nanoparticles via the sol-gel technique Materials Science-Poland, Vol. 23, No. 1, 2005 Synthesis of magnetic nanoparticles via the sol-gel technique RÓŻA KORNAK 1, DANIEL NIŽŇANSKỲ 2, KRYSTYNA HAIMANN 1 WŁODZIMIERZ TYLUS 3, KRZYSZTOF MARUSZEWSKI

More information

Size-Dependent Chemical and Magnetic Ordering in L1 0 -FePt Nanoparticles**

Size-Dependent Chemical and Magnetic Ordering in L1 0 -FePt Nanoparticles** DOI: 10.1002/adma.200601904 Size-Dependent Chemical and Magnetic Ordering in L1 0 -FePt Nanoparticles** By Chuan-bing Rong, Daren Li, Vikas Nandwana, Narayan Poudyal, Yong Ding, Zhong Lin Wang, Hao Zeng,

More information

Structural Characterization of Nanoparticles

Structural Characterization of Nanoparticles Structural Characterization of Nanoparticles Nicola Pinna Max Planck Institute of Colloids and Interfaces e-mail: pinna@mpikg-golm.mpg.de - http://www.pinna.cx Plan 1. Transmission Electron Microscopy

More information

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 015) Current efficiency of synthesis magnesium hydroxide nanoparticles via electrodeposition XinZhong. Deng 1 ;

More information

MAGNETIC-PROPERTY ENHANCEMENT OF SIZED CONTROLLED COBALT-GOLD CORE-SHELL NANOCRYSTALS

MAGNETIC-PROPERTY ENHANCEMENT OF SIZED CONTROLLED COBALT-GOLD CORE-SHELL NANOCRYSTALS Digest Journal of Nanomaterials and Biostructures Vol. 7, No. 4, October - December 2012, p. 1799 1810 MAGNETIC-PROPERTY ENHANCEMENT OF SIZED CONTROLLED COBALT-GOLD CORE-SHELL NANOCRYSTALS GH. BAHMANROKH

More information

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Supporting Information MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Nanoparticles: Low Pt Contents and Robust Activity towards Electrocatalytic Oxygen Reduction Reaction Li-Li Ling,

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Nucleation of FAU and LTA Zeolites from Heterogeneous Aluminosilicate Precursors Matthew D. Oleksiak 1, Jennifer A. Soltis 2,4, Marlon T. Conato, 1,3 R. Lee Penn 2, Jeffrey D. Rimer 1* 1 University of

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

Electron Microscopy Images Reveal Magnetic Properties

Electron Microscopy Images Reveal Magnetic Properties Electron Microscopy Images Reveal Magnetic Properties 161 Electron Microscopy Images Reveal Magnetic Properties Matthew Bouc Undergraduate Student, Applied Science Chris Buelke Undergraduate Student, Applied

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information AgPd@Pd/TiO 2 nanocatalyst synthesis by microwave

More information

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2 Supporting Information Synthesis and Upconversion Luminescence of BaY 2 F 8 :Yb 3+ /Er 3+ Nanobelts 5 Guofeng Wang, Qing Peng, and Yadong Li* Department of Chemistry and State Key Laboratory of New Ceramics

More information

Supporting information:

Supporting information: Epitaxially Integrating Ferromagnetic Fe 1.3 Ge Nanowire Arrays on Few-Layer Graphene Hana Yoon, Taejoon Kang, Jung Min Lee, Si-in Kim, Kwanyong Seo, Jaemyung Kim, Won Il Park, and Bongsoo Kim,* Department

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials

High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials B. Dodrill 1, P. Ohodnicki 2, M. McHenry 3, A. Leary 3 1 Lake Shore Cryotronics, Inc., 575

More information

Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates

Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates Thi Thi Nge, a Masaya Nogi* a and Katsuaki Suganuma a

More information

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Supporting Information Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Jaidev, R Imran Jafri, Ashish Kumar Mishra, Sundara Ramaprabhu* Alternative

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes Modeling of Electrochemical Cells: Proton Exchange Membrane Fuel Cells HYD7007 01 Lecture 08. Composite Membranes Dept. of Chemical & Biomolecular Engineering Yonsei University Spring, 2011 Prof. David

More information

CHAPTER 4. PREPARATION AND CHARACTERIZATION OF Cr-DOPED, Co-DOPED AND Fe-DOPED NIO NANOPARTICLES

CHAPTER 4. PREPARATION AND CHARACTERIZATION OF Cr-DOPED, Co-DOPED AND Fe-DOPED NIO NANOPARTICLES 59 CHAPTER 4 PREPARATION AND CHARACTERIZATION OF Cr-DOPED, Co-DOPED AND Fe-DOPED NIO NANOPARTICLES 4.1 INTRODUCTION Extensive research has been carried out on transition metal ion doped semiconductors

More information

Impact of size and temperature on thermal expansion of nanomaterials

Impact of size and temperature on thermal expansion of nanomaterials PRAMANA c Indian Academy of Sciences Vol. 84, No. 4 journal of April 205 physics pp. 609 69 Impact of size and temperature on thermal expansion of nanomaterials MADAN SINGH, and MAHIPAL SINGH 2 Department

More information

The effect of carbon mole ratio on the fabrication of silicon carbide from SiO 2

The effect of carbon mole ratio on the fabrication of silicon carbide from SiO 2 Songklanakarin J. Sci. Technol. 30 (2), 227-231, Mar. - Apr. 2008 http://www.sjst.psu.ac.th Original Article The effect of carbon mole ratio on the fabrication of silicon carbide from -C-Mg system via

More information

School of Physical Science and Technology, ShanghaiTech University, Shanghai

School of Physical Science and Technology, ShanghaiTech University, Shanghai Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 1 Facile Two-step thermal annealing of graphite oxide in air for graphene with a 2 higher C/O

More information

Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids

Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids Smart Materials Research Volume 2011, Article ID 351072, 5 pages doi:10.1155/2011/351072 Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process

More information

Visible-light Driven Plasmonic Photocatalyst Helical Chiral TiO 2 Nanofibers

Visible-light Driven Plasmonic Photocatalyst Helical Chiral TiO 2 Nanofibers Visible-light Driven Plasmonic Photocatalyst Ag/AgCl @ Helical Chiral TiO 2 Nanofibers Dawei Wang, Yi Li*, Gianluca Li Puma, Chao Wang, Peifang Wang, Wenlong Zhang, and Qing Wang Fig. S1. The reactor of

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Probing the Surface Reactivity of

More information

Facile synthesis of a ZnO BiOI p n nano-heterojunction with excellent visible-light photocatalytic activity

Facile synthesis of a ZnO BiOI p n nano-heterojunction with excellent visible-light photocatalytic activity Supporting Information for Facile synthesis of a ZnO BiOI p n nano-heterojunction with excellent visible-light photocatalytic activity Mengyuan Zhang 1, Jiaqian Qin 2,3 *, Pengfei Yu 1, Bing Zhang 1, Mingzhen

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Available online at   ScienceDirect. Procedia Materials Science 11 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 282 286 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Prepartion

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

2016 International Conference on Advanced Manufacture Technology and Industrial Application (AMTIA 2016) ISBN:

2016 International Conference on Advanced Manufacture Technology and Industrial Application (AMTIA 2016) ISBN: 2016 International Conference on Advanced Manufacture Technology and Industrial Application (AMTIA 2016) ISBN: 978-1-60595-387-8 Preparation and Characterization of Ultra-Fine Silver Powder by Hydrogen

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Magnetic anisotropy of La 0.7 Sr 0.3 MnO 3 nanopowders

Magnetic anisotropy of La 0.7 Sr 0.3 MnO 3 nanopowders Magnetic anisotropy of La 0.7 Sr 0.3 MnO 3 nanopowders I. Radelytskyi (1), P. Dłużewski (1), V. Dyakonov (1 and 2), P. Aleshkevych (1), W. Kowalski (1), P. Jarocki (1), H. Szymczak (1) ((1) Institute of

More information

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Electronic Supplementary Information Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Dong-Hong Wang, ab Gui-Qi Gao, b Yue-Wei Zhang, a Li-Sha Zhou,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Synthesis of 1T-MoSe 2 ultrathin

More information

Supporting Information for

Supporting Information for Supporting Information for Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage Wenxiang Guo, Weiwei

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Xuxu Wang, ab Zhaolin Na, a Dongming Yin, a Chunli Wang, ab Yaoming Wu, a Gang

More information

Electronic Supplementary Information. Precursor Salt Assisted Syntheses of High-Index Faceted Concave Hexagon and Nanorod like Polyoxometalates

Electronic Supplementary Information. Precursor Salt Assisted Syntheses of High-Index Faceted Concave Hexagon and Nanorod like Polyoxometalates Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Precursor Salt Assisted Syntheses of High-Index Faceted Concave

More information

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Fe 3 O 4 /Carbon quantum dots hybrid nanoflowers for highly active and

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

Mechanism and Microstructures in Ga 2 O 3. Pseudomartensitic Solid Phase Transition. Sheng-Cai Zhu, Shu-Hui Guan, Zhi-Pan Liu*

Mechanism and Microstructures in Ga 2 O 3. Pseudomartensitic Solid Phase Transition. Sheng-Cai Zhu, Shu-Hui Guan, Zhi-Pan Liu* Supplementary Information Mechanism and Microstructures in Ga 2 O 3 Pseudomartensitic Solid Phase Transition Sheng-Cai Zhu, Shu-Hui Guan, Zhi-Pan Liu* Collaborative Innovation Center of Chemistry for Energy

More information

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY 2017 IJSRST Volume 3 Issue 3 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Preparation and Experimental Investigation of CUO Nanoparticles Based Engine OILS Sk Salman

More information

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES Digest Journal of Nanomaterials and Biostructures Vol. 11, No. 1, January - March 2016, p. 271-276 PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL

More information

Superconductivity in oxygen-annealed FeTe 1-x S x single crystal

Superconductivity in oxygen-annealed FeTe 1-x S x single crystal Superconductivity in oxygen-annealed FeTe 1-x S x single crystal Yoshikazu Mizuguchi 1,2,3, Keita Deguchi 1,2,3, Yasuna Kawasaki 1,2,3, Toshinori Ozaki 1,2, Masanori Nagao 4, Shunsuke Tsuda 1,2, Takahide

More information

Gold-Coated Iron Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly

Gold-Coated Iron Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly Journal of Solid State Chemistry 159, 26}31 (2001) doi:10.1006/jssc.2001.9117, available online at http://www.idealibrary.com on Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and

More information

A Simple Precipitation Method for Synthesis CoFe 2 O 4 Nanoparticles

A Simple Precipitation Method for Synthesis CoFe 2 O 4 Nanoparticles JNS 4 (2014) 317-323 A Simple Precipitation Method for Synthesis CoFe 2 O 4 Nanoparticles G. Nabiyouni a, S. Sharifi a, D. Ghanbari b, M. Salavati-Niasari c, * a Derpartment of Physics, Faculty of Science,

More information

Synthesis and Characterization of Silicon-Silicon Carbide Composites from Rice Husk Ash via Self-Propagating High Temperature Synthesis

Synthesis and Characterization of Silicon-Silicon Carbide Composites from Rice Husk Ash via Self-Propagating High Temperature Synthesis Journal of Metals, Materials and Minerals, Vol.19 No.2 pp.21-25, 2009. Synthesis and Characterization of Silicon-Silicon Carbide Composites from Rice Husk Ash via Self-Propagating High emperature Synthesis

More information

Supporting Information

Supporting Information Supporting Information Ultrafine Pt Nanoparticles and Amorphous Nickel Supported on 3D Mesoporous Carbon Derived from Cu-MOF for Efficient Methanol Oxidation and Nitrophenol Reduction Xue-Qian Wu, 1,2

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Hydrothermal synthesis of - alloy nanooctahedra and their enhanced electrocatalytic

More information

Electronic Supplementary Information. Low-temperature Benchtop-synthesis of All-inorganic Perovskite Nanowires

Electronic Supplementary Information. Low-temperature Benchtop-synthesis of All-inorganic Perovskite Nanowires Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Low-temperature Benchtop-synthesis of All-inorganic Perovskite

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x

Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x Wei Lu, Xiao-Li Shen, Jie Yang, Zheng-Cai Li, Wei Yi, Zhi-An Ren*, Xiao-Li Dong, Guang-Can Che, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao* National

More information