Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acidsoluble Component with Inductively Coupled Plasma Mass Spectrometry

Size: px
Start display at page:

Download "Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acidsoluble Component with Inductively Coupled Plasma Mass Spectrometry"

Transcription

1 ANALYTICAL SCIENCES JUNE 2018, VOL The Japan Society for Analytical Chemistry Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acidsoluble Component with Inductively Coupled Plasma Mass Spectrometry Notes Masaaki KASAMATSU, Takao IGAWA, Shinichi SUZUKI, and Yasuhiro SUZUKI National Research Institute of Police Science, Kashiwanoha, Kashiwa, Chiba , Japan Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete. Keywords Concrete, elemental analysis, forensic discrimination, ICP-MS (Received January 30, 2018; Accepted April 2, 2018; Published June 10, 2018) Introduction Since concrete is a familiar material used for building structures and block walls, fragments that have occurred in relation to a crime might be physical evidence. Criminal investigations require the evaluation of the similarity between fragmented samples; that is, to determine whether or not they are derived from the same origin. Generally, fragmented samples are investigated for whether there is a region where the physical structure matches. In addition, a morphological observation, such as color and texture, is conducted. These results are used to consider whether or not these fragments are derived from the same origin. However, subjective observation should be eliminated as much as possible because the results may differ depending on the inspector. For these reasons, forensic discrimination is performed based on objective indicators utilizing instrumental analyses, and a method focusing on contained trace elements is effective. In the field of forensic science, discrimination of ceramics, 1 glass, 2 6 and other 7,8 materials are carried out by comparing trace elements contained in the examined physical evidence. Estimation of the chemical composition of concrete is performed by an electron probe microanalyzer, 9,10 but it does not have enough sensitivity for discrimination. Inductively coupled plasma mass spectrometry (ICP-MS) is suitable for trace element analysis based on its high sensitivity, and sequential multi-elemental analysis is widely used for detection of minor and trace elements from petroleum products, food, 14,15 drugs, 16 biological samples, and glass. 2 4,23 However, there are several problems in applying ICP-MS to the analysis of concrete. Glass and metals produced by melting and mixing are relatively homogeneous in elemental component, whereas To whom correspondence should be addressed. kasamatsu@nrips.go.jp concrete is a mixture of cemented heterogeneous aggregates. For this reason, the chemical composition might vary greatly depending on the site from which the sample is collected and is not suitable for analysis by decomposing the whole sample, including the aggregate. In this study, the nitric acid soluble components of concrete were examined, and a solubilized fraction was introduced to ICP-MS. Indices, expressed as the ratios of characteristic elements, were calculated from the obtained results and discrimination was performed based on the difference between intra-sample variation and inter-sample variation of those indices. Experimental Apparatus An ICP-MS instrument (Model 7500c, Agilent Technologies, Tokyo, Japan) was employed for this experiment. The operating conditions for the ICP-MS instrument are given in Table 1. As an internal standard, yttrium was added on-line. Using the ratio of stable isotopes, it was assumed that there was no interference for each measured element. Therefore, cell gas mode was not used. Reagents and samples Purified water was prepared with a Milli-Q preparation system (Elix Advantage 3 and Milli-Q Advantage, Merck Millipore, Tokyo, Japan) throughout this experiment. The nitric acid used for this experiment was ultrapure grade (Kanto Chemical Co. Inc., Tokyo, Japan). Multi-element standard solutions containing or 5 40 ng ml 1 of each element in 2% nitric acid by volume were prepared by mixing single-element standard solutions for atomic absorption spectrometry (Kanto Chemical Co. Inc., Tokyo, Japan) and used as working standard solutions for calibration.

2 730 ANALYTICAL SCIENCES JUNE 2018, VOL. 34 Table 1 Operating conditions for ICP-MS Plasma conditions RF frequency MHz RF power 1.5 kw Plasma gas flow rate 14.8 L min 1 Ar Auxiliary gas flow rate 0.9 L min 1 Ar Carrier gas flow rate 1.1 L min 1 Ar Cell gas None Data acquisition Elements (m/z) Cu(63), Zn(66), Rb(85), Sr(88), Y(89), Zr(90), Ba(137), La(139), Ce(140), Nd(146), Pb(208) Data point 3 points/peak Dwell time 0.3 s Repetition 5 times Table 2 Concrete samples used for the experiments Sample number Condition Source 1 Concrete waste Collect 2 Concrete waste Collect 3 Concrete curbstone Purchase (shop A) 4 Concrete curbstone Purchase (shop A) 5 Concrete block Purchase (shop A) 6 Concrete block Purchase (shop A) 7 Concrete curbstone Purchase (shop B) 8 Concrete curbstone Purchase (shop B) Eight kinds of concrete pieces were collected or purchased randomly from available commercial samples, as shown in Table 2. One dry mortar premixed with cement and aggregate was also purchased and used for this research. Sample preparation A small piece of concrete was chiseled from five different points. Samples collected from each site were individually decomposed. Approximately 100 mg of a concrete piece was placed in a plastic tube; 1 ml of pure water and 1 ml of concentrated nitric acid were sequentially added and left overnight for obtaining an acid soluble fraction. The insoluble aggregate was removed by filtration (qualitative filter paper, ADVANTEC, Tokyo, Japan), and the filtrate that is, the nitric acid soluble component of the concrete was separated. The resulting solution was made up to 50 ml, further diluted if necessary, and qualitative and quantitative analyses were performed by ICP-MS. The insoluble aggregate was approximately 60 to 70% by weight for each concrete piece. Results and Discussion Effect of curing the cement Concrete is prepared by mixing aggregate, cement, and water. The object to be analyzed is the concrete after curing. Here, since the curing of cement is a chemical reaction, there is a possibility that differences may result in the elements detected due to the influence of curing. Therefore, in order to confirm this point, pretreatment and analysis by this method were carried out on the dry mortar sample before and after curing. The obtained spectra are shown in Fig. 1. It should be noted that there was little difference in the shape of the spectra obtained. Fig. 1 Mass spectra of dry mortar (A) before and (B) after curing by ICP-MS. Fig. 2 Analytical results for dry mortar before and after curing. The error bar for each column corresponds to SD. The detected element was quantified and the profile normalized with La concentration, as shown in Fig. 2. Thus, curing cement does not affect the obtained results. Qualitative analysis by ICP-MS In a homogeneous sample such as glass or metal, 24 it is possible to discriminate by sampling a part of the material and completely dissolving and examining the trace elements. However, in heterogeneous samples, such as in the case of

3 ANALYTICAL SCIENCES JUNE 2018, VOL concrete, variation of elemental composition due to the difference of sampling point is too large to get a representative value for discrimination between samples. For this reason, the acid-soluble components in the concrete were selected for analysis. As cement is mixed and agitated with aggregate and water when preparing concrete, the fluid part that includes the cement can be considered close to homogenous in the sample batch. Therefore, it was presumed that discrimination among these samples could be performed by utilizing elemental information of only the cement part of the concrete. The qualitative analysis of the cement acid-soluble fraction confirmed that the fraction contained Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb. An example of the result of qualitative analysis Fig. 3 Mass spectrum of sample No. 3 by ICP-MS. by ICP-MS is shown in Fig. 3. Many peaks were observed in each sample in addition to the strong peaks of Sr and Ba. The same kinds of elements were found among different samples in this experiment. Thus, elements that could be used as indicators were selected and quantified. Evaluation and discrimination method In order to calculate the quantitative value from the measured value of the solution, it was premised that the weight of the sample dissolved was known. In this case, part of the sample was dissolved, and, considering the influence of moisture contained in the sample and foaming during dissolution, it was impossible to calculate the weight of only the dissolved part of the sample. However, even if the dilution factor was unknown, the proportion of contained elements should be constant. We surmised that indices could be obtained by standardization with specific elements. La was selected as the normalizing element, which had a high signal intensity and a small deviation in the sample. The result of normalizing each element with La is shown in Fig. 4. Each sample is shown as the mean ± SD of the normalized values. In addition to the measurement error, the error ranges were affected by heterogeneity due to the difference in sampling position; therefore, a large deviation might be observed. However, differences were found in the normalized values between the samples, and discrimination was performed using this value as an indicator. Discrimination between the samples was performed by the following procedure with reference to the previous studies First, a range of the average value ± 2SD was calculated for each sample, and the ranges between two samples were compared. If they did not overlap, a sufficient difference existed, and so it was determined that it could be discriminated. Fig. 4 Analytical results for different concrete samples by ICP-MS. The error bar for each column corresponds to SD.

4 732 ANALYTICAL SCIENCES JUNE 2018, VOL. 34 Fig. 5 Results of discrimination for concrete samples by each discriminating indicator. Discriminated (D), not discriminated (N). If the ranges overlapped, a sufficient difference was not recognized between the examined samples and it was determined that it was difficult to distinguish. Discrimination between the two samples of interest was carried out for all combinations. The results are shown in Fig. 5. The symbol D indicates a discriminable pair determined by the method described above, and the symbol N indicates a non-discriminable pair. For example, the range of the indicator of Cu for samples 1 and 2 did not overlap, so they could be distinguished. Also, as the range of Ba for sample 8 was very large, it could not be discriminated in any sample. In the case of using a single indicator, there were many combinations that could not be distinguished, and the discrimination power between samples was insufficient. Through considering the discrimination between samples, the discrimination power could be improved by combining the nine indicators. If there was more than one indicator that did not overlap in the range of 2 SD, they were judged as discriminable. The results are shown in Fig. 6. Out of 28 combinations, 26 pairs (about 93%) could be discriminated. In this way, by combining indices, the discrimination power was significantly improved. There were two indistinguishable combinations, but these might have been made from the same lot of raw materials. It was difficult to find differences in these products purchased from the same store because many commercially available concrete blocks might be produced at the same time. In fact, when analyzing three concrete blocks obtained from the same shelf, the samples were not distinguishable from each other (data not shown). This result not only shows that this method could distinguish different samples, but also that the samples from the same origin could be the same. Fig. 6 Results of discrimination for concrete samples using nine discriminating indicators. Discriminated (D), not discriminated (N). Conclusions We focused on acid-soluble components that were part of concrete pieces and found that forensic discrimination could be performed by comparing their combination of characteristic ratios. In order to minimize the influence of the aggregate, we did not completely dissolve the sample and targeted only the acid-soluble component cement. Since cement could be considered close to homogeneous when making concrete, focusing on this part was appropriate for forensic discrimination. Because this is a comparison of ratio combinations, it is an excellent method that can be easily pretreated without concern for the dilution ratio of the sample.

5 ANALYTICAL SCIENCES JUNE 2018, VOL References 1. M. Kasamatsu and Y. Suzuki, Jpn. J. Forensic Sci. Tech., 2016, 21, Y. Suzuki, M. Kasamatsu, R. Sugita, H. Ohta, S. Suzuki, and Y. Marumo, Bunseki Kagaku, 2003, 52, T. Trejos, S. Montero, and J. R. Almirall, Anal. Bioanal. Chem., 2003, 376, S. Berends-Montero, W. Wiarda, P. Joode, and G. Peijl, J. Anal. At. Spectrom., 2006, 21, C. M. Bridge, J. Powell, K. L. Steele, and M. E. Sigman, Spectrochim. Acta, Part B, 2007, 62, M. M. El-Deftar, N. Speers, S. Eggins, S. Foster, J. Robertson, and C. Lennard, Forensic Sci. Int., 2014, 241, H. Ohsaki, K. Murakami, M. Kasamatsu, Y. Suzuki, and S. Suzuki, Jpn. J. Forensic Sci. Tech., 2009, 14, Y. Suzuki and S. Suzuki, Bunseki Kagaku, 2012, 61, D. Sawaki, K. Kobayashi, and E. Sakai, Bunseki Kagaku, 2010, 59, D. Sawaki, K. Kobayashi, and E. Sakai, Bunseki Kagaku, 2010, 59, K. Takeda and Y. Arikawa, Bunseki Kagaku, 2005, 54, R. J. Cassella, D. M. Brum, N. F. Robaina, A. A. Rocha, and C. F. Lima, J. Anal. At. Spectrom., 2012, 27, R. Sánchez, C. Sánchez, J. L. Todolí, C. P. Lienemann, and J. M. Mermet, J. Anal. At. Spectrom., 2014, 29, L. R. Drennan-Harris, S. Wongwilawan, and J. F. Tyson, J. Anal. At. Spectrom., 2013, 28, S. H. Choi, J. S. Kim, J. Y. Lee, J. S. Jeon, J. W. Kim, R. E. Russo, J. Gonzalez, J. H. Yoo, K. S. Kim, J. S. Yang, and K. S. Park, J. Anal. At. Spectrom., 2014, 29, C. Liu, Z. Hua, Y. Bai, and Y. Liu, Forensic Sci. Int., 2014, 239, I. Rodushkin and M. D. Axelsson, Sci. Total Environ., 2000, 250, J. P. Goulle, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Laine, D. Bouige, and C. Lacroix, Forensic Sci. Int., 2005, 153, M. W. F. Bonnie, S. S. Tak, S. K. L. Joseph, and S. Tam, J. Anal. Toxicol., 2007, 31, V. Hollriegl, M. Gonzalez-Estecha, E. M. Trasobares, A. Giussani, U. Oeh, M. A. Herraiz, and B. Michalke, J. Trace Elem. Med. Biol., 2010, 24, M. Kasamatsu, Y. Suzuki, S. Suzuki, W. B. Siong, Y. Oura, and M. Ebihara, Jpn. J. Forensic Sci. Tech., 2014, 19, M. Aramendia, L. Rello, S. Berail, A. Donnard, C. Pecheyran, and M. Resano, J. Anal. At. Spectrom., 2015, 30, T. Trejos and J. R. Almirall, Talanta, 2005, 67, H. Ohsaki, M. Kasamatsu, Y. Suzuki, and S. Suzuki, Bunseki Kagaku, 2007, 56, D. A. Hickman, Forensic Sci. Int., 1983, 23, M. Kasamatsu and Y. Suzuki, Bunseki Kagaku, 2012, 61, C. Munger, K. M. Gates, and C. Hamburg, J. Forensic Sci., 2014, 59, 1351.

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Application Note Semiconductor Authors Junichi Takahashi Agilent Technologies Tokyo, Japan Abstract Ammonium hydroxide

More information

Evaluation of inductively coupled plasma-ion trap mass spectrometry for lead isotopic measurements

Evaluation of inductively coupled plasma-ion trap mass spectrometry for lead isotopic measurements BUNSEKI KAGAKU Vol. 53, No. 6, pp. 527 _ 532 2004 527 2004 The Japan Society for Analytical Chemistry 1 1 R 1 2 Evaluation of inductively coupled plasma-ion trap mass spectrometry for lead isotopic measurements

More information

ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 2) Module 4

ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 2) Module 4 ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 2) Module 4 Tatiana Trejos, M.Sc Florida International University Department of Chemistry and Biochemistry International Forensic Research Institute Outline

More information

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Application Note Semiconductor Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Tokyo, Japan Introduction

More information

Thermo Scientific icap RQ ICP-MS: Typical limits of detection

Thermo Scientific icap RQ ICP-MS: Typical limits of detection TECHNICAL NOTE 43427 Thermo Scientific icap RQ ICP-MS: Typical limits of detection Author Tomoko Vincent Keywords BEC, interference removal, KED, LOD Introduction Inductively Coupled Plasma Mass Spectrometry

More information

INVESTIGATION OF ICP-OES ANALYSIS FOR DETERMINATION OF TRACE LEAD IN LEAD-FREE ALLOY

INVESTIGATION OF ICP-OES ANALYSIS FOR DETERMINATION OF TRACE LEAD IN LEAD-FREE ALLOY C1_C0011 1 INVESTIGATION OF ICP-OES ANALYSIS FOR DETERMINATION OF TRACE LEAD IN LEAD-FREE ALLOY Janya Buanuam,* Thareerut Woratanmanon, Temporn Sookawee Regional Failure Analysis and Reliability Laboratory,

More information

Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS)

Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS) JAMSTEC-R IFREE Special Issue, November 2009 Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS) Takashi Miyazaki 1*, Nobuyuki

More information

Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS

Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS Application note Metals Analysis & Production Authors Naoki Sugiyama and Mineko Omori Agilent Technologies,

More information

Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples

Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples A P P L I C A T I O N N ot e Atomic Absorption Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples Introduction The Flow Injection Mercury System (FIMS) is a dedicated system

More information

AN IN-SYRINGE La CO-PRECIPITATION METHOD FOR PRE-CONCENTRATION OF OXO-ANIONS FORMING ELEMENTS IN SEAWATER FOLLOWED BY ICP-MS MEASUREMENT

AN IN-SYRINGE La CO-PRECIPITATION METHOD FOR PRE-CONCENTRATION OF OXO-ANIONS FORMING ELEMENTS IN SEAWATER FOLLOWED BY ICP-MS MEASUREMENT AN IN-SYRINGE La CO-PRECIPITATION METHOD FOR PRE-CONCENTRATION OF OXO-ANIONS FORMING ELEMENTS IN SEAWATER FOLLOWED BY ICP-MS MEASUREMENT Dwinna Rahmi, Yanbei ZHU, Eiji Fujimori, Takuya Hasegawa, Tomonari

More information

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Application note Energy and fuels Authors Jenny Nelson, Agilent Technologies, USA Ed McCurdy, Agilent Technologies, UK Introduction

More information

Introduction to Laser Ablation ICP-MS for the Analysis of Forensic Samples Application Note

Introduction to Laser Ablation ICP-MS for the Analysis of Forensic Samples Application Note Introduction to Laser Ablation ICP-MS for the Analysis of Forensic Samples Application Note Forensic Toxicology Author Lawrence M. Neufeld New Wave Research, Inc. Fremont, CA, USA Abstract Forensic scientists

More information

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles Electronic Supporting Information (ESI) for Specifically colorimetric recognition of calcium, strontium, barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable

More information

Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode

Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode Application Note Pharmaceutical Authors Rebeca Santamaria-Fernandez, SheilaMerson,

More information

ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 1) Module 4

ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 1) Module 4 ELEMENTAL ANALYSIS OF GLASS EXAMINATIONS (PART 1) Module 4 Tatiana Trejos, M.Sc Florida International University Department of Chemistry and Biochemistry International Forensic Research Institute Outline

More information

S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1

S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1 S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1 1, Japan 2 Institute of Nuclear Sciences Vinca, Beograd, Serbia E-mail:sahoo@nirs.go.jp 3rd TRE-ICEP Veszprém-Hungary, May 16-18,

More information

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Application note Semiconductor Authors Michiko Yamanaka, Kazuo Yamanaka and Naoki

More information

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Application note Geochemistry, metals, mining Authors John Cauduro Agilent Technologies, Mulgrave, Australia Introduction

More information

Thermo Scientific icap TQ ICP-MS: Typical limits of detection

Thermo Scientific icap TQ ICP-MS: Typical limits of detection TECHNICAL NOTE 43287 Thermo Scientific icap TQ ICP-MS: Typical limits of detection Authors Tomoko Vincent Keywords BEC, LOD, SQ-KED, TQ mass shift, TQ on mass, typical performance Introduction Inductively

More information

Determination of Total Bromine and Iodine Emission Spectrometric Method (ICP-OES) EuSalt/AS

Determination of Total Bromine and Iodine Emission Spectrometric Method (ICP-OES) EuSalt/AS Determination of Total Bromine and Iodine Page 2 of 5 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes an inductively coupled plasma optical emission spectrometry method

More information

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell Trace elemental analysis of distilled alcoholic beverages using the Agilent 77x ICP-MS with octopole collision/ reaction cell Application note Food testing Author Glenn Woods Agilent Technologies Cheadle

More information

JOURNAL OF. Flow Injection. Analysis FIA 研究懇談会会誌

JOURNAL OF. Flow Injection. Analysis FIA 研究懇談会会誌 ISSN 911-775X CODEN: JFIAEA JOURNAL OF Flow Injection Analysis FIA 研究懇談会会誌 J. Flow Injection Anal., Vol. 25, No. 2 (28) 166 171 Multi-Auto-Pret AES System for Rapid Determination of Trace Metals in Samples

More information

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 129 Infi nity LC, and 646 Triple Quadrupole LC/MS Application Note Clinical Research Authors Linda Côté and Christophe

More information

Analysis of Technetium-99 in Marshall Islands Soil Samples by ICP-MS

Analysis of Technetium-99 in Marshall Islands Soil Samples by ICP-MS CYRIC Annual Report 2003 VI. 4. Analysis of Technetium-99 in Marshall Islands Soil Samples by ICP-MS Tagami K., Uchida S., and Sekine T. * Environmental and Toxicological Sciences Research Group, National

More information

Analytical Methods. Electronic Supplementary Information File

Analytical Methods. Electronic Supplementary Information File Electronic Supplementary Material (ESI) for Analytical Methods. This journal is The Royal Society of Chemistry 2014 Analytical Methods Electronic Supplementary Information File Attenuation of interferences

More information

Analysis Repeatability of Trace and Major Elements in a Water Sample

Analysis Repeatability of Trace and Major Elements in a Water Sample Analysis Repeatability of Trace and Major Elements in a Water Sample Agnès COSNIER HORIBA Scientific Longjumeau, France Keywords: environment Elements: Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li,

More information

Application. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid. Authors. Introduction. Abstract.

Application. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid. Authors. Introduction. Abstract. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid Application Semiconductor Authors Abe G. Gutiérrez Elemental Scientific 2440 Cuming St Omaha, NE 68131 USA abe@icpms.com

More information

METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY

METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY 1.0 SCOPE AND APPLICATION 1.1 This digestion procedure is used for the preparation

More information

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS APPLICATION NOTE ICP - Mass Spectrometry Author Kenneth Ong PerkinElmer, Inc. Singapore Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS Introduction The control of impurity

More information

ANALYTICAL SCIENCES FEBRUARY 2017, VOL The Japan Society for Analytical Chemistry

ANALYTICAL SCIENCES FEBRUARY 2017, VOL The Japan Society for Analytical Chemistry ANALYTICAL SCIENCES FEBRUARY 2017, VOL. 33 209 2017 The Japan Society for Analytical Chemistry Simultaneous Direct Determinations of Na, Mg, K, Ca, P, and S in Biodiesel Fuel by ICP-QMS/QMS after Xylene

More information

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS Enhancing the productivity of food sample analysis with the Agilent 77x ICP-MS Application note Foods testing Authors Sebastien Sannac, Jean Pierre Lener and Jerome Darrouzes Agilent Technologies Paris,

More information

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Application note Semiconductor Authors Junichi Takahashi Agilent Technologies, Japan Introduction

More information

ICP-OES Application Note Number 35

ICP-OES Application Note Number 35 ICP-OES Application Note Number 35 Rapid measurement of major, minor and trace levels in soils using the Varian 730-ES Vincent Calderon Varian, Inc. Introduction As part of the global strategy for sustainable

More information

Effect of Sampling Depth on the Analyte Response in Laser Ablation Inductively Coupled Plasma Mass Spectrometry

Effect of Sampling Depth on the Analyte Response in Laser Ablation Inductively Coupled Plasma Mass Spectrometry JLMN-Journal of Laser Micro/Nanoengineering Vol., No., Effect of Sampling Depth on the Analyte Response in Laser Ablation Inductively Coupled Plasma Mass Spectrometry Zhongke WANG *, Bodo Hattendorf and

More information

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to Supporting Information Facile design of phase separation for microfluidic droplet-based liquid phase microextraction as a front end to electrothermal vaporization-icpms for the analysis of trace metals

More information

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Application Note Semiconductor Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Japan Introduction Hydrochloric

More information

Test Method: CPSC-CH-E

Test Method: CPSC-CH-E UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 10901 DARNESTOWN RD GAITHERSBURG, MD 20878 Test Method: CPSC-CH-E1001-08 Standard Operating Procedure

More information

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Semiconductor Author Junichi Takahashi Koichi Yono Agilent Technologies, Inc. 9-1, Takakura-Cho, Hachioji-Shi,

More information

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS Application note Pharmaceutical Authors Miao Jing, Yingping Ni, Yanping Wang and Zhixu Zhang Agilent Technologies, China Introduction

More information

The Measurement of Lead in Food Products by Graphite Furnace AA and SpectraAA-40

The Measurement of Lead in Food Products by Graphite Furnace AA and SpectraAA-40 The Measurement of Lead in Food Products by Graphite Furnace AA and SpectraAA-40 Application Note Atomic Absorption Author Keith Brodie The widespread use of metals in modern industry has meant that traces

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES

Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES Application Note Inductively Coupled Plasma-Optical Emission Spectrometers Author Tran T. Nham Introduction

More information

Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry

Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry Journal of Oceanography Vol. 48, pp. 283 to 292. 1992 Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry KAZUO ABE and YASUNORI WATANABE Seikai National Fisheries

More information

Certificate of Analysis

Certificate of Analysis The Japan Society for Analytical Chemistry Certificate of Analysis Certified Reference Material JSAC 0601-3 Plastics (tip form) for Chemical Analysis of Hazardous Metals This certified reference material

More information

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater PRAMANA c Indian Academy of Sciences Vol. 76, No. 2 journal of February 2011 physics pp. 361 366 Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

More information

Rapid Analysis of High-Matrix Environmental Samples Using the Agilent 7500cx ICP-MS. Application. Author. Abstract. Introduction.

Rapid Analysis of High-Matrix Environmental Samples Using the Agilent 7500cx ICP-MS. Application. Author. Abstract. Introduction. Rapid Analysis of High-Matrix Environmental Samples Using the Agilent 7500cx ICP-MS Application Environmental Author Steven Wilbur Agilent Technologies, Inc. 3380 146th Place, SE, Suite 300 Bellevue, WA

More information

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 236 ABSTRACT TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Hagen Stosnach Röntec GmbH,

More information

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD BATTERY INDUSTRY STANDARD ANALYTICAL METHOD For the Determination of Mercury, Cadmium and Lead in Alkaline Manganese Cells Using AAS, ICP-AES and "Cold Vapour" European Portable Battery Association (EPBA)

More information

Analyst

Analyst PAPER www.rsc.org/analyst Analyst Detector response and intensity cross-contribution as contributing factors to the observed non-linear calibration curves in mass spectrometric analysis Meng-Jie Sie, a

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Determination of Nutrients. Determination of total phosphorus. Extraktion with aqua regia, reflux method. Introduction

Determination of Nutrients. Determination of total phosphorus. Extraktion with aqua regia, reflux method. Introduction Determination of Nutrients Determination of total phosphorus Extraktion with aqua regia, reflux method Introduction This document is developed in the project Horizontal. It is the result of desk studies

More information

Precise Determination of Trace Elements in Geological Samples by ICP-MS Using Compromise Conditions and Fine Matrix- Matching Strategy

Precise Determination of Trace Elements in Geological Samples by ICP-MS Using Compromise Conditions and Fine Matrix- Matching Strategy ANALYTICAL SCIENCES DECEMBER 2000, VOL. 16 2000 The Japan Society for Analytical Chemistry 1291 Precise Determination of Trace Elements in Geological Samples by ICP-MS Using Compromise Conditions and Fine

More information

Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water. Jintana Klamtet

Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water. Jintana Klamtet NU Science Journal 2006; 2(2): 165 173 Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water Jintana Klamtet Department of Chemistry, Faculty of Science, Naresuan University,

More information

Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation

Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation Analytical and Bioanalytical Chemistry Electronic Supplementary Material Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation Julien

More information

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Fundamentals and Applications to the Petrochemical Industry Outline Some background and fundamentals of ICPMS

More information

Single particle analysis using the Agilent 7700x ICP-MS

Single particle analysis using the Agilent 7700x ICP-MS Single particle analysis using the Agilent 7700x ICP-MS Application note Authors Materials Sébastien Sannac 1, Soheyl Tadjiki 2, Evelin Moldenhauer 3 1 Agilent Technologies, France 2 Postnova Analytics

More information

Supplementary Material

Supplementary Material Supplementary Material Digital Electrogenerated Chemiluminescence Biosensor for the Determination of Multiple Proteins Based on Boolean Logic Gate Honglan Qi*, Xiaoying Qiu, Chen Wang, Qiang Gao, Chengxiao

More information

The problems as we saw them were;

The problems as we saw them were; My name is Michael Murphy and I work in the isotope laboratory in the Department of Geology, University College Dublin. I am going to talk to you about rubidium, strontium, samarium and neodymium elemental

More information

Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry

Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry Supplementary Information Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry Qing Li 1,2, Zheng Wang 1,*, Jiamei Mo 1, Guoxia Zhang 1, Yirui Chen 1,

More information

Procedures for the determination of stable elements in construction materials from the nuclear reactors at Risø National Laboratory

Procedures for the determination of stable elements in construction materials from the nuclear reactors at Risø National Laboratory Risø-R-1548(EN) Procedures for the determination of stable elements in construction materials from the nuclear reactors at Risø National Laboratory Lars Frøsig Østergaard Risø National Laboratory Roskilde

More information

Evaluation, Control and Diagnosis of an ICP Through Simple Experiments

Evaluation, Control and Diagnosis of an ICP Through Simple Experiments ICP OPTICAL ATOMIC EMISSION SPECTROSCOPY Evaluation, Control and Diagnosis of an ICP Through Simple Experiments Odile Hirsch HORUIBA Scientific, Longjumeau, France Keywords: general 1 Introduction To undertake

More information

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Elemental analysis of river sediment using the Agilent 4200 MP-AES Elemental analysis of river sediment using the Agilent 4200 MP-AES Application note Environmental: Soils, sludges & sediments Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction

More information

Technical Procedure for Solid Phase Extraction of THC and THC-COOH for GC-MS Analysis

Technical Procedure for Solid Phase Extraction of THC and THC-COOH for GC-MS Analysis Technical Procedure for Solid Phase Extraction of THC and THC-COOH 1.0 Purpose - This procedure specifies the required elements for the extraction of THC and THC-COOH using United Technologies Styre Screen

More information

Very recently Roussis and Proulx clearly demonstrated

Very recently Roussis and Proulx clearly demonstrated APPLICATION NOTE Deconvolution of Isobaric Interferences in Mass Spectra Juris Meija and Joseph A. Caruso Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA The concept of isobar

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Quantitative analysis of Na, K and Ca in milk and yogurt using the MH-5000 Ultra Compact Elemental Analyzer

Quantitative analysis of Na, K and Ca in milk and yogurt using the MH-5000 Ultra Compact Elemental Analyzer Application Note [A00190E] 1 / 11 Quantitative analysis of Na, K and Ca in milk and yogurt using the MH-5000 Ultra Compact Elemental Analyzer Introduction This application note describes the quantitative

More information

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures RADIOLOGICAL CHARACTERIZATION Laboratory Procedures LORNA JEAN H. PALAD Health Physics Research Unit Philippine Nuclear Research Institute Commonwealth Avenue, Quezon city Philippines 3-7 December 2007

More information

Agilent Technologies at TIAFT 2013

Agilent Technologies at TIAFT 2013 Agilent Technologies at TIAFT 2013 Analytical approaches for the measurement of trace metals in forensic samples Funchal, Madeira September 2-6 CRIMINALISTIC TOXICOLOGY DNA INVESTIGATION DOCUMENT EXAMINATION

More information

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe:

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe: February 20, 2012 Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Subject: ICP-MS Report Job Number: S0CHG688 Dear Joe: Please find enclosed the procedure report for the analysis

More information

Accurate Analysis of Trace Mercury in Cosmetics using the Agilent 8900 ICP-QQQ

Accurate Analysis of Trace Mercury in Cosmetics using the Agilent 8900 ICP-QQQ Application Note Consumer products Accurate Analysis of Trace Mercury in Cosmetics using the Agilent 8900 ICP-QQQ Effective removal of tungsten-based interferences on five Hg isotopes using MS/MS Authors

More information

Chemical Procedures for the analysis of dissolved Po-210 and Pb-210: Mark Baskaran, Wayne State University

Chemical Procedures for the analysis of dissolved Po-210 and Pb-210: Mark Baskaran, Wayne State University Chemical Procedures for the analysis of dissolved Po-210 and Pb-210: Mark Baskaran, Wayne State University 1. Introduction: Both Po and Pb are particle-reactive, the samples were filtered within 1-2 hours

More information

Appendix II- Bioanalytical Method Development and Validation

Appendix II- Bioanalytical Method Development and Validation A2. Bioanalytical method development 1. Optimization of chromatographic conditions Method development and optimization of chromatographic parameters is of utmost important for validating a method in biological

More information

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode Application Note Authors Siji Joseph Agilent Technologies India Pvt. Ltd.

More information

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer is powerful simultaneous full

More information

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution APEX-ACM Ca Ratios Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution Abstract High resolution ICP-MS is used

More information

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct 1. Application Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct Parameter and Code: Mercury, total, I-6463-86 (µg/g as Hg): none assigned 1.1 This method is used to analyze

More information

TECHNETIUM-99 IN SOIL

TECHNETIUM-99 IN SOIL Analytical Procedure TECHNETIUM-99 IN SOIL 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in soil. 1.2. This method does not address all aspects of safety, quality

More information

The ultratrace determination of iodine 129 in aqueous samples using the 7700x ICP-MS with oxygen reaction mode

The ultratrace determination of iodine 129 in aqueous samples using the 7700x ICP-MS with oxygen reaction mode The ultratrace determination of iodine in aqueous samples using the 7700x ICP-MS with oxygen reaction mode Application note Nuclear Authors Kazumi Nakano, Yasuyuki Shikamori, Naoki Sugiyama and Shinichiro

More information

Corn Sugar (crude & refined) Analysis F MOISTURE (Karl Fischer)

Corn Sugar (crude & refined) Analysis F MOISTURE (Karl Fischer) Corn Sugar (crude & refined) Analysis F-32-1 MOISTURE (Karl Fischer) PRINCIPLE SCOPE The sugar sample is dissolved in a mixture of methanol and formamide (50:50 v/v) and then titrated with standardized

More information

SIMULTANEOUS DETERMINATION OF PROCAINE AND BENZOIC ACID BY DERIVATIVE SPECTROMETRY

SIMULTANEOUS DETERMINATION OF PROCAINE AND BENZOIC ACID BY DERIVATIVE SPECTROMETRY SIMULTANEOUS DETERMINATION OF PROCAINE AND BENZOIC ACID BY DERIVATIVE SPECTROMETRY Irinel Adriana Badea *, LuminiŃa Vlădescu abstract: A derivative spectrometric has been developed for the determination

More information

Meeting the Challenges of Soil Analysis with the Avio 200 ICP-OES

Meeting the Challenges of Soil Analysis with the Avio 200 ICP-OES APPLICATION NOTE ICP-Optical Emission Spectroscopy Author: Nick Spivey PerkinElmer, Inc. Shelton, CT Meeting the Challenges of Soil Analysis with the Avio 200 ICP-OES Introduction Micronutrients contained

More information

Sample Analysis Design PART II

Sample Analysis Design PART II Sample Analysis Design PART II Sample Analysis Design Generating high quality, validated results is the primary goal of elemental abundance determinations It is absolutely critical to plan an ICP-MS analysis

More information

Application note. Accurate determination of sulfur in biodiesel using Isotope Dilution-Triple Quadrupole ICP-MS (ID-ICP-QQQ) Petrochemical

Application note. Accurate determination of sulfur in biodiesel using Isotope Dilution-Triple Quadrupole ICP-MS (ID-ICP-QQQ) Petrochemical Accurate determination of sulfur in biodiesel using Isotope Dilution-Triple Quadrupole ICP-MS (ID-ICP-QQQ) Application note Petrochemical Author Lieve Balcaen, Frank Vanhaecke 1, Glenn Woods 2, Martín

More information

Reactivities of Platinum Subnanocluster Catalysts for Oxidation

Reactivities of Platinum Subnanocluster Catalysts for Oxidation Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for: Reactivities of Platinum Subnanocluster Catalysts

More information

The use of calibration approaches for quantitative GC/MS analysis-secobarbital example

The use of calibration approaches for quantitative GC/MS analysis-secobarbital example FORENSIC SCIENCE JOURNAL SINCE 2002 Forensic Science Journal 2006;5:13-19 Available online at:fsjournal.cpu.edu.tw The use of calibration approaches for quantitative GC/MS analysis-secobarbital example

More information

Structural effects on catalytic activity of carbon-supported magnetite. nanocomposites in heterogeneous Fenton-like reactions

Structural effects on catalytic activity of carbon-supported magnetite. nanocomposites in heterogeneous Fenton-like reactions Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Supplementary Information Structural effects on catalytic activity of carbon-supported magnetite

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS

Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS Application Note Food Testing Author John Cauduro Agilent Technologies, Australia Introduction Trace

More information

CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS. Ver. 2.0

CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS. Ver. 2.0 CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS Ver. 2.0 July 8, 2010 Protocol Contributors: J. S. Taurozzi 1, V. A. Hackley 1, M. R.

More information

Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS

Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS ICP-MS Environmental Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS Application Note Steve Wilbur Analysis of arsenic and selenium in seawater at trace

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Development of High Sensitivity Analysis of Micro-alloy in Steels by Mistral Desolvating Sample Introduction Method Hyphenated to ICP-MS/AES

Development of High Sensitivity Analysis of Micro-alloy in Steels by Mistral Desolvating Sample Introduction Method Hyphenated to ICP-MS/AES Technical Report UDC 543. 5 : 621. 384. 8 Development of High Sensitivity Analysis of Micro-alloy in Steels by Mistral Desolvating Sample Introduction Method Hyphenated to ICP-MS/AES Daisuke ITABASHI*

More information

Sample Analysis Design Polyatomic Interferences

Sample Analysis Design Polyatomic Interferences Sample Analysis Design Polyatomic Interferences More serious than isobaric interferences Result from possible, short-lived combination of atomic species in the plasma or during ion transfer Common recombinants

More information

OPTIMIZING METALS SAMPLE PREP

OPTIMIZING METALS SAMPLE PREP APPLICATION NOTE OPTIMIZING METALS SAMPLE PREP Utlilizing Single Reaction Chamber (SRC)Technology for Trace Metals Analysis for contract laboratories. Contract analytical laboratories use a variety of

More information

9/13/10. Each spectral line is characteristic of an individual energy transition

9/13/10. Each spectral line is characteristic of an individual energy transition Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1 Atomic Line Widths Why do atomic spectra have

More information

Shengqing Li, Bin Hu and Zucheng Jiang* Introduction

Shengqing Li, Bin Hu and Zucheng Jiang* Introduction Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry Shengqing

More information

Determination of Kind of Cement in Hardened Concrete by Electron Probe Microanalyser

Determination of Kind of Cement in Hardened Concrete by Electron Probe Microanalyser Determination of Kind of ement in Hardened oncrete by Electron Probe Microanalyser Daisuke Sawaki 1,*, Haruka Takahashi 1 and Etsuo Sakai 2 1 Taiheiyo onsultant o.,ltd., Japan 2 Tokyo Institute of Technology,

More information

(CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM)

(CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM) Analytical Procedure RADIUM IN WATER (CATION EXCHANGE AND LN RESIN, WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This is a method for separation and measurement of radium-226 and radium-228 in water. This method

More information

Supporting Information

Supporting Information Supporting Information Incorporation of a Sugar Unit into a C C N Pincer Pd Complex Using Click Chemistry and Its Dynamic Behavior in Solution and Catalytic Ability toward the Suzuki Miyaura Coupling in

More information

Qualitative Chemistry Unit 2. Matter A Central Idea in Chemistry

Qualitative Chemistry Unit 2. Matter A Central Idea in Chemistry Qualitative Chemistry Unit 2 Matter A Central Idea in Chemistry Unit Warm-Up 1. What do chemists study? 2. How do atoms differ from molecules? 3. Describe a chemical change (chemical reaction) you have

More information