General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Course Introduction

Size: px
Start display at page:

Download "General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Course Introduction"

Transcription

1 General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Course Introduction Recommended texts: William L. Masterton and Cecile N. Hurley Chemistry: Principles and Reactions, 6th edition. Brooks/Cole Cengage Lerning. John A. Olmsted and Gregory M. Williams, Chemistry, 4th edition. John Wiley & Sons, Inc. Steven S. Zumdahl, Chemical Principles, 5th edition. Houghton Mifflin Company. Kenneth W. Whitten, Raymond E. Davis, Larry Peck, George G. Stanley, General Chemistry, 7th edition. Brooks Cole Publisher. Steven L. Hoenig, Basic Training in Chemistry. Kluwer Academic Publishers. 2 1

2 Course Introduction Attendance requirements Class attendance: 45 hrs. Assessment Method Weighting Mid-term examination 30% Final examination 70% 3 Course Introduction Why should we care about chemistry? Chemistry is everywhere! Chemistry helps us to understand and be better informed about the world in which we live! 4 2

3 Module 1: Atomic structure and Periodic Table. Module 2: Chemical bonds and molecular configurations. Module 3: The Three States of Matter. Module 4: Chemical Thermodynamics. Module 5: Chemical kinetics. Module 6: Solutions. Course Introduction Module 7: Oxidation-reduction reactions and transformation of chemical energy. 5 Module 1: Atomic structure and Periodic Table 3

4 Classification of Matter 7 Dalton's Atomic Theory (1803) Matter is composed of indivisible particles - atoms. An element is composed of only one kind of atom. These atoms in a particular element have the same properties such as mass, size, or even shape. A compound is composed of two or more elements combined in fixed ratios or proportions. In a chemical reaction, the atoms in the reactants recombine, resulting in products which represent the combination of atoms present in the reactants. In the process, atoms are neither created, nor destroyed. So a chemical reaction is essentially a rearrangement of atoms. 8 4

5 Ramifications of Dalton's Theory The Law of Conservation of Mass states that mass is neither created nor destroyed in a chemical reaction or physical change. The Law of Definite Proportions states that every chemical compound is made up of elements in a definite ratio by mass. 9 Ramifications of Dalton's Theory Exercise 1: Calculate the mass of sodium chloride formed by the complete reaction of 10.0 g of sodium with 15.4 g of chlorine. What law allows this calculation? Ans: 10 5

6 Ramifications of Dalton's Theory Exercise 2: Calculate the mass of oxygen that will combine with 2.00 g of magnesium if g of oxygen reacts with 1.00 g of magnesium. What law allows this calculation? Ans: 11 The discovery of the electron Schematic drawing of a gas discharge tube in operation. When a high voltage is applied to the two perforated plates, an electrical discharge occurs between them. The positively charged and negatively charged particles that form in the gas move to collectors at the ends of the tube. 12 6

7 J. J. Thomson experiment (1897) Schematic drawing of a cathode-ray tube. A beam of electrons is deflected by a pair of charged plates (bent line), but magnetic force can be adjusted to exactly counterbalance the effect of the electrical force (straight line). 13 Millikan's oil drop experiment (1909) Schematic view of Millikan's oil drop experiment. An atomizer generated a fine mist of oil droplets. Bombarding the droplets with X rays gave some of them extra negative charge. In the presence of sufficient electrical force, these negatively charged droplets could be suspended in space. The measurements gave several different values, but the charge was always equal to n(-1.6 x C). 14 7

8 Thomson s plum pudding model 15 Rutherford's scattering experiment 16 8

9 The general structrure of the atom 17 Exercise What is the net charge on an atom that contains 8 protons, 8 neutrons, and 10 electrons? Ans: 18 9

10 Constituents of the atom The atomic number (Z) denotes the number of protons in an atom's nucleus. The mass number (A) denotes the total number of protons and neutrons. Protons and neutrons are often called nucleons. Some atoms have the same atomic number, but different mass numbers. This means different number of neutrons. Such atoms are called isotopes. 19 Isotopes 20 10

11 Exercise 21 Periodic chart of the elements 22 11

12 Atomic mass unit (amu) Atomic mass unit (amu) is defined as exactly 1/12 the mass of a 12 C atom. The mass of the 12 C atom is taken to be exactly 12 amu. 23 Atomic mass The atomic mass of an element is the weighted average of the masses of the individual isotopes of the element. Example: Naturally occurring copper consists of 69.17% 63 Cu and 30.83% 65 Cu. The mass of 63 Cu is amu, and the mass of 65 Cu is amu. What is the atomic mass of copper? 24 12

13 Naturally occurring carbon consists of two isotopes, 12 C and 13 C. What are the percentage abundances of the two isotopes in a sample of carbon whose atomic mass is ? Ans: Exercise 25 The concept of mole The quantity of a given substance that contains as many units or molecules as the number of atoms in 12 grams of carbon-12 is called a mole. The numerical value of one mole is x and is referred to as Avogadro s number. One mole of hydrogen atoms contains Avogadro number of hydrogen atoms

14 Atomic structure 27 Electromagnetic radiation In 1864, James Clerk Maxwell developed a mathematical theory to describe radiation as wave-like, or oscillating, electric and magnetic fields in space. The electric and magnetic fields are perpendicular to each other

15 Electromagnetic spectrum Visible light, infrared radiation, microwaves, radio waves, ultraviolet, x-rays and gamma rays are all types of electromagnetic radiation. 29 Wave character of light The distance between two waves, usually measured from the peak of the waves, is the wavelength, given the symbol lambda, λ. The frequency is a statement of the number of waves passing a point in space per second; it is given the symbol nu, ν. (The hertz is commonly used as the unit for frequency; 1 Hz = 1 s 1 ) The product of the wavelength and the frequency is equal to the velocity of light, usually designated by c: c = λν (The value of c can be rounded to c= m/s for most calculations.) 30 15

16 Particle character of light The energy of light is emitted, absorbed, or converted to other forms of energy in individual units referred to as quanta (singular: quantum). The unit of light energy is often referred to as the particle of light called the photon. The energy of a photon is proportional to the frequency: ε = hν = ( J s)ν Planck s constant, h, is the universal proportionality constant. 31 Exercise When a metal bar is heated, it emits electromagnetic radiation observable as the red to white glow of the metal. What is the energy of one photon of red light with a wavelength of 700 nm? What is the energy of a mole of photons with this wavelength? Calculate the energy of one photon and a mole of photons of blue light with a wavelength of 400 nm

17 Exercise What is the wavelength in meters of the radiation from (a) a low-range TV station broadcasting at a frequency of 55 MHz, (b) anam radio station at 610 khz, and (c) a microwave oven operating at 14.6 GHz? Ans: 33 Interaction of light with matter 34 17

18 Atomic spectra In the late 19th century, Johann Balmer ( ) and Johannes Rydberg ( ) showed that the wavelengths of the various lines in the hydrogen spectrum can be related by a mathematical equation: Here R is x 10 7 m -1 and is known as the Rydberg constant. The n s are positive integers, and n 1 is smaller than n 2 However this is an empirical equation. 35 Bohr's Model of Hydrogen Atom (1913) 1) In each hydrogen atom, the electron revolves around the nucleus in one of the several stable orbits. 2) Each orbit has a definite radius and thus has a definite energy associated with it. 3) An electron in an orbit closest to the nucleus has the lowest energy, and if the electron is in the lowest orbit the atom is said to be in its ground state. 4) The electron in an atom may absorb discrete amounts of energy and move to another orbit with higher energy, and this state is called the excited state. 5) An electron in an excited atom can go back to a lower energy level and this process will result in the release of excess energy as light. 6) The amount of energy released or absorbed

19 The radius is given by r= n 2 a 0 =5.292 x m = Å (Bohr radius) a 0 The potential energy is given by: where h Planck s constant, m the mass of the electron 37 Each line in the emission spectrum represents the difference in energies between two allowed energy levels for the electron. Comparing this to the Balmer-Rydberg equation 38 19

20 Bohr's Model of Hydrogen Atom 39 The wave nature of the electron De Broglie (1925) proposed that not only does light have the dual properties of waves and particles, but also particles of matter have properties of waves. The wavelength of those particle waves is given by λ = h/ mv where m and v are the mass and velocity of the particle. Planck s constant, h, is so small that the wavelengths are in an observable range only for particles of atomic or subatomic mass

21 Quantum mechanical picture of the atom The Heisenberg Uncertainty Principle, stated in 1927 by Werner Heisenberg ( ): It is impossible to determine accurately both the momentum and the position of an electron (or any other very small particle) simultaneously. 41 Basic ideas of quantum mechanics Atoms and molecules can exist only in certain energy states. In each energy state, the atom or molecule has a definite energy. When an atom or molecule changes its energy state, it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition). When atoms or molecules emit or absorb radiation (light), they change their energies.the energy change in the atom or molecule is related to the frequency or wavelength of the light emitted or absorbed by the equations: The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers

22 Basic ideas of quantum mechanics The mathematical approach of quantum mechanics involves treating the electron in an atom as a standing wave 43 Orbitals A solution to the Schrödinger equation for an electron must satisfy three quantum conditions corresponding to the three dimensions of space. Each quantum condition introduces an integer, called a quantum number, into the solution. A separate solution, describing a probability distribution of finding the electron at various locations, exists for each allowed set of three quantum numbers. Such a solution is called an orbital

23 Quantum number Principal quantum number (n). The principal quantum number denotes the energy level of electrons. The larger the principal quantum number is, the larger the energy. The orbital size depends on n. This means that the larger the n value, the larger the orbital. Orbitals with the same n belong to the same shell. 45 Quantum number Angular momentum quantum number (l). Angular momentum quantum number denotes the shape of the orbital. The values range from 0 to n 1. The angular momentum quantum numbers correspond to different subshells

24 Quantum number Magnetic quantum number (m l ). Magnetic quantum numbers define the different spatial orientations of the orbitals. The values range from l to +l. There are three p orbitals corresponding to m l = 1, 0, and 1. However, it is usually more convenient in chemistry to use a new set of three orbitals oriented along the x, y, and z axes to display the shapes and directions of these orbitals. Further, there are 5 d orbitals and 7 f orbitals having different shapes and orientations in space. 47 Orbitals 48 24

25 Orbitals 49 Quantum number Spin quantum number (m S ) Spin quantum number has to do with the spin orientations of an electron. The two possible spins are denoted by the spin quantum numbers + ½ and -1/

26 Quantum number The values of n, l, and m l describe a particular atomic orbital. Each atomic orbital can accommodate no more than two electrons, one with m s =+1/2 and another with m s =-1/2. A set of quantum numbers: (n, l, m l, m s ). 51 Permissible Values of the Quantum Numbers Through n=

27 Building of Electron configurations by the Aufbau Principle No two electrons in an atom may have identical sets of four quantum numbers (Pauli exclusion principle). Orbitals are filled in the order of increasing energy (Klechkowski s rule). Electrons occupy all the orbitals of a given subshell singly before pairing begins. These unpaired electrons have parallel spins (Hund s rule). 53 Electron configurations Two general rules help us to predict electron configurations. Electrons are assigned to orbitals in order of increasing value of (n + l ). For subshells with the same value of (n+l ), electrons are assigned first to the subshell with lower n. 1s < 2s < 2p <3s < 3p<4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d

28 Exercise Arrange the electrons in the following list in order of increasing energy, lowest first: 55 Exercise How many electrons are permitted in each of the following subshells? (a) 2s (b) 6p, and (c) 4d. Ans: 56 28

29 Exercise How many electrons are permitted in each of the following subshells? 57 Write the electronic configuration of sulfur and also show the filling of electrons with orbital notation. Ans: Exercise 58 29

30 Exercise Write detailed electronic configurations for (a) N (Z=7), (b) P (Z=15), (c) As (Z=33), and (d) Sb (Z=51). What makes their chemical properties similar? Ans: 59 The periodic table 60 30

31 The periodic table The properties of elements are periodic functions of their atomic numbers The vertical columns of elements represented in the periodic table are called groups, and the horizontal rows are called periods. There are seven periods in the periodic table. The groups are usually designated by roman numerals followed by the letter A or B as shown in the periodic table. 61 The periodic table The groups IA through VIIA are called the representative elements. These elements have either s or p orbital valence electrons. The last group in the periodic table is the noble gas group otherwise known as the zero group. The groups ranging from IB through VIIIB are called transition metals, and finally the metals from lanthanum through hafnium and metals from actinium onward are called the inner transition metals

32 Period 1 63 Period

33 Period 3 65 Period

34 67 Periodicity of Atomic Properties As principal quantum number n increases, atomic orbitals become larger and less stable. As atomic number Z increases, any given atomic orbital becomes smaller and more stable

35 Atomic size Exercise: Arrange the following elements in terms of increasing atomic radius: Mg, Cl, K and Cs. 69 Atomic size 70 35

36 Ionization energy Ionization energy (IE) is the minimum amount of energy required to remove an electron from an atom. 71 Ionization energy 72 36

37 Ionization energy First IE < Second IE < Third IE < Fourth IE < Electron affinity Electron affinity is the energy change associated with the addition of an electron to a gaseous atom

38 Electron affinity 75 Electron affinity 76 38

39 Electronegativity The relative tendency of an atom to attract the bonding electrons to itself is called electronegativity. The popularly used electronegativity scale is based on a system called Pauling's scale, according to which fluorine (the most electronegative element) has an electronegativity value of 4.0. Nonmetals are the most electronegative elements. 77 Electronegativity Values of the Elements 78 39

40 Summary After you have studied this module, you should be able to Describe the evidence for the existence and properties of electrons, protons, and neutrons. Predict the arrangements of the particles in atoms. Describe isotopes and their composition. Calculate atomic weights from isotopic abundance. Descriptions of waves play an important role in our theories of light and of atomic structure. 79 Summary Describe the four quantum numbers, and give possible combinations of their values for specific atomic orbitals. Describe the shapes of orbitals and recall the usual order of their relative energies. Write the electron configurations of atoms. Relate the electron configuration of an atom to its position in the periodic table. Periodicity of atomic properties

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education Chapter 6 Laser: step-like energy transition 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons 6.3 Line Spectra and the Bohr Model 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Key Equations. Determining the smallest change in an atom's energy.

Key Equations. Determining the smallest change in an atom's energy. ATOMIC STRUCTURE AND PERIODICITY Matter and Energy Key Equations λν = c ΔE = hν Relating speed of a wave to its wavelength and frequency. Determining the smallest change in an atom's energy. H( λ =R n

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons

More information

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6. Electronic Structure of Atoms NOTE: Review your notes from Honors or regular Chemistry for the sequence of atomic models and the evidence that allowed scientists to change the model. If you

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

Q1 and Q2 Review large CHEMISTRY

Q1 and Q2 Review large CHEMISTRY Q1 and Q2 Review large CHEMISTRY Multiple Choice Identify the choice that best completes the statement or answers the question. 1. E = hv relates the following a. Energy to Planck s constant & wavelength

More information

Discovered the electron

Discovered the electron Aubrey High School AP Chemistry 8 Atomic Theory Name Period Date / / 8.0 Prep Problems History of the Atom 1. Describe the contributions of the following scientists and their research to the theory of

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Section 3.1 Substances Are Made of Atoms

Section 3.1 Substances Are Made of Atoms Section 3.1 Substances Are Made of Atoms Objectives: 1. State the three laws that support the existence of atoms. 2. List the five principles of John Dalton s atomic theory. Vocabulary: law of definite

More information

CDO CP Chemistry Unit 5

CDO CP Chemistry Unit 5 1. Of the three particles; protons, neutrons, and electrons, which one(s) are responsible for most of the mass of an atom? a) the protons only b) the electrons only c) the neutrons only d) the protons

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion.

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Nucleus Contains 99.9% of the mass of an atom Found

More information

Professor K. Atomic structure

Professor K. Atomic structure Professor K Atomic structure Review Reaction- the formation and breaking of chemical bonds Bond- a transfer or sharing of electrons Electrons Abbreviated e - What are they? How were they discovered? Early

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6. Electronic Structure of Atoms NOTE: Review your notes from Honors or regular Chemistry for the sequence of atomic models and the evidence that allowed scientists to change the model. If you

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Chapter 2. Atoms, Ions, and the Periodic Table. Chapter 2 Topics. 2.1 Dalton s s Atomic Theory. Evidence for Atoms. Evidence for Atoms

Chapter 2. Atoms, Ions, and the Periodic Table. Chapter 2 Topics. 2.1 Dalton s s Atomic Theory. Evidence for Atoms. Evidence for Atoms Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Topics 1. Dalton s s Atomic Theory 2. Structure of the Atom 3. Ions 4. Atomic Mass 5. The Periodic Table Copyright The McGraw-Hill Companies, Inc.

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Worksheet 2.1. Chapter 2: Atomic structure glossary

Worksheet 2.1. Chapter 2: Atomic structure glossary Worksheet 2.1 Chapter 2: Atomic structure glossary Acceleration (in a mass spectrometer) The stage where the positive ions are attracted to negatively charged plates. Alpha decay The emission of an alpha

More information

Materials Science. Atomic Structures and Bonding

Materials Science. Atomic Structures and Bonding Materials Science Atomic Structures and Bonding 1 Atomic Structure Fundamental concepts Each atom consists of a nucleus composed of protons and neutrons which are encircled by electrons. Protons and electrons

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Explain the term subshell. 5. Explain de-broglie equation (relationship). 6. Discuss the dual nature of electrons

Explain the term subshell. 5. Explain de-broglie equation (relationship). 6. Discuss the dual nature of electrons MODEL COLLEGE ASSIGNMENT SHEET FOR STRUCTURE OF ATOM. What are the main postulates of Bohr s theory of an atom?. Explain how the angular momentum of an electron in an atom is quantized? 3. What are the

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity p. 99 p. 98 p. 98 Electromagnetic Spectrum Image Atomic Structure and Periodicity Chemistry Zumdahl Chapter 7 Properties of Light Electromagnetic Radiation: a form of energy that exhibits wavelike behavior

More information

9/13/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory. J. J. Thomson. Thomson s Experiment

9/13/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory. J. J. Thomson. Thomson s Experiment Atomic Structure & The Periodic Table The Greek Philosophers Democritus believed that all matter is made up of tiny particles that could not be divided Aristotle -- thought that matter was made of only

More information

CHAPTER 5. The Structure of Atoms

CHAPTER 5. The Structure of Atoms CHAPTER 5 The Structure of Atoms Chapter Outline Subatomic Particles Fundamental Particles The Discovery of Electrons Canal Rays and Protons Rutherford and the Nuclear Atom Atomic Number Neutrons Mass

More information

History of the Atomic Model

History of the Atomic Model Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.1 Electromagnetic Radiation Learning Goal Compare the wavelength, frequency, and energy of electromagnetic radiation. Fifth Edition

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

AP Chapter 6 Study Questions

AP Chapter 6 Study Questions Class: Date: AP Chapter 6 Study Questions True/False Indicate whether the statement is true or false. 1. The wavelength of radio waves can be longer than a football field. 2. Black body radiation is the

More information

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 1 Chapter 13 Electrons in Atoms We need to further develop our understanding of atomic structure to help us understand how atoms bond to

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

CHAPTER STRUCTURE OF ATOM

CHAPTER STRUCTURE OF ATOM 12 CHAPTER STRUCTURE OF ATOM 1. The spectrum of He is expected to be similar to that [1988] H Li + Na He + 2. The number of spherical nodes in 3p orbitals are [1988] one three none two 3. If r is the radius

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Where are we? Check-In

Where are we? Check-In Where are we? Check-In ü Building Blocks of Matter ü Moles, molecules, grams, gases, ü The Bohr Model solutions, and percent composition Coulomb s Law ü Empirical and Molecular formulas Photoelectron Spectroscopy

More information

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne?

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne? INTRO AND BACKGROUND: Atomic Structure Light Study of light by Newton helped lead to the quantum mechanical model All light exhibits WAVE properties -AMPLITUDE: height of a wave -WAVELENGTH: distance between

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12 KEY Review Sheet: UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS 1. Know which isotope is the standard for the atomic mass unit. CARBON-12 2. Know what the difference in masses of isotopes

More information

Elements, atoms, & the. discovery of atomic structure

Elements, atoms, & the. discovery of atomic structure Elements, atoms, & the discovery of atomic structure Chapter 4 EARLY MODELS OF THE ATOM One What is an atom? The smallest particle of an element that can keep the same properties of the element. Democritus

More information

Chapter 2: The Atomic Nature of Matter Olmsted and Williams, 3 rd Edition

Chapter 2: The Atomic Nature of Matter Olmsted and Williams, 3 rd Edition Chapter 2: The Atomic Nature of Matter Olmsted and Williams, 3 rd Edition HW: 5, 7, 10, 13, 15, 17, 19, 22, 23, 27, 30, 31, 35, 36, 41, 42, 59, 63, 69, 70 Atomic Theory and How It Came About Aristotle

More information

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

CHM 1045 Test #4 December 4, 2000

CHM 1045 Test #4 December 4, 2000 CHM 1045 Test #4 December 4, 2000 1. The scientist who was first to propose that electrons in an atom could have only certain energies was a. Planck. b. Einstein. c. Bohr. d. Rydberg. 2. Select the arrangement

More information

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4)

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) Unit 3 Assignment Packet Name: Period: A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) 1. Democritus, who lived in Greece during the 4 th century B.C., suggested that is made up of tiny particles

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom Arrangement of Electrons in Atoms Table of Contents Section 1 The Development of a New Atomic Model Section 2 The Quantum Model of the Atom Section 3 Electron Configurations Section 1 The Development of

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37 Electronic Structure Worksheet 1 Given the following list of atomic and ionic species, find the appropriate match for questions 1-4. (A) Fe 2+ (B) Cl (C) K + (D) Cs (E) Hg + 1. Has the electron configuration:

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

Chemistry (

Chemistry ( Question 2.1: (i) Calculate the number of electrons which will together weigh one gram. (ii) Calculate the mass and charge of one mole of electrons. Answer 2.1: (i) Mass of one electron = 9.10939 10 31

More information

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

2 Atomic Theory Development of Theory

2 Atomic Theory Development of Theory Atomic Theory Development of Theory Historical Atomic Models Democritus Greek philosopher who postulated that matter is comprised of atoms as the smallest part (ca 400 BC) John Dalton Max Planck J.J. Thompson

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Atomic Structure and the Composition of Matter

Atomic Structure and the Composition of Matter Atomic Structure and the Composition of Matter The atom is a basic building block of minerals. Matter is a special form of energy; it has mass and occupies space. Neither matter nor energy may be created

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered:

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered: Copyright 2004 by Houghton Mifflin Company. Modern Atomic Theory Chapter 10 All rights reserved. 1 10.1 Rutherford s Atom Rutherford showed: Atomic nucleus is composed of protons (positive) and neutrons

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency.

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information