20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

Size: px
Start display at page:

Download "20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n"

Transcription

1 20.2 Ion Sources electron ionization produces an M + ion and extensive fragmentation chemical ionization produces an M +, MH +, M +, or M - ion with minimal fragmentation MALDI uses laser ablation to transfer high molecular mass compounds into the gas phase as MH + or MH 2 2+ ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n n+ ions, where n is large, e.g. 10 to : 1/14

2 Overview Sources ionize a neutral molecule by electron ejection, electron capture, protonation, deprotonation, adduct formation, or charge transfer. High energy ionization methods produce fragmentation, while low energy ionization methods produce primarily the. For thermally stable and volatile compounds, two methods will be given - electron ionization and chemical ionization. For thermally unstable or non-volatile compounds, two methods will be given - matrix assisted laser desorption ionization (MALDI) and electrospray ionization. Both methods are useful for biological samples. Not covered are methods for inorganic compounds. The most common are glow discharge and : 2/14

3 Electron Impact Ionization (1) The heated filament produces electrons which are accelerated by the potential on the sample chamber. Once in the chamber the electrons travel in a to the anode collector. The sample is introduced through a small opening and travels across the chamber toward the mass analyzer. filament heater current electron accelerating potential filament electron beam ion beam gaseous sample inlet to mass analyzer anode extracting lens focusing lens accelerating lens A high-energy electron will knock a second electron off a neutral molecule. The resultant has excess energy and fragments. The molecular ion and the fragments continue traveling toward the outlet. At this point they are attracted by the extracting lens potential, focused, and accelerated toward the mass analyzer : 3/14

4 Electron Impact Ionization (2) One electron accelerated with 1 V has an energy of 1 ev, which is J or 96.3 kj mol -1. The maximum efficiency of ionization by electron impact occurs at ~ ev. At this accelerating voltage, about ev (~2,000-3,000 kj mol -1 ) are transferred to the molecular ion. This amount of internal energy is high enough to break several bonds, and fragment the ion. At a given potential and temperature, the number of ions produced per unit volume is proportional to the sample and electron current. For 70 ev electrons, on average one ion is produced for every 1000 molecules entering the source chamber : 4/14 Hoffmann and Stroobant, "Mass Spectrometry," 2nd edition, Wiley, 2002, figure 1.2.

5 Electron Impact Ionization (3) The extent of fragmentation depends upon the. The 70 ev spectrum of β-lactam has many more than the 15 ev spectrum. This can be seen by the relative height of the fragment ions and the molecular ion. However, the intensity of the molecular ion is in the 15 ev spectrum because of the efficiency curve shown on the previous slide. Hoffmann and Stroobant, "Mass Spectrometry," 2nd edition, Wiley, 2002, figure : 5/14

6 Chemical Ionization (1) In chemical ionization a reagent gas is ionized by the electron beam. The reagent gas transfers its charge to the sample through a variety of reactions. The reagent gas is, so the sample is not ionized by the electron beam. The resultant molecular ion contains little excess energy, thus there is. The figure shows the butyl methacrylate mass spectrum obtained with electron ionization (top), methane, and isobutane (bottom). Electron ionization eliminates virtually all the molecular ion at 142 Th. Methane produces some MH + through proton transfer and high mass fragments, while isobutane produces primarily. H 2 C O C C O CH 2 CH 2 CH 2 CH 3 CH : 6/14

7 Chemical Ionization (2) : the ionized reagent gas transfers a proton to the sample, thereby transferring its charge. The reagent gas can also extract a hydride from the sample. M + CH 5+ MH + + CH 4 MH + CH 5+ M + + CH 4 + H 2 : polar molecules will often form adducts. Self association is also possible. M + CH 3+ (M+CH 3 ) + MH + + M (2M+H) + : inert gases with high ionization potentials react by transferring charge to the sample. Xe + + M M + + Xe 20.2 : 7/14 Negative ion formation: if the sample has acidic groups or electronegative elements, it can form a negative ion by capturing a slow electron from the reagent plasma. AB + e - AB - AB + e - A + B - AB + e - A + + B - + e -

8 Chemical Ionization (3) A dual electron ionization (EI)/chemical ionization (CI) source is shown. The left diagram is operation in the EI mode, with behavior as described earlier : 8/14 The right diagram shows the CI mode with the reagent gas box lowered into the electron beam. In this configuration the sample enters the box where the reagent gas is held at a pressure of ~ torr. This pressure creates a mean free path for collisions of ~ mm. For a box with centimeter dimensions each ion undergoes ~ collisions. Pumps keep the pressure outside the box at the 10-5 torr level. 1, IE/CI switch; 2, microswitch; 3, reagent gas entrance; 4, flexible capillary; 5, diaphragm; 6, filament; 7, path of ions toward analyzer; 8, hole for ionizing electrons; 9, sample inlet; 10, box with holes, called the "ion volume."

9 Matrix-Assisted Laser Desorption Ionization, MALDI (1) The compound to be analyzed is dissolved in a solvent containing a small organic molecule that the laser radiation. The mixture is placed on the probe tip and the solvent allowed to evaporate. The analyte is then dissolved in a solid solution of matrix crystals. desorption desolvation H + + protonation + The mixture is irradiated by a pulsed laser producing ~20 mj cm -2. The matrix absorbs the laser and the mixture explosively ablates from the surface. The sample molecules are surrounded by matrix as they leave the surface. After a short distance the sample begins to "desolvate." During the desolvation process a is transferred from the matrix to the analyte forming the MH + ion. The matrix is present in large excess, keeping the sample molecules away from each other and minimizing optical damage to the sample. The laser frequency determines the and not the sample! 20.2 : 9/14

10 MALDI (2) MALDI is most often used to put species into the gas phase. It is a major tool in proteomics, where proteins can initially be separated by 2D-PAGE then analyzed by MALDI. The top spectrum is from a monoclonal antibody with a mass of ~150,000 Da. Note that the charge state is due to addition of to the basic residues of the protein. The bottom spectrum is a mixture of poly(methyl methacrylate) polymers with a nominal mass of 7100 Da. This is far from a monodispersed polymer! 20.2 : 10/14

11 MALDI (3) Infrared and ultraviolet laser desorption give essentially the same mass spectrum. With infrared desorption there can be less fragmentation if the sample absorbs in the ultraviolet. The table below shows some common UV matrices and typical applications. Matrix α-cyano-4-hydroxycinnamic acid 3,5-dimethyl-4-hydroxycinnamic acid 2,5-dihydroxybenzoic acid 3-hydroxypicolinic acid trihydroxyacetophenone 5-chlorosalicylic acid Application peptides, proteins, organics higher mass biopolymers peptides, proteins, carbohydrates oligonucleotides oligonucleotides, peptides water-insoluble polymers With infrared lasers, matrices include urea, carboxylic acids, alcohols and water : 11/14

12 Electrospray Ionization (1) A solution containing the sample is pushed through a metallic capillary at 1-10 μl min -1. The solution leaves at atmospheric pressure. The capillary is charged 3-6 kv across a distance of cm producing an electric field of ~10 6 V m -1. As the liquid leaves the capillary the electric field causes it to charge with. The multiple charges cause droplets to form. The analyte can pick up some of the charge as it is desolvated. are used to isolate the sample from the solvent. High capacity pumping is necessary to keep the spectrometer at low pressure. The ionization efficiency is times greater than chemical ionization. Like MALDI, electrospray is used to introduce high molecular weight molecules into the gas phase : 12/14

13 Electrospray Ionization (2) Electrospray ionization is due to the addition of protons. Since the droplets contain many protons, the sample can become charged. When m/z is measured, multiple charges permit high molecular weight compounds to be observed with " " instruments. Obtaining the actual mass requires some arithmetic. Let M be the actual mass, m 1 be a peak in Thomsons with charge z 1, and m p be the m/z of a proton. The measured mass can be written as a sum. z 1 m 1 = M + z 1 m p A second m/z is chosen that appears j peaks higher in the spectrum. Solving one gets: (z 1 - j)m 2 = M + (z 1 - j)m p z 1 = j(m 2 - m p )/(m 2 - m 1 ) and 20.2 : 13/14

14 Electrospray Ionization (3) m 1 = 939.2, m 2 = , and j = 6 z 1 ( ) ( ) = = 19 M = = ( ) 20.2 : 14/14

Lecture 15: Introduction to mass spectrometry-i

Lecture 15: Introduction to mass spectrometry-i Lecture 15: Introduction to mass spectrometry-i Mass spectrometry (MS) is an analytical technique that measures the mass/charge ratio of charged particles in vacuum. Mass spectrometry can determine masse/charge

More information

M M e M M H M M H. Ion Sources

M M e M M H M M H. Ion Sources Ion Sources Overview of Various Ion Sources After introducing samples into a mass spectrometer, the next important step is the conversion of neutral molecules or compounds to gas phase ions. The ions could

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Chemistry Instrumental Analysis Lecture 37. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 37 Most analytes separated by HPLC are thermally stable and non-volatile (liquids) (unlike in GC) so not ionized easily by EI or CI techniques. MS must be at

More information

CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI

CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI Back to Basics Section A: Ionization Processes CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI TABLE OF CONTENTS Quick Guide...27 Summary...29 The Ionization Process...31 Other Considerations on Laser

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 8 Measuring Molecular Weight Membrane Osmometry Alfredo Vapor Phase Osmometry Linda Viscometry GW Gel Permeation Chromatography Size exclusion Chromatography Light Scattering

More information

Mass spectrometry and elemental analysis

Mass spectrometry and elemental analysis Mass spectrometry and elemental analysis A schematic representation of a single-focusing mass spectrometer with an electron-impact (EI) ionization source. M: + e _ M +. + 2e _ Ionization and fragmentation

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) Alternative names: Mass spectrometric (selective) detector (MSD) Spectrometry - methods based on interaction of matter and radiation Mass spectrometry - method based on formation

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #22 Mass Spectrometry: Chemical Ionization (Skoog,) (Harris, Chapt.) Mercer/Goodwill CEE 772 #22

More information

Mass Spectrometry for Chemists and Biochemists

Mass Spectrometry for Chemists and Biochemists Erasmus Intensive Program SYNAPS Univ. of Crete - Summer 2007 Mass Spectrometry for Chemists and Biochemists Spiros A. Pergantis Assistant Professor of Analytical Chemistry Department of Chemistry University

More information

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization. Homework 9: Chapters 20-21 Assigned 12 April; Due 17 April 2006; Quiz on 19 April 2006 Chap. 20 (Molecular Mass Spectroscopy) Chap. 21 (Surface Analysis) 1. What are the types of ion sources in molecular

More information

Mass spectrometry.

Mass spectrometry. Mass spectrometry Mass spectrometry provides qualitative and quantitative information about the atomic and molecular composition of inorganic and organic materials. The mass spectrometer produces charged

More information

Analysis of Polar Metabolites using Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry Analysis of Polar Metabolites using Mass Spectrometry TransMed Course: Basics in Clinical Proteomics and Metabolomics. Oct 10-19, 2012 dd.mm.yyyy Vidya Velagapudi, Ph.D, Adjunct Professor Head of the Metabolomics

More information

Auxiliary Techniques Soft ionization methods

Auxiliary Techniques Soft ionization methods Auxiliary Techniques The limitations of the structural information in the normal mass spectrum can be partly offset by special mass-spectral techniques. Although a complete description of these is beyond

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

(Refer Slide Time 00:09) (Refer Slide Time 00:13) (Refer Slide Time 00:09) Mass Spectrometry Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 09 (Refer

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 3 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Why should you be interested in mass spectrometry (MS)? - to identify unknown compounds - to quantify known materials - to elucidate

More information

1) In what pressure range are mass spectrometers normally operated?

1) In what pressure range are mass spectrometers normally operated? Exercises Ionization 1) In what pressure range are mass spectrometers normally operated? Mass spectrometers are usually operated in the high vacuum regime to ensure mean free paths significantly longer

More information

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT IDETIFICATIO OF ORGAOMETALLIC COMPOUDS USIG FIELD DESORPTIO IOIZATIO O THE GCT David Douce 1, Michael Jackson 1, Robert Lewis 1, Peter Hancock 1, Martin Green 1 and Stuart Warriner 2 1 Waters Corporation,

More information

Mass Spectrometry. A truly interdisciplinary and versatile analytical method

Mass Spectrometry. A truly interdisciplinary and versatile analytical method Mass Spectrometry A truly interdisciplinary and versatile analytical method MS is used for the characterization of molecules ranging from small inorganic and organic molecules to polymers and proteins.

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 6 Atomic Spectroscopy

More information

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Steven L. Mullen, Ph.D. Associate Director SCS Mass Spectrometry Laboratory Contact Information 31 oyes Laboratory (8:00-5:00

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction 1-1 1.1. Overview In the past twenty years, charged droplets and strong electric fields have quietly revolutionized chemistry. In combination with an atmospheric-sampling mass spectrometer,

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 1 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Chapter 5 Basic Mass Spectrometry

Chapter 5 Basic Mass Spectrometry Chapter 5 Basic Mass Spectrometry 5.1 Introduction and History The earliest forms of mass spectrometry go back to the observation of canal rays by Goldstein in 1886 and again by Wien in 1899. Thompson

More information

Qualitative Organic Analysis CH 351 Mass Spectrometry

Qualitative Organic Analysis CH 351 Mass Spectrometry Qualitative Organic Analysis CH 351 Mass Spectrometry Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA General Aspects Theoretical basis of mass spectrometry Basic Instrumentation

More information

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects Mass Spectrometry Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects 1 Introduction to MS Mass spectrometry is the method of analysis

More information

LC-MS Based Metabolomics

LC-MS Based Metabolomics LC-MS Based Metabolomics Analysing the METABOLOME 1. Metabolite Extraction 2. Metabolite detection (with or without separation) 3. Data analysis Metabolite Detection GC-MS: Naturally volatile or made volatile

More information

Selecting an LC/MS Interface Becky Wittrig, Ph.D.

Selecting an LC/MS Interface Becky Wittrig, Ph.D. Selecting an LC/MS Interface Becky Wittrig, Ph.D. RESTEK CORPORATION LC/MS Interfaces I. Background of LC/MS I. Historical Perspective II. Reasons for use II. Interfaces I. Transport devices II. Particle

More information

Mass spectrometry gas phase transfer and instrumentation

Mass spectrometry gas phase transfer and instrumentation Objectives of the Lecture spectrometry gas phase transfer and instrumentation Matt Renfrow January 15, 2014 1. Make ions 2. Separate/Analyze 3. Detect ions 4. What is mass resolution and mass accuracy?

More information

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC INTRODUCTION Principle: LC/MS is a technique that combines physical separation capabilities of liquid

More information

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+. Mass spectrometry is the study of systems causing the formation of gaseous ions, with or without fragmentation, which are then characteried by their mass to charge ratios (m/) and relative abundances.

More information

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016 Deposition of polymeric thin films by PVD process Hachet Dorian 09/03/2016 Polymeric Thin Films nowadays The evaporation of polymers Ionization-Assisted Method Vacuum deposition 0,055eV/molecule at 1000

More information

Chemistry Instrumental Analysis Lecture 17. Chem 4631

Chemistry Instrumental Analysis Lecture 17. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 17 Introduction to Optical Atomic Spectrometry From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry

More information

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY Edited by AKBAR MONTASER George Washington University Washington, D.C. 20052, USA WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

MS/MS .LQGVRI0606([SHULPHQWV

MS/MS .LQGVRI0606([SHULPHQWV 0DVV6SHFWURPHWHUV Tandem Mass Spectrometry (MS/MS) :KDWLV0606" Mass spectrometers are commonly combined with separation devices such as gas chromatographs (GC) and liquid chromatographs (LC). The GC or

More information

An ion source performs the following two functions:

An ion source performs the following two functions: Ionization The Ion Source An ion source performs the following two functions: 1) converts sample atoms or molecules to ionized particles (ions) in the gas phase (sometimes the task of introducing the atoms

More information

The AccuTOF -DART 4G: The Ambient Ionization Toolbox

The AccuTOF -DART 4G: The Ambient Ionization Toolbox The AccuTOF -DART 4G: The Ambient Ionization Toolbox Introduction JEOL introduced the AccuTOF-DART in 2005 as the first commercially available ambient ionization mass spectrometer system. The atmospheric

More information

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York Mass Spectrometry for the Novice John Greaves and John Roboz (^>, yc**' CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Monday (March 28)- Mass spectrometry Tuesday (March 29)- Experiment 6: Separa>ons ICP-MS calcula>ons

Monday (March 28)- Mass spectrometry Tuesday (March 29)- Experiment 6: Separa>ons ICP-MS calcula>ons LOOKING AHEAD Monday (March 28)- Mass spectrometry Tuesday (March 29)- Experiment 6: Separa>ons ICP-MS calcula>ons Thursday (March 31)- Poster crea>on? Hayes on travel Monday (April 4)- Chromatographic

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Ion sources. Ionization and desorption methods

Ion sources. Ionization and desorption methods Ion sources Ionization and desorption methods 1 2 Processes in ion sources 3 Ionization/ desorption Ionization Desorption methods Electron impact ionization Chemical ionization Electro-spray ionisation

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Electrospray Ion Trap Mass Spectrometry. Introduction

Electrospray Ion Trap Mass Spectrometry. Introduction Electrospray Ion Source Electrospray Ion Trap Mass Spectrometry Introduction The key to using MS for solutions is the ability to transfer your analytes into the vacuum of the mass spectrometer as ionic

More information

Chemical Noise in Mass Spectrometry

Chemical Noise in Mass Spectrometry Chemical Noise in Mass Spectrometry Part II Effects of Choices in Ionization Methods on Chemical Noise Kenneth L. Busch Kenneth L. Busch is in pursuit of the grand unified theory of mass spectrometry.

More information

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS MASS SPECTRA measure a compound s Mol. Wt. p. 213 M + Molecule e - Molecule + 2 e - + + Mole cule + + Mol ecule IONIZATION CHAMBER repellor plate accelerating plates variable field magnet + Mo + lecule

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Training Coarse ECOPROBE 5 CHEMISTRY RS DYNAMICS

Training Coarse ECOPROBE 5 CHEMISTRY RS DYNAMICS Training Coarse ECOPROBE 5 CHEMISTRY Contents Ecoprobe analytical principles Photoionization Infrared spectroscopy Oxygen measurement Pollutants Types and responses Head space New application of Ecoprobe

More information

Chapter 14. Molar Mass Distribution.

Chapter 14. Molar Mass Distribution. Chapter 14. Molar Mass Distribution. Difficulty with M n and M w, etc. osome polymers are hard to describe from just M n, M w, etc. o Examples: Bimodal, multimodal, nonuniform, broad, etc. MWDs. oin early

More information

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment Applied Biosystems QStar Pulsar i Features of the API QSTAR Pulsar i The

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) MW Molecular formula Structural information GC-MS LC-MS To Do s Read Chapter 7, and complete the endof-chapter problem 7-4. Answer Keys are available in CHB204H MS Principles Molecule

More information

Quattro Micro - How does it work?

Quattro Micro - How does it work? Quattro Micro - How does it work? 1 Introduction This document is designed to familiarise you with the principles behind how the Quattro Micro works. The level of this document is designed as Level One

More information

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson Welcome!! - 50120 Organic Chemistry for Chemical Engineers Professor: Grant Willson Teaching Assistants: Paul Meyer, Qingjun Zhu, Josh Saunders http://willson.cm.utexas.edu January 22,2019 Bureaucracy:

More information

Voyager-DE STR Biospectrometry Workstation Manufactured by PerSeptive Biosystems

Voyager-DE STR Biospectrometry Workstation Manufactured by PerSeptive Biosystems Voyager-DE STR Biospectrometry Workstation Manufactured by PerSeptive Biosystems General Description The Voyager-DE STR Biospectrometry Workstation includes upgraded electronics, a 3-meter flight path,

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

Accelerated Bimolecular Reactions in Microdroplets Studied by. Desorption Electrospray Ionization Mass Spectrometry

Accelerated Bimolecular Reactions in Microdroplets Studied by. Desorption Electrospray Ionization Mass Spectrometry Supporting Information Accelerated Bimolecular Reactions in Microdroplets Studied by Desorption Electrospray Ionization Mass Spectrometry Marion Girod a, Encarnacion Moyano b, Dahlia I Campbell a, and

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Mass Spectrometry Course

Mass Spectrometry Course Mass Spectrometry Course Árpád Somogyi Mass Spectrometry Laboratory, Department of Chemistry and Biochemistry University of Arizona, Tucson, AZ Eötvös University, Budapest April 11-20, 2012 1 2 UA Chemistry

More information

Mass Spectrometry: Introduction

Mass Spectrometry: Introduction Mass Spectrometry: Introduction Chem 8361/4361: Interpretation of Organic Spectra 2009 Andrew Harned & Regents of the University of Minnesota Varying More Mass Spectrometry NOT part of electromagnetic

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

Lecture 1 Introduction- Protein Sequencing Production of Ions for Mass Spectrometry

Lecture 1 Introduction- Protein Sequencing Production of Ions for Mass Spectrometry Lecture 1 Introduction- Protein Sequencing Production of Ions for Mass Spectrometry Nancy Allbritton, M.D., Ph.D. Department of Physiology & Biophysics 824-9137 (office) nlallbri@uci.edu Office- Rm D349

More information

Basics of Mass Spectrometry

Basics of Mass Spectrometry Handbook of instrumental techniques from CCiTUB Basics of Mass Spectrometry Lourdes Berdié 1, Isidre Casals 2, Irene Fernández 3, Olga Jáuregui 2, Rosa Maria Marimon 4, Joaquim Perona 4, and Pilar Teixidor

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

BIOINF 4399B Computational Proteomics and Metabolomics

BIOINF 4399B Computational Proteomics and Metabolomics BIOINF 4399B Computational Proteomics and Metabolomics Sven Nahnsen WS 13/14 3. Chromatography and mass spectrometry Overview Recall last lecture Basics of liquid chromatography Algorithms to predict and

More information

Introduction to the Q Trap LC/MS/MS System

Introduction to the Q Trap LC/MS/MS System www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment ABI Q Trap LC/MS/MS Introduction to the Q Trap LC/MS/MS System The Q Trap

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Ch. 8 Introduction to Optical Atomic Spectroscopy

Ch. 8 Introduction to Optical Atomic Spectroscopy Ch. 8 Introduction to Optical Atomic Spectroscopy 8.1 3 major types of Spectrometry elemental Optical Spectrometry Ch 9, 10 Mass Spectrometry Ch 11 X-ray Spectrometry Ch 12 In this chapter theories on

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS Mass Spectrometry Hyphenated Techniques GC-MS LC-MS and MS-MS Reasons for Using Chromatography with MS Mixture analysis by MS alone is difficult Fragmentation from ionization (EI or CI) Fragments from

More information

KJ3022 MS compendium gives a deeper explanation of what is mentioned in the slides

KJ3022 MS compendium gives a deeper explanation of what is mentioned in the slides 1 MS program 20.08.2013 MS: Ionization methods 22.08.2013 MS: Ionization methods + Analytical Information 27.08.2013 MS: Analytical Information + Analyzers 29.08.2013 MS: Analyzers + Questions 03.09.2013

More information

Introduction. Chapter 1. Learning Objectives

Introduction. Chapter 1. Learning Objectives Chapter 1 Introduction Learning Objectives To understand the need to interface liquid chromatography and mass spectrometry. To understand the requirements of an interface between liquid chromatography

More information

Introduction to Mass Spectrometry (MS)

Introduction to Mass Spectrometry (MS) Introduction to Mass Spectrometry (MS) MS Mass Spectrometry (MS) This is a very powerful analytical tool that can provide information on both molecular mass and molecular structure. Molecules come in all

More information

A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state.

A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state. 12.3 Processes and techniques 12.3.1 Ionization nomenclature Adiabatic ionization A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state.

More information

Chapter 5. Complexation of Tholins by 18-crown-6:

Chapter 5. Complexation of Tholins by 18-crown-6: 5-1 Chapter 5. Complexation of Tholins by 18-crown-6: Identification of Primary Amines 5.1. Introduction Electrospray ionization (ESI) is an excellent technique for the ionization of complex mixtures,

More information

PTYS 214 Spring Announcements. Midterm #1 on Tuesday! Be on time! No one enters after the first person leaves! Do your homework!

PTYS 214 Spring Announcements. Midterm #1 on Tuesday! Be on time! No one enters after the first person leaves! Do your homework! PTYS 214 Spring 2018 Announcements Midterm #1 on Tuesday! Be on time! No one enters after the first person leaves! Do your homework! 1 Last time - Properties of Life Organization, energy utilization, homeostasis,

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

LECTURE-13. Peptide Mass Fingerprinting HANDOUT. Mass spectrometry is an indispensable tool for qualitative and quantitative analysis of

LECTURE-13. Peptide Mass Fingerprinting HANDOUT. Mass spectrometry is an indispensable tool for qualitative and quantitative analysis of LECTURE-13 Peptide Mass Fingerprinting HANDOUT PREAMBLE Mass spectrometry is an indispensable tool for qualitative and quantitative analysis of proteins, drugs and many biological moieties to elucidate

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

Mass Spectrometry. Anders Malmendal. 1. Physical principles. Mass Spectrometry

Mass Spectrometry. Anders Malmendal. 1. Physical principles. Mass Spectrometry 1. Physical principles Mass spectrometry is based on the laws determining the motions of charged particles. In a mass spectrometer, the motions of these particles are determined by the particle mass and

More information

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 BST 226 Statistical Methods for Bioinformatics David M. Rocke January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 Mass Spectrometry Mass spectrometry (mass spec, MS) comprises a set of instrumental

More information