PAPER CHROMATOGRAPHY

Size: px
Start display at page:

Download "PAPER CHROMATOGRAPHY"

Transcription

1 paper chromatography PAPER CHROMATOGRAPHY This page is an introduction to paper chromatography - including two way chromatography. Carrying out paper chromatography Background Chromatography is used to separate mixtures of substances into their components. All forms of chromatography work on the same principle. They all have a stationary phase (a solid, or a liquid supported on a solid) and a mobile phase (a liquid or a gas). The mobile phase flows through the stationary phase and carries the components of the mixture with it. Different components travel at different rates. We'll look at the reasons for this further down the page. In paper chromatography, the stationary phase is a very uniform absorbent paper. The mobile phase is a suitable liquid solvent or mixture of solvents. Producing a paper chromatogram You probably used paper chromatography as one of the first things you ever did in chemistry to separate out mixtures of coloured dyes - for example, the dyes which make up a particular ink. That's an easy example to take, so let's start from there. Suppose you have three blue pens and you want to find out which one was used to write a message. Samples of each ink are spotted on to a pencil line drawn on a sheet of chromatography paper. Some of the ink from the message is dissolved in the minimum possible amount of a suitable solvent, and that is also spotted onto the same line. In the diagram, the pens are labelled 1, 2 and 3, and the message ink as M. 1 of 10 9/16/17, 3:49 PM

2 paper chromatography Note: The chromatography paper will in fact be pure white - not pale grey. I'm forced to show it as off-white because of the way I construct the diagrams. Anything I draw as pure white allows the background colour of the page to show through. The paper is suspended in a container with a shallow layer of a suitable solvent or mixture of solvents in it. It is important that the solvent level is below the line with the spots on it. The next diagram doesn't show details of how the paper is suspended because there are too many possible ways of doing it and it clutters the diagram. Sometimes the paper is just coiled into a loose cylinder and fastened with paper clips top and bottom. The cylinder then just stands in the bottom of the container. The reason for covering the container is to make sure that the atmosphere in the beaker is saturated with solvent vapour. Saturating the atmosphere in the beaker with vapour stops the solvent from evaporating as it rises up the paper. 2 of 10 9/16/17, 3:49 PM

3 paper chromatography As the solvent slowly travels up the paper, the different components of the ink mixtures travel at different rates and the mixtures are separated into different coloured spots. The diagram shows what the plate might look like after the solvent has moved almost to the top. It is fairly easy to see from the final chromatogram that the pen that wrote the message contained the same dyes as pen 2. You can also see that pen 1 contains a mixture of two different blue dyes - one of which might be the same as the single dye in pen 3. R f values Some compounds in a mixture travel almost as far as the solvent does; some stay much closer to the base line. The distance travelled relative to the solvent is a constant for a particular compound as long as you keep everything else constant - the type of paper and the exact composition of the solvent, for example. The distance travelled relative to the solvent is called the R f value. For each compound it can be worked out using the formula: For example, if one component of a mixture travelled of 10 9/16/17, 3:49 PM

4 paper chromatography cm from the base line while the solvent had travelled 12.0 cm, then the R f value for that component is: In the example we looked at with the various pens, it wasn't necessary to measure R f values because you are making a direct comparison just by looking at the chromatogram. You are making the assumption that if you have two spots in the final chromatogram which are the same colour and have travelled the same distance up the paper, they are most likely the same compound. It isn't necessarily true of course - you could have two similarly coloured compounds with very similar R f values. We'll look at how you can get around that problem further down the page. What if the substances you are interested in are colourless? In some cases, it may be possible to make the spots visible by reacting them with something which produces a coloured product. A good example of this is in chromatograms produced from amino acid mixtures. Suppose you had a mixture of amino acids and wanted to find out which particular amino acids the mixture contained. For simplicity we'll assume that you know the mixture can only possibly contain five of the common amino acids. A small drop of a solution of the mixture is placed on the base line of the paper, and similar small spots of the known amino acids are placed alongside it. The paper is then stood in a suitable solvent and left to develop as before. In the diagram, the mixture is M, and the known amino acids are labelled 1 to 5. The position of the solvent front is marked in pencil and the chromatogram is allowed to dry and is then sprayed with a solution of ninhydrin. Ninhydrin reacts with amino acids to give coloured compounds, mainly brown or 4 of 10 9/16/17, 3:49 PM

5 paper chromatography purple. The left-hand diagram shows the paper after the solvent front has almost reached the top. The spots are still invisible. The second diagram shows what it might look like after spraying with ninhydrin. There is no need to measure the R f values because you can easily compare the spots in the mixture with those of the known amino acids - both from their positions and their colours. In this example, the mixture contains the amino acids labelled as 1, 4 and 5. And what if the mixture contained amino acids other than the ones we have used for comparison? There would be spots in the mixture which didn't match those from the known amino acids. You would have to re-run the experiment using other amino acids for comparison. Two way paper chromatography Two way paper chromatography gets around the problem of separating out substances which have very similar R f values. I'm going to go back to talking about coloured compounds because it is much easier to see what is happening. You can perfectly well do this with colourless compounds - but you have to use quite a lot of imagination in the explanation of what is going on! This time a chromatogram is made starting from a single 5 of 10 9/16/17, 3:49 PM

6 paper chromatography spot of mixture placed towards one end of the base line. It is stood in a solvent as before and left until the solvent front gets close to the top of the paper. In the diagram, the position of the solvent front is marked in pencil before the paper dries out. This is labelled as SF1 - the solvent front for the first solvent. We shall be using two different solvents. If you look closely, you may be able to see that the large central spot in the chromatogram is partly blue and partly green. Two dyes in the mixture have almost the same R f values. They could equally well, of course, both have been the same colour - in which case you couldn't tell whether there was one or more dye present in that spot. What you do now is to wait for the paper to dry out completely, and then rotate it through 90, and develop the chromatogram again in a different solvent. It is very unlikely that the two confusing spots will have the same R f values in the second solvent as well as the first, and so the spots will move by a different amount. The next diagram shows what might happen to the various spots on the original chromatogram. The position of the second solvent front is also marked. 6 of 10 9/16/17, 3:49 PM

7 paper chromatography You wouldn't, of course, see these spots in both their original and final positions - they have moved! The final chromatogram would look like this: Two way chromatography has completely separated out the mixture into four distinct spots. If you want to identify the spots in the mixture, you obviously can't do it with comparison substances on the same chromatogram as we looked at earlier with the pens or amino acids examples. You would end up with a meaningless mess of spots. You can, though, work out the R f values for each of the spots in both solvents, and then compare these with values that you have measured for known compounds under exactly the same conditions. How does paper chromatography work? Although paper chromatography is simple to do, it is quite difficult to explain compared with thin layer chromatography. The explanation depends to some extent on what sort of solvent you are using, and many sources gloss over the problem completely. If you haven't already done so, it would be helpful if you could read the explanation for how thin layer chromatography works (link below). That will save me a lot of repetition, and I can concentrate on the problems. Note: You will find the explanation for how thin 7 of 10 9/16/17, 3:49 PM

8 paper chromatography layer chromatography works by following this link. Use the BACK button on your browser to return quickly to this page when yhou have read it. The essential structure of paper Paper is made of cellulose fibres, and cellulose is a polymer of the simple sugar, glucose. The key point about cellulose is that the polymer chains have -OH groups sticking out all around them. To that extent, it presents the same sort of surface as silica gel or alumina in thin layer chromatography. It would be tempting to try to explain paper chromatography in terms of the way that different compounds are adsorbed to different extents on to the paper surface. In other words, it would be nice to be able to use the same explanation for both thin layer and paper chromatography. Unfortunately, it is more complicated than that! The complication arises because the cellulose fibres attract water vapour from the atmosphere as well as any water that was present when the paper was made. You can therefore think of paper as being cellulose fibres with a very thin layer of water molecules bound to the surface. It is the interaction with this water which is the most important effect during paper chromatography. Paper chromatography using a non-polar solvent Suppose you use a non-polar solvent such as hexane to develop your chromatogram. 8 of 10 9/16/17, 3:49 PM

9 paper chromatography Non-polar molecules in the mixture that you are trying to separate will have little attraction for the water molecules attached to the cellulose, and so will spend most of their time dissolved in the moving solvent. Molecules like this will therefore travel a long way up the paper carried by the solvent. They will have relatively high R f values. On the other hand, polar molecules will have a high attraction for the water molecules and much less for the non-polar solvent. They will therefore tend to dissolve in the thin layer of water around the cellulose fibres much more than in the moving solvent. Because they spend more time dissolved in the stationary phase and less time in the mobile phase, they aren't going to travel very fast up the paper. The tendency for a compound to divide its time between two immiscible solvents (solvents such as hexane and water which won't mix) is known as partition. Paper chromatography using a non-polar solvent is therefore a type of partition chromatography. Paper chromatography using a water and other polar solvents A moment's thought will tell you that partition can't be the explanation if you are using water as the solvent for your mixture. If you have water as the mobile phase and the water bound on to the cellulose as the stationary phase, there can't be any meaningful difference between the amount of time a substance spends in solution in either of them. All substances should be equally soluble (or equally insoluble) in both. And yet the first chromatograms that you made were probably of inks using water as your solvent. If water works as the mobile phase as well being the stationary phase, there has to be some quite different mechanism at work - and that must be equally true for other polar solvents like the alcohols, for example. Partition only happens between solvents which don't mix with each other. Polar solvents like the small alcohols do mix with water. In researching this topic, I haven't found any easy explanation for what happens in these cases. Most 9 of 10 9/16/17, 3:49 PM

10 paper chromatography sources ignore the problem altogether and just quote the partition explanation without making any allowance for the type of solvent you are using. Other sources quote mechanisms which have so many strands to them that they are far too complicated for this introductory level. I'm therefore not taking this any further - you shouldn't need to worry about this at UK A level, or its various equivalents. Note: If I have missed something obvious in my research and you know of a straightforward explanation (worth about 1 or 2 marks in an exam) for what happens with water and other polar solvents, could you contact me via the address on the about this site page. Questions to test your understanding If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here afterwards. questions on paper chromatography answers Where would you like to go now? To the chromatography menu... To the analysis menu... To Main Menu... Jim Clark 2007 (modified July 2016) 10 of 10 9/16/17, 3:49 PM

11 the mass spectrometer - how it works THE MASS SPECTROMETER This page describes how a mass spectrum is produced using a mass spectrometer. How a mass spectrometer works The basic principle If something is moving and you subject it to a sideways force, instead of moving in a straight line, it will move in a curve - deflected out of its original path by the sideways force. Suppose you had a cannonball travelling past you and you wanted to deflect it as it went by you. All you've got is a jet of water from a hose-pipe that you can squirt at it. Frankly, its not going to make a lot of difference! Because the cannonball is so heavy, it will hardly be deflected at all from its original course. But suppose instead, you tried to deflect a table tennis ball travelling at the same speed as the cannonball using the same jet of water. Because this ball is so light, you will get a huge deflection. The amount of deflection you will get for a given sideways force depends on the mass of the ball. If you knew the speed of the ball and the size of the force, you could calculate the mass of the ball if you knew what sort of curved path it was deflected through. The less the deflection, the heavier the ball. Note: I'm not suggesting that you personally would have to do the calculation, although the maths isn't actually very difficult - certainly no more than A'level standard! You can apply exactly the same principle to atomic sized 1 of 9 9/16/17, 3:51 PM

12 the mass spectrometer - how it works particles. An outline of what happens in a mass spectrometer Atoms and molecules can be deflected by magnetic fields - provided the atom or molecule is first turned into an ion. Electrically charged particles are affected by a magnetic field although electrically neutral ones aren't. The sequence is : Stage 1: Ionisation The atom or molecule is ionised by knocking one or more electrons off to give a positive ion. This is true even for things which you would normally expect to form negative ions (chlorine, for example) or never form ions at all (argon, for example). Most mass spectrometers work with positive ions. Note: All mass spectrometers that you will come across if you are doing a course for year olds work with positive ions. Even if a few atoms in a sample of chlorine, for example, captured an electron instead of losing one, the negative ions formed wouldn't get all the way through the ordinary mass spectrometer. But it has been pointed out to me that there is work being done on negative ion mass spectrometers, although they use a different ionisation technique. My thanks to Professor John Todd of the University of Kent for drawing this to my attention. Stage 2: Acceleration The ions are accelerated so that they all have the same kinetic energy. Stage 3: Deflection The ions are then deflected by a magnetic field according to their masses. The lighter they are, the more they are deflected. 2 of 9 9/16/17, 3:51 PM

13 the mass spectrometer - how it works The amount of deflection also depends on the number of positive charges on the ion - in other words, on how many electrons were knocked off in the first stage. The more the ion is charged, the more it gets deflected. Stage 4: Detection The beam of ions passing through the machine is detected electrically. A full diagram of a mass spectrometer Understanding what's going on The need for a vacuum It's important that the ions produced in the ionisation chamber have a free run through the machine without hitting air molecules. Ionisation 3 of 9 9/16/17, 3:51 PM

14 the mass spectrometer - how it works The vaporised sample passes into the ionisation chamber. The electrically heated metal coil gives off electrons which are attracted to the electron trap which is a positively charged plate. The particles in the sample (atoms or molecules) are therefore bombarded with a stream of electrons, and some of the collisions are energetic enough to knock one or more electrons out of the sample particles to make positive ions. Most of the positive ions formed will carry a charge of +1 because it is much more difficult to remove further electrons from an already positive ion. These positive ions are persuaded out into the rest of the machine by the ion repeller which is another metal plate carrying a slight positive charge. Note: As you will see in a moment, the whole ionisation chamber is held at a positive voltage of about 10,000 volts. Where we are talking about the two plates having positive charges, these charges are in addition to that 10,000 volts. Acceleration 4 of 9 9/16/17, 3:51 PM

15 the mass spectrometer - how it works The positive ions are repelled away from the very positive ionisation chamber and pass through three slits, the final one of which is at 0 volts. The middle slit carries some intermediate voltage. All the ions are accelerated into a finely focused beam. Deflection Different ions are deflected by the magnetic field by different amounts. The amount of deflection depends on: the mass of the ion. Lighter ions are deflected more than heavier ones. the charge on the ion. Ions with 2 (or more) positive charges are deflected more than ones with only 1 positive charge. These two factors are combined into the mass/charge ratio. Mass/charge ratio is given the symbol m/z (or sometimes m/e). For example, if an ion had a mass of 28 and a charge of 1+, its mass/charge ratio would be 28. An ion with a mass of 56 and a charge of 2+ would also have a mass/charge ratio of 28. In the last diagram, ion stream A is most deflected - it will contain ions with the smallest mass/charge ratio. Ion 5 of 9 9/16/17, 3:51 PM

16 the mass spectrometer - how it works stream C is the least deflected - it contains ions with the greatest mass/charge ratio. It makes it simpler to talk about this if we assume that the charge on all the ions is 1+. Most of the ions passing through the mass spectrometer will have a charge of 1+, so that the mass/charge ratio will be the same as the mass of the ion. Note: You must be aware of the possibility of 2+ (etc) ions, but the vast majority of A'level questions will give you mass spectra which only involve 1+ ions. Unless there is some hint in the question, you can reasonably assume that the ions you are talking about will have a charge of 1+. Assuming 1+ ions, stream A has the lightest ions, stream B the next lightest and stream C the heaviest. Lighter ions are going to be more deflected than heavy ones. Detection Only ion stream B makes it right through the machine to the ion detector. The other ions collide with the walls where they will pick up electrons and be neutralised. Eventually, they get removed from the mass spectrometer by the vacuum pump. When an ion hits the metal box, its charge is neutralised by an electron jumping from the metal on to the ion (right hand diagram). That leaves a space amongst the electrons in the metal, and the electrons in the wire shuffle along to fill it. 6 of 9 9/16/17, 3:51 PM

17 the mass spectrometer - how it works A flow of electrons in the wire is detected as an electric current which can be amplified and recorded. The more ions arriving, the greater the current. Detecting the other ions How might the other ions be detected - those in streams A and C which have been lost in the machine? Remember that stream A was most deflected - it has the smallest value of m/z (the lightest ions if the charge is 1+). To bring them on to the detector, you would need to deflect them less - by using a smaller magnetic field (a smaller sideways force). To bring those with a larger m/z value (the heavier ions if the charge is +1) on to the detector you would have to deflect them more by using a larger magnetic field. If you vary the magnetic field, you can bring each ion stream in turn on to the detector to produce a current which is proportional to the number of ions arriving. The mass of each ion being detected is related to the size of the magnetic field used to bring it on to the detector. The machine can be calibrated to record current (which is a measure of the number of ions) against m/z directly. The mass is measured on the 12 C scale. Note: The 12 C scale is a scale on which the 12 C isotope weighs exactly 12 units. What the mass spectrometer output looks like The output from the chart recorder is usually simplified into a "stick diagram". This shows the relative current produced by ions of varying mass/charge ratio. The stick diagram for molybdenum looks lilke this: 7 of 9 9/16/17, 3:51 PM

18 the mass spectrometer - how it works You may find diagrams in which the vertical axis is labelled as either "relative abundance" or "relative intensity". Whichever is used, it means the same thing. The vertical scale is related to the current received by the chart recorder - and so to the number of ions arriving at the detector: the greater the current, the more abundant the ion. As you will see from the diagram, the commonest ion has a mass/charge ratio of 98. Other ions have mass/charge ratios of 92, 94, 95, 96, 97 and 100. That means that molybdenum consists of 7 different isotopes. Assuming that the ions all have a charge of 1+, that means that the masses of the 7 isotopes on the carbon-12 scale are 92, 94, 95, 96, 97, 98 and 100. Note: If there were also 2+ ions present, you would know because every one of the lines in the stick diagram would have another line at exactly half its m/z value (because, for example, 98/2 = 49). Those lines would be much less tall than the 1+ ion lines because the chances of forming 2+ ions are much less than forming 1+ ions. If you want to go straight on to how you use these mass spectra to calculate relative atomic masses you can jump straight to that page by following this link rather than going via the menus below. Questions to test your understanding If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here 8 of 9 9/16/17, 3:51 PM

19 the mass spectrometer - how it works afterwards. questions on how a mass spectrometer works answers Where would you like to go now? To the mass spectrometry menu... To the instrumental analysis menu... To Main Menu... Jim Clark 2000 (last modified February 2015) 9 of 9 9/16/17, 3:51 PM

20 the mass spectra of elements THE MASS SPECTRA OF ELEMENTS This page looks at the information you can get from the mass spectrum of an element. It shows how you can find out the masses and relative abundances of the various isotopes of the element and use that information to calculate the relative atomic mass of the element. It also looks at the problems thrown up by elements with diatomic molecules - like chlorine, Cl 2. The mass spectrum of monatomic elements Monatomic elements include all those except for things like chlorine, Cl 2, with molecules containing more than one atom. The mass spectrum for boron Note: If you need to know how this diagram is obtained, you should read the page describing how a mass spectrometer works. The number of isotopes The two peaks in the mass spectrum shows that there are 2 isotopes of boron - with relative isotopic masses of 1 of 7 9/16/17, 3:52 PM

21 the mass spectra of elements 10 and 11 on the 12 C scale. Notes: Isotopes are atoms of the same element (and so with the same number of protons), but with different masses due to having different numbers of neutrons. We are assuming (and shall do all through this page) that all the ions recorded have a charge of 1+. That means that the mass/charge ratio (m/z) gives you the mass of the isotope directly. The carbon-12 scale is a scale on which the mass of the 12 C isotope weighs exactly 12 units. The abundance of the isotopes The relative sizes of the peaks gives you a direct measure of the relative abundances of the isotopes. The tallest peak is often given an arbitrary height of but you may find all sorts of other scales used. It doesn't matter in the least. You can find the relative abundances by measuring the lines on the stick diagram. In this case, the two isotopes (with their relative abundances) are: boron boron Working out the relative atomic mass The relative atomic mass (RAM) of an element is given the symbol A r and is defined as: The relative atomic mass of an element is the weighted average of the masses of the isotopes on a scale on which a carbon-12 atom has a mass of exactly 12 units. A "weighted average" allows for the fact that there won't be equal amounts of the various isotopes. The example coming up should make that clear. 2 of 7 9/16/17, 3:52 PM

22 the mass spectra of elements Suppose you had 123 typical atoms of boron. 23 of these would be 10 B and 100 would be 11 B. The total mass of these would be (23 x 10) + (100 x 11) = 1330 The average mass of these 123 atoms would be 1330 / 123 = 10.8 (to 3 significant figures) is the relative atomic mass of boron. Notice the effect of the "weighted" average. A simple average of 10 and 11 is, of course, Our answer of 10.8 allows for the fact that there are a lot more of the heavier isotope of boron - and so the "weighted" average ought to be closer to that. The mass spectrum for zirconium The number of isotopes The 5 peaks in the mass spectrum shows that there are 5 isotopes of zirconium - with relative isotopic masses of 90, 91, 92, 94 and 96 on the 12 C scale. The abundance of the isotopes This time, the relative abundances are given as percentages. Again you can find these relative abundances by measuring the lines on the stick diagram. In this case, the 5 isotopes (with their relative percentage abundances) are: zirconium zirconium zirconium of 7 9/16/17, 3:52 PM

23 the mass spectra of elements zirconium zirconium Note: You almost certainly wouldn't be able to measure these peaks to this degree of accuracy, but your examiners may well give you the data in number form anyway. We'll do the sum with the more accurate figures. Working out the relative atomic mass Suppose you had 100 typical atoms of zirconium of these would be 90 Zr, 11.2 would be 91 Zr and so on. Note: If you object to the idea of having 51.5 atoms or 11.2 atoms and so on, just assume you've got 1000 atoms instead of 100. That way you will have 515 atoms, 112 atoms, etc. Most people don't get in a sweat over this, and just use the numbers as they are! The total mass of these 100 typical atoms would be (51.5 x 90) + (11.2 x 91) + (17.1 x 92) + (17.4 x 94) + (2.8 x 96) = The average mass of these 100 atoms would be / 100 = 91.3 (to 3 significant figures) is the relative atomic mass of zirconium. Note: If you want further examples of calculating relative atomic masses from mass spectra, you might like to refer to my book, Calculations in A level Chemistry. The mass spectrum of chlorine 4 of 7 9/16/17, 3:52 PM

24 the mass spectra of elements Chlorine is taken as typical of elements with more than one atom per molecule. We'll look at its mass spectrum to show the sort of problems involved. Chlorine has two isotopes, 35 Cl and 37 Cl, in the approximate ratio of 3 atoms of 35 Cl to 1 atom of 37 Cl. You might suppose that the mass spectrum would look like this: You would be wrong! The problem is that chlorine consists of molecules, not individual atoms. When chlorine is passed into the ionisation chamber, an electron is knocked off the molecule to give a molecular ion, Cl 2 +. These ions won't be particularly stable, and some will fall apart to give a chlorine atom and a Cl + ion. The term for this is fragmentation. If the Cl atom formed isn't then ionised in the ionisation chamber, it simply gets lost in the machine - neither accelerated nor deflected. The Cl + ions will pass through the machine and will give lines at 35 and 37, depending on the isotope and you would get exactly the pattern in the last diagram. The problem is that you will also record lines for the unfragmented Cl 2 + ions. Think about the possible combinations of chlorine-35 and chlorine-37 atoms in a Cl 2 + ion. Both atoms could be 35 Cl, both atoms could be 37 Cl, or you could have one of each sort. That would give you total masses of the Cl 2 + ion of: 5 of 7 9/16/17, 3:52 PM

25 the mass spectra of elements = = = 74 That means that you would get a set of lines in the m/z = 70 region looking like this: These lines would be in addition to the lines at 35 and 37. The relative heights of the 70, 72 and 74 lines are in the ratio 9:6:1. If you know the right bit of maths, it's very easy to show this. If not, don't worry. Just remember that the ratio is 9:6:1. What you can't do is make any predictions about the relative heights of the lines at 35/37 compared with those at 70/72/74. That depends on what proportion of the molecular ions break up into fragments. That's why you've got the chlorine mass spectrum in two separate bits so far. You must realise that the vertical scale in the diagrams of the two parts of the spectrum isn't the same. The overall mass spectrum looks like this: Note: This is based on information from the NIST Chemistry WebBook. NIST is the US National 6 of 7 9/16/17, 3:52 PM

26 the mass spectra of elements Institute of Standards and Technology. Questions to test your understanding If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here afterwards. questions on the mass spectra of elements answers Where would you like to go now? To the mass spectrometry menu... To the instrumental analysis menu... To Main Menu... Jim Clark 2000 (last modified February 2014) 7 of 7 9/16/17, 3:52 PM

27 mass spectra - fragmentation patterns FRAGMENTATION PATTERNS IN THE MASS SPECTRA OF ORGANIC COMPOUNDS This page looks at how fragmentation patterns are formed when organic molecules are fed into a mass spectrometer, and how you can get information from the mass spectrum. The origin of fragmentation patterns The formation of molecular ions When the vaporised organic sample passes into the ionisation chamber of a mass spectrometer, it is bombarded by a stream of electrons. These electrons have a high enough energy to knock an electron off an organic molecule to form a positive ion. This ion is called the molecular ion - or sometimes the parent ion. Note: If you aren't sure about how a mass spectrum is produced, it might be worth taking a quick look at the page describing how a mass spectrometer works. The molecular ion is often given the symbol M + or - the dot in this second version represents the fact that somewhere in the ion there will be a single unpaired electron. That's one half of what was originally a pair of electrons - the other half is the electron which was removed in the ionisation process. Fragmentation The molecular ions are energetically unstable, and some of them will break up into smaller pieces. The simplest case is that a molecular ion breaks into two parts - one of which is another positive ion, and the other is an 1 of 11 9/16/17, 3:52 PM

28 mass spectra - fragmentation patterns uncharged free radical. Note: A free radical is an atom or group of atoms which contains a single unpaired electron. More complicated break-ups are beyond the scope of A'level syllabuses. The uncharged free radical won't produce a line on the mass spectrum. Only charged particles will be accelerated, deflected and detected by the mass spectrometer. These uncharged particles will simply get lost in the machine - eventually, they get removed by the vacuum pump. The ion, X +, will travel through the mass spectrometer just like any other positive ion - and will produce a line on the stick diagram. All sorts of fragmentations of the original molecular ion are possible - and that means that you will get a whole host of lines in the mass spectrum. For example, the mass spectrum of pentane looks like this: Note: All the mass spectra on this page have been drawn using data from the Spectral Data Base System for Organic Compounds (SDBS) at the National Institute of Materials and Chemical Research in Japan. 2 of 11 9/16/17, 3:52 PM

29 mass spectra - fragmentation patterns They have been simplified by omitting all the minor lines with peak heights of 2% or less of the base peak (the tallest peak). It's important to realise that the pattern of lines in the mass spectrum of an organic compound tells you something quite different from the pattern of lines in the mass spectrum of an element. With an element, each line represents a different isotope of that element. With a compound, each line represents a different fragment produced when the molecular ion breaks up. Note: If you are interested in the mass spectra of elements, you could follow this link. The molecular ion peak and the base peak In the stick diagram showing the mass spectrum of pentane, the line produced by the heaviest ion passing through the machine (at m/z = 72) is due to the molecular ion. Note: You have to be a bit careful about this, because in some cases, the molecular ion is so unstable that every single one of them splits up, and none gets through the machine to register in the mass spectrum. You are very unlikely to come across such a case at A'level. The tallest line in the stick diagram (in this case at m/z = 43) is called the base peak. This is usually given an arbitrary height of 100, and the height of everything else is measured relative to this. The base peak is the tallest peak because it represents the commonest fragment ion to be formed - either because there are several ways in which it could be produced during fragmentation of the parent ion, or because it is a particularly stable ion. 3 of 11 9/16/17, 3:52 PM

30 mass spectra - fragmentation patterns Using fragmentation patterns This section will ignore the information you can get from the molecular ion (or ions). That is covered in three other pages which you can get at via the mass spectrometry menu. You will find a link at the bottom of the page. Working out which ion produces which line This is generally the simplest thing you can be asked to do. The mass spectrum of pentane Let's have another look at the mass spectrum for pentane: What causes the line at m/z = 57? How many carbon atoms are there in this ion? There can't be 5 because 5 x 12 = 60. What about 4? 4 x 12 = 48. That leaves 9 to make up a total of 57. How about C 4 H 9 + then? C 4 H 9 + would be [CH 3 CH 2 CH 2 CH 2 ] +, and this would be produced by the following fragmentation: The methyl radical produced will simply get lost in the machine. The line at m/z = 43 can be worked out similarly. If you play around with the numbers, you will find that this corresponds to a break producing a 3-carbon ion: 4 of 11 9/16/17, 3:52 PM

31 mass spectra - fragmentation patterns The line at m/z = 29 is typical of an ethyl ion, [CH 3 CH 2 ] + : The other lines in the mass spectrum are more difficult to explain. For example, lines with m/z values 1 or 2 less than one of the easy lines are often due to loss of one or more hydrogen atoms during the fragmentation process. You are very unlikely to have to explain any but the most obvious cases in an A'level exam. The mass spectrum of pentan-3-one This time the base peak (the tallest peak - and so the commonest fragment ion) is at m/z = 57. But this isn't produced by the same ion as the same m/z value peak in pentane. If you remember, the m/z = 57 peak in pentane was produced by [CH 3 CH 2 CH 2 CH 2 ] +. If you look at the structure of pentan-3-one, it's impossible to get that particular fragment from it. Work along the molecule mentally chopping bits off until you come up with something that adds up to 57. With a small amount of patience, you'll eventually find [CH 3 CH 2 CO] + - which is produced by this fragmentation: You would get exactly the same products whichever side of the CO group you split the molecular ion. 5 of 11 9/16/17, 3:52 PM

32 mass spectra - fragmentation patterns The m/z = 29 peak is produced by the ethyl ion - which once again could be formed by splitting the molecular ion either side of the CO group. Peak heights and the stability of ions The more stable an ion is, the more likely it is to form. The more of a particular sort of ion that's formed, the higher its peak height will be. We'll look at two common examples of this. Examples involving carbocations (carbonium ions) Important! If you don't know what a carbocation (or carbonium ion) is, or why the various sorts vary in stability, it's essential that you follow this link before you go on. Use the BACK button on your browser to return quickly to this page. Summarizing the most important conclusion from the page on carbocations: Order of stability of carbocations primary < secondary < tertiary Note: The symbol "<" means "is less than". So what this is saying is that primary ions are less stable than secondary ones which in turn are less stable than tertiary ones. Applying the logic of this to fragmentation patterns, it means that a split which produces a secondary 6 of 11 9/16/17, 3:52 PM

33 mass spectra - fragmentation patterns carbocation is going to be more successful than one producing a primary one. A split producing a tertiary carbocation will be more successful still. Let's look at the mass spectrum of 2-methylbutane. 2-methylbutane is an isomer of pentane - isomers are molecules with the same molecular formula, but a different spatial arrangement of the atoms. Look first at the very strong peak at m/z = 43. This is caused by a different ion than the corresponding peak in the pentane mass spectrum. This peak in 2-methylbutane is caused by: The ion formed is a secondary carbocation - it has two alkyl groups attached to the carbon with the positive charge. As such, it is relatively stable. The peak at m/z = 57 is much taller than the corresponding line in pentane. Again a secondary carbocation is formed - this time, by: You would get the same ion, of course, if the left-hand CH 3 group broke off instead of the bottom one as we've drawn it. In these two spectra, this is probably the most dramatic 7 of 11 9/16/17, 3:52 PM

34 mass spectra - fragmentation patterns example of the extra stability of a secondary carbocation. Examples involving acylium ions, [RCO] + Ions with the positive charge on the carbon of a carbonyl group, C=O, are also relatively stable. This is fairly clearly seen in the mass spectra of ketones like pentan- 3-one. The base peak, at m/z=57, is due to the [CH 3 CH 2 CO] + ion. We've already discussed the fragmentation that produces this. Note: There are lots of other examples of positive ions with extra stability and which are produced in large numbers in a mass spectrometer as a result. Without making this article even longer than it already is, it's impossible to cover every possible case. Check past exam papers to find out whether you are likely to need to know about other possibilities. If you haven't got past papers, follow the link on the syllabuses page to find out how to get hold of them. Using mass spectra to distinguish between compounds 8 of 11 9/16/17, 3:52 PM

35 mass spectra - fragmentation patterns Suppose you had to suggest a way of distinguishing between pentan-2-one and pentan-3-one using their mass spectra. pentan-2-one CH 3 COCH 2 CH 2 CH 3 pentan-3-one CH 3 CH 2 COCH 2 CH 3 Each of these is likely to split to produce ions with a positive charge on the CO group. In the pentan-2-one case, there are two different ions like this: [CH 3 CO] + [COCH 2 CH 2 CH 3 ] + That would give you strong lines at m/z = 43 and 71. With pentan-3-one, you would only get one ion of this kind: [CH 3 CH 2 CO] + In that case, you would get a strong line at 57. You don't need to worry about the other lines in the spectra - the 43, 57 and 71 lines give you plenty of difference between the two. The 43 and 71 lines are missing from the pentan-3-one spectrum, and the 57 line is missing from the pentan-2-one one. Note: Don't confuse the line at m/z = 58 in the pentan-2-one spectrum. That's due to a complicated rearrangement which you couldn't possibly predict at A'level. The two spectra look like this: 9 of 11 9/16/17, 3:52 PM

36 mass spectra - fragmentation patterns Computer matching of mass spectra As you've seen, the mass spectrum of even very similar organic compounds will be quite different because of the different fragmentations that can occur. Provided you have a computer data base of mass spectra, any unkown spectrum can be computer analysed and simply matched against the data base. Questions to test your understanding If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here afterwards. questions on fragmentation patterns answers 10 of 11 9/16/17, 3:52 PM

37 mass spectra - fragmentation patterns Where would you like to go now? To the mass spectrometry menu... To the instrumental analysis menu... To Main Menu... Jim Clark 2000 (modified February 2014) 11 of 11 9/16/17, 3:52 PM

38 mass spectra - the molecular ion (M+) peak MASS SPECTRA - THE MOLECULAR ION (M + ) PEAK This page explains how to find the relative formula mass (relative molecular mass) of an organic compound from its mass spectrum. It also shows how high resolution mass spectra can be used to find the molecular formula for a compound. Using a mass spectrum to find relative formula mass The formation of molecular ions When the vaporised organic sample passes into the ionisation chamber of a mass spectrometer, it is bombarded by a stream of electrons. These electrons have a high enough energy to knock an electron off an organic molecule to form a positive ion. This ion is called the molecular ion. Note: If you aren't sure about how a mass spectrum is produced, it might be worth taking a quick look at the page describing how a mass spectrometer works. The molecular ion is often given the symbol M + or - the dot in this second version represents the fact that somewhere in the ion there will be a single unpaired electron. That's one half of what was originally a pair of electrons - the other half is the electron which was removed in the ionisation process. The molecular ions tend to be unstable and some of them break into smaller fragments. These fragments produce the familiar stick diagram. Fragmentation is irrelevant to what we are talking about on this page - all we're interested in is the molecular ion. 1 of 1 9/16/17, 3:53 PM

39 mass spectra - the M+1 peak MASS SPECTRA - THE M+1 PEAK This page explains how the M+1 peak in a mass spectrum can be used to estimate the number of carbon atoms in an organic compound. Note: This is a small corner of mass spectrometry. It would be a good idea not to attack this page unless you have a reasonable idea about how a mass spectrum is produced and the sort of information you can get from it. If you haven't already done so, explore the mass spectrometry menu before you go on. What causes the M+1 peak? What is an M+1 peak? If you had a complete (rather than a simplified) mass spectrum, you will find a small line 1 m/z unit to the right of the main molecular ion peak. This small peak is called the M+1 peak. In questions at this level (UK A level or its equivalent), the M+1 peak is often left out to avoid confusion - particularly if you were being asked to find the relative formula mass of the compound from the molecular ion peak. 1 of 5 9/16/17, 3:54 PM

40 mass spectra - the M+1 peak The carbon-13 isotope The M+1 peak is caused by the presence of the 13 C isotope in the molecule. 13 C is a stable isotope of carbon - don't confuse it with the 14 C isotope which is radioactive. Carbon-13 makes up 1.11% of all carbon atoms. If you had a simple compound like methane, CH 4, approximately 1 in every 100 of these molecules will contain carbon-13 rather than the more common carbon-12. That means that 1 in every 100 of the molecules will have a mass of 17 (13 + 4) rather than 16 (12 + 4). The mass spectrum will therefore have a line corresponding to the molecular ion [ 13 CH 4 ] + as well as [ 12 CH 4 ] +. The line at m/z = 17 will be much smaller than the line at m/z = 16 because the carbon-13 isotope is much less common. Statistically you will have a ratio of approximately 1 of the heavier ions to every 99 of the lighter ones. That's why the M+1 peak is much smaller than the M+ peak. Using the M+1 peak What happens when there is more than 1 carbon atom in the compound? Imagine a compound containing 2 carbon atoms. Either of them has an approximately 1 in 100 chance of being 13 C. There's therefore a 2 in 100 chance of the molecule as a whole containing one 13 C atom rather than a 12 C atom - which leaves a 98 in 100 chance of both atoms being 2 of 5 9/16/17, 3:54 PM

41 mass spectra - the M+1 peak 12 C. That means that the ratio of the height of the M+1 peak to the M+ peak will be approximately 2 : 98. That's pretty close to having an M+1 peak approximately 2% of the height of the M+ peak. Note: You might wonder why both atoms can't be carbon-13, giving you an M+2 peak. They can - and do! But statistically the chance of both carbons being 13 C is approximately 1 in 10,000. The M+2 peak will be so small that you couldn't observe it. Using the relative peak heights to predict the number of carbon atoms If there are small numbers of carbon atoms If you measure the peak height of the M+1 peak as a percentage of the peak height of the M+ peak, that gives you the number of carbon atoms in the compound. We've just seen that a compound with 2 carbons will have an M+1 peak approximately 2% of the height of the M+ peak. Similarly, you could show that a compound with 3 carbons will have the M+1 peak at about 3% of the height of the M+ peak. With larger numbers of carbon atoms The approximations we are making won't hold with more than 2 or 3 carbons. The proportion of carbon atoms which are 13 C isn't 1% - it's 1.11%. And the appoximation that a ratio of 2 : 98 is about 2% doesn't hold as the small number increases. Consider a molecule with 5 carbons in it. You could work out that 5.55 (5 x 1.11) molecules will contain 1 13 C to every ( ) which contain only 12 C atoms. If you convert that to how tall the M+1 peak is as a percentage of the M+ peak, you get an answer of 5.9% (5.55/94.45 x 100). That's close enough to 6% that you 3 of 5 9/16/17, 3:54 PM

42 mass spectra - the M+1 peak might assume wrongly that there are 6 carbon atoms. Above 3 carbon atoms, then, you shouldn't really be making the approximation that the height of the M+1 peak as a percentage of the height of the M+ peak tells you the number of carbons - you will need to do some fiddly sums! Important! Most syllabuses at this level (UK A level or its equivalent) don't ask for this. Before you get too bogged down in all this, check your syllabus and recent past papers to see whether you need to bother. This is a case where you really need to know what line your examiners are currently taking - for example, how far are they pushing the approximation. As far as I am aware, the only UK based syllabus to want this is Cambridge International (CIE). I have covered this specifically on this page in my notes for the CIE syllabus But to be sure, if you are doing a UK-based exam, and haven't got a syllabus and past papers, follow this link to find out how to get them. Questions to test your understanding I am not asking any questions about this page because I can't find any peak height data for the small simple molecules for which the approximation works. Without that, I can only produce completely trivial questions. If you are doing CIE exams, you will find plenty of examples from their past papers using their slightly more complicated formula. Otherwise, just be aware that the M+1 peak is due to the presence of C-13 atoms. Where would you like to go now? To the mass spectrometry menu... To the instrumental analysis menu... 4 of 5 9/16/17, 3:54 PM

43 mass spectra - the M+1 peak To Main Menu... Jim Clark 2000 (updated August 2014) 5 of 5 9/16/17, 3:54 PM

44 mass spectra - the M+2 peak MASS SPECTRA - THE M+2 PEAK This page explains how the M+2 peak in a mass spectrum arises from the presence of chlorine or bromine atoms in an organic compound. It also deals briefly with the origin of the M+4 peak in compounds containing two chlorine atoms. Note: Before you start this page, it would be a good idea to have a reasonable understanding about how a mass spectrum is produced and the sort of information you can get from it. If you haven't already done so, explore the mass spectrometry menu before you go on. The effect of chlorine or bromine atoms on the mass spectrum of an organic compound Compounds containing chlorine atoms One chlorine atom in a compound Note: All the mass spectra on this page have been drawn using data from the Spectral Data Base System for Organic Compounds (SDBS) at the National Institute of Materials and Chemical 1 of 5 9/16/17, 3:54 PM

45 mass spectra - the M+2 peak Research in Japan. With one exception, they have been simplified by omitting all the minor lines with peak heights of 2% or less of the base peak (the tallest peak). The molecular ion peaks (M+ and M+2) each contain one chlorine atom - but the chlorine can be either of the two chlorine isotopes, 35 Cl and 37 Cl. The molecular ion containing the 35 Cl isotope has a relative formula mass of 78. The one containing 37 Cl has a relative formula mass of 80 - hence the two lines at m/z = 78 and m/z = 80. Notice that the peak heights are in the ratio of 3 : 1. That reflects the fact that chlorine contains 3 times as much of the 35 Cl isotope as the 37 Cl one. That means that there will be 3 times more molecules containing the lighter isotope than the heavier one. So... if you look at the molecular ion region, and find two peaks separated by 2 m/z units and with a ratio of 3 : 1 in the peak heights, that tells you that the molecule contains 1 chlorine atom. You might also have noticed the same pattern at m/z = 63 and m/z = 65 in the mass spectrum above. That pattern is due to fragment ions also containing one chlorine atom - which could either be 35 Cl or 37 Cl. The fragmentation that produced those ions was: Note: If you aren't sure about fragmentation you might like to have a look at this link. Two chlorine atoms in a compound 2 of 5 9/16/17, 3:54 PM

46 mass spectra - the M+2 peak Note: This spectrum has been simplified by omitting all the minor lines with peak heights of less than 1% of the base peak (the tallest peak). This contains more minor lines than other mass spectra in this section. It was necessary because otherwise an important line in the molecular ion region would have been missing. The lines in the molecular ion region (at m/z values of 98, 100 ands 102) arise because of the various combinations of chlorine isotopes that are possible. The carbons and hydrogens add up to 28 - so the various possible molecular ions could be: = = = 102 If you have the necessary maths, you could show that the chances of these arrangements occurring are in the ratio of 9:6:1 - and this is the ratio of the peak heights. If you don't know the right bit of maths, just learn this ratio! So... if you have 3 lines in the molecular ion region (M+, M+2 and M+4) with gaps of 2 m/z units between them, and with peak heights in the ratio of 9:6:1, the compound contains 2 chlorine atoms. Compounds containing bromine atoms 3 of 5 9/16/17, 3:54 PM

47 mass spectra - the M+2 peak Bromine has two isotopes, 79 Br and 81 Br in an approximately 1:1 ratio (50.5 : 49.5 if you want to be fussy!). That means that a compound containing 1 bromine atom will have two peaks in the molecular ion region, depending on which bromine isotope the molecular ion contains. Unlike compounds containing chlorine, though, the two peaks will be very similar in height. The carbons and hydrogens add up to 29. The M+ and M+2 peaks are therefore at m/z values given by: = = 110 So... if you have two lines in the molecular ion region with a gap of 2 m/z units between them and with almost equal heights, this shows the presence of a bromine atom in the molecule. Questions to test your understanding If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here afterwards. questions on the M+2 peak answers 4 of 5 9/16/17, 3:54 PM

THE COLLISION THEORY OF REACTION RATES

THE COLLISION THEORY OF REACTION RATES THE COLLISION THEORY OF REACTION RATES This page describes the collision theory of reaction rates. It concentrates on the key things which decide whether a particular collision will result in a reaction

More information

Introduction to Mass Spectrometry (MS)

Introduction to Mass Spectrometry (MS) Introduction to Mass Spectrometry (MS) MS Mass Spectrometry (MS) This is a very powerful analytical tool that can provide information on both molecular mass and molecular structure. Molecules come in all

More information

Express, an International Journal of Multi Disciplinary Research ISSN: , Vol. 2, Issue 7,July 2015 Available at:

Express, an International Journal of Multi Disciplinary Research ISSN: , Vol. 2, Issue 7,July 2015 Available at: 2052, Vol. 2, Issue 7,July 2015 Available at: www.express-journal.com Principles and Fragments of Mass Spectra Dr. Nagham Mahmood Aljamali Organic Chemistry, Chemistry Department.,College of Education.

More information

Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/ Atomic Symbol

Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/ Atomic Symbol Atomic Structure Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/1840-1 Behaviour of

More information

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles 1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/1840-1 An atom of

More information

ChemActivity L2: Mass Spectrometry

ChemActivity L2: Mass Spectrometry ChemActivity L2: Mass Spectrometry (How can we determine the mass and molecular formula of an unknown compound?) This activity is designed to be completed in a 1 ½-hour laboratory session or two classroom

More information

MITOCW ocw f99-lec09_300k

MITOCW ocw f99-lec09_300k MITOCW ocw-18.06-f99-lec09_300k OK, this is linear algebra lecture nine. And this is a key lecture, this is where we get these ideas of linear independence, when a bunch of vectors are independent -- or

More information

MITOCW ocw f99-lec17_300k

MITOCW ocw f99-lec17_300k MITOCW ocw-18.06-f99-lec17_300k OK, here's the last lecture in the chapter on orthogonality. So we met orthogonal vectors, two vectors, we met orthogonal subspaces, like the row space and null space. Now

More information

MITOCW watch?v=ed_xr1bzuqs

MITOCW watch?v=ed_xr1bzuqs MITOCW watch?v=ed_xr1bzuqs The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles 1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/1800-1 An atom of

More information

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies 1.1 Atomic structure The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies a) Protons, neutrons and electrons THE STRUCTURE OF THE ATOM Atoms are made up of three fundamental

More information

The atomic number, Z, is the number of protons in the nucleus. The mass number,a, is the total number of protons and neutrons in the atom.

The atomic number, Z, is the number of protons in the nucleus. The mass number,a, is the total number of protons and neutrons in the atom. 3. Atomic Structure and Periodic Table Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 There are various Electron

More information

MIXTURES, COMPOUNDS, & SOLUTIONS

MIXTURES, COMPOUNDS, & SOLUTIONS MIXTURES, COMPOUNDS, & SOLUTIONS As with elements, few compounds are found pure in nature and usually found as mixtures with other compounds. A mixture is a combination of two or more substances that are

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

1.1 Atomic structure

1.1 Atomic structure 1.1 Atomic structure History of the atom The model of the atom has changed as our observations of its behavior and properties have increased. A model is used to explain observations. The model changes

More information

TYPES OF CATALYSIS Reading Supplement

TYPES OF CATALYSIS Reading Supplement TYPES OF CATALYSIS Reading Supplement This page looks at the the different types of catalyst (heterogeneous and homogeneous) with examples of each kind, and explanations of how they work. You will also

More information

Chromatography 1 of 26 Boardworks Ltd 2016

Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 2 of 26 Boardworks Ltd 2016 What is chromatography? 3 of 26 Boardworks Ltd 2016 Different instrumental methods can be used to analyse and identify

More information

MITOCW Investigation 3, Part 1

MITOCW Investigation 3, Part 1 MITOCW Investigation 3, Part 1 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

ACID-BASE EXTRACTION

ACID-BASE EXTRACTION ACID-BASE EXTRACTION An acid-base extraction is a type of liquid-liquid extraction. It typically involves different solubility levels in water and an organic solvent. The organic solvent may be any carbon-based

More information

Atoms and Bonding Study Guide

Atoms and Bonding Study Guide Parts of an atom Atoms and Bonding Study Guide All matter in the universe, including stars, buildings, people, and ipods is made of tiny particles called atoms. The behavior of atoms is chemistry's main

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Mixtures 1 of 38 Boardworks Ltd 2016

Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 2 of 38 Boardworks Ltd 2016 Pure and impure substances 3 of 38 Boardworks Ltd 2016 All materials can be classified as either a pure substance or an impure

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

5th Grade. Slide 1 / 67. Slide 2 / 67. Slide 3 / 67. Matter and Its Interactions. Table of Contents: Matter and Its Interactions

5th Grade. Slide 1 / 67. Slide 2 / 67. Slide 3 / 67. Matter and Its Interactions. Table of Contents: Matter and Its Interactions Slide 1 / 67 Slide 2 / 67 5th Grade Matter and Its Interactions 2015-11-02 www.njctl.org Table of Contents: Matter and Its Interactions Slide 3 / 67 Click on the topic to go to that section What Is Matter?

More information

MITOCW R11. Double Pendulum System

MITOCW R11. Double Pendulum System MITOCW R11. Double Pendulum System The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture26 Instructor (Brad Osgood): Relax, but no, no, no, the TV is on. It's time to hit the road. Time to rock and roll. We're going to now turn to our last topic

More information

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure MITOCW 18-03_L19 Today, and for the next two weeks, we are going to be studying what, for many engineers and a few scientists is the most popular method of solving any differential equation of the kind

More information

CHAPTER 2: Atoms, Molecules and Stoichiometry

CHAPTER 2: Atoms, Molecules and Stoichiometry CHAPTER 2: Atoms, Molecules and Stoichiometry 2.1 Mass of Atoms and Molecules 2.2 Mass Spectrometer 2.3 Amount of Substance 2.4 Empirical Formula and Molecular Formula 2.5 Stoichiometry and Equations Learning

More information

MITOCW MIT18_01SCF10Rec_24_300k

MITOCW MIT18_01SCF10Rec_24_300k MITOCW MIT18_01SCF10Rec_24_300k JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been doing related rates problems. I've got another example for you, here. So this one's a really tricky one.

More information

Gauss's Law -- Conceptual Solutions

Gauss's Law -- Conceptual Solutions Gauss's Law Gauss's Law -- Conceptual Solutions 1.) An electric charge exists outside a balloon. The net electric flux through the balloon is zero. Why? Solution: There will be the same amount of flux

More information

IGCSE(A*-G) Edexcel - Chemistry

IGCSE(A*-G) Edexcel - Chemistry IGCSE(A*-G) Edexcel - Chemistry Principles of Chemistry Atoms NOTES 1.8 Describe and explain experiments to investigate the small size of particles and their movement including: Dilution of coloured solutions

More information

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

1

1 1 Index: Page 3: Covalent Bonding Knowledge Card Page 4: Separation Techniques Knowledge Card Page 5: Exam Descriptors/Sample Questions Page 6: Covalent Bonding & How to draw them Page 7: Simple & Giant

More information

Atoms Around Us. Common Elements

Atoms Around Us. Common Elements Atoms Around Us Atoms are building blocks. If you want to create a language, you'll need an alphabet. If you want to build molecules, you will need atoms of different elements. Elements are the alphabet

More information

Electrostatics. Experiment NC. Objective. Introduction. Procedure

Electrostatics. Experiment NC. Objective. Introduction. Procedure Electrostatics Experiment NC Objective In this experiment you will explore various aspects of electrostatic charging and electrostatic forces. Introduction You are probably aware of various phenomena associated

More information

MITOCW ocw feb k

MITOCW ocw feb k MITOCW ocw-18-086-13feb2006-220k INTRODUCTION: The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare

More information

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] 1 Introduction Outline Mass spectrometry (MS) 2 INTRODUCTION The analysis of the outcome of a reaction

More information

Structural Determination Of Compounds

Structural Determination Of Compounds EXPERIMENT 10 Mass Spectroscopy Structural Determination Of Compounds. Introduction - In mass spectrometry, a substance is bombarded with an electron beam having sufficient energy to fragment the molecule.

More information

3 Use of Mass Spectra to Obtain Structural Information

3 Use of Mass Spectra to Obtain Structural Information 3 Use of Mass Spectra to Obtain Structural Information 1 Mass Spectrometry One of the most sensitive and versatile analytical tools More sensitive than other spectroscopic methods (e.g. IR spectroscopy)

More information

PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH SECTION 6.5

PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH SECTION 6.5 1 MATH 16A LECTURE. DECEMBER 9, 2008. PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. I HOPE YOU ALL WILL MISS IT AS MUCH AS I DO. SO WHAT I WAS PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH

More information

CHM The Basics of Bonding (r14) Charles Taylor 1/7

CHM The Basics of Bonding (r14) Charles Taylor 1/7 CHM 110 - The Basics of Bonding (r14) - 2014 Charles Taylor 1/7 Introduction The concept at the heart of chemistry is that of the chemical bond. The chemical reactions that we've studied before involve

More information

MITOCW 6. Standing Waves Part I

MITOCW 6. Standing Waves Part I MITOCW 6. Standing Waves Part I The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 GILBERT STRANG: OK, today is about differential equations. That's where calculus really is applied. And these will be equations that describe growth.

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Chromatography What is it?

Chromatography What is it? Chromatography Most things that are colored are mixtures of different substances of various colors. In a mixture you have several different kinds of chemicals that are all next to each other but not reacting.

More information

Recognizing Chemical_Reactions By Dr. Kathleen Vandiver

Recognizing Chemical_Reactions By Dr. Kathleen Vandiver Recognizing Chemical_Reactions By Dr. Kathleen Vandiver Hello. My name is Dr. Kathy Vandiver. And we're here at the Edgerton Center at MIT, a university in the United States. And the Edgerton Center is

More information

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons IB Chemistry (unit ) ATOMIC THEORY Atomic Structure - Recap Questions Define the following words: Atom Element Molecule Compound Atomic Structure Atoms are very small ~ - metres All atoms are made up of

More information

MITOCW watch?v=wr88_vzfcx4

MITOCW watch?v=wr88_vzfcx4 MITOCW watch?v=wr88_vzfcx4 PROFESSOR: So we're building this story. We had the photoelectric effect. But at this moment, Einstein, in the same year that he was talking about general relativity, he came

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 PROFESSOR: OK, this lecture is about the slopes, the derivatives, of two of the great functions of mathematics: sine x and cosine x. Why do I say great

More information

MITOCW watch?v=ko0vmalkgj8

MITOCW watch?v=ko0vmalkgj8 MITOCW watch?v=ko0vmalkgj8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

MITOCW big_picture_derivatives_512kb-mp4

MITOCW big_picture_derivatives_512kb-mp4 MITOCW big_picture_derivatives_512kb-mp4 PROFESSOR: OK, hi. This is the second in my videos about the main ideas, the big picture of calculus. And this is an important one, because I want to introduce

More information

Lesson 6: Algebra. Chapter 2, Video 1: "Variables"

Lesson 6: Algebra. Chapter 2, Video 1: Variables Lesson 6: Algebra Chapter 2, Video 1: "Variables" Algebra 1, variables. In math, when the value of a number isn't known, a letter is used to represent the unknown number. This letter is called a variable.

More information

Experiment Nine Thin Layer Chromatography

Experiment Nine Thin Layer Chromatography Name: Lab Section: 09 Thin Layer Chromatography Experiment Nine Thin Layer Chromatography Introduction Objective Separation of compounds from a mixture is an incredibly important aspect of experimental

More information

Orbitals How atoms really look like

Orbitals How atoms really look like Orbitals How atoms really look like Mr. Dvorsky SCH4U1 Philip Pocock 8 February, 2015 The above photograph comes from an article my brother wrote on the first ever photograph of a hydrogen atom. The article

More information

MITOCW 18. Quiz Review From Optional Problem Set 8

MITOCW 18. Quiz Review From Optional Problem Set 8 MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

CS C1 H Ionic, covalent and metallic bonding

CS C1 H Ionic, covalent and metallic bonding Name: CS C1 H Ionic, covalent and metallic bonding Date: Time: 39 minutes Total marks available: 39 Total marks achieved: Questions Q1. Chlorine and carbon (a) Chlorine has an atomic number of 17. Chlorine-35

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4 PROFESSOR: OK, this lecture, this day, is differential equations day. I just feel even though these are not on the BC exams, that we've got everything

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 Chromatography is an important analytical technique in chemistry. There is a number of techniques under the general heading of chromatography. (a) Paper and gas chromatography rely on partition to separate

More information

MITOCW ocw f99-lec05_300k

MITOCW ocw f99-lec05_300k MITOCW ocw-18.06-f99-lec05_300k This is lecture five in linear algebra. And, it will complete this chapter of the book. So the last section of this chapter is two point seven that talks about permutations,

More information

HISTORICAL OVERVIEW OF THE ATOM

HISTORICAL OVERVIEW OF THE ATOM HISTORICAL OVERVIEW OF THE ATOM Old Quantum Mechanics: Basic Developments Today, we know that atoms contain protons, neutrons and electrons. The protons have significant mass and a positive charge and

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE by Miles Mathis miles@mileswmathis.com Abstract Here I solve Goldbach's Conjecture by the simplest method possible. I do this by first calculating probabilites

More information

MITOCW ocw nov2005-pt1-220k_512kb.mp4

MITOCW ocw nov2005-pt1-220k_512kb.mp4 MITOCW ocw-3.60-03nov2005-pt1-220k_512kb.mp4 PROFESSOR: All right, I would like to then get back to a discussion of some of the basic relations that we have been discussing. We didn't get terribly far,

More information

Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance Spectroscopy (NMR) OCR Chemistry A 432 Spectroscopy (NMR) What is it? An instrumental method that gives very detailed structural information about molecules. It can tell us - how many of certain types of atom a molecule

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

Atomic structure Calculate the number of protons, electrons and neutrons in Important terms: quantum shells, principle quantum number, energy levels,

Atomic structure Calculate the number of protons, electrons and neutrons in Important terms: quantum shells, principle quantum number, energy levels, Atomic structure Important terms: quantum shells, principle quantum number, energy levels, Calculate the number of protons, electrons and neutrons in Isotopes Definitions? Remember - isotopes have exactly

More information

MITOCW ocw-5_60-s08-lec19_300k

MITOCW ocw-5_60-s08-lec19_300k MITOCW ocw-5_60-s08-lec19_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

MITOCW free_body_diagrams

MITOCW free_body_diagrams MITOCW free_body_diagrams This is a bungee jumper at the bottom of his trajectory. This is a pack of dogs pulling a sled. And this is a golf ball about to be struck. All of these scenarios can be represented

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

MITOCW MIT7_01SCF11_track24_300k.mp4

MITOCW MIT7_01SCF11_track24_300k.mp4 MITOCW MIT7_01SCF11_track24_300k.mp4 PROFESSOR: OK. So I need to move on a little bit now, and I want to talk about in fact, the earlier way that nature developed to make energy using proton gradients.

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

MITOCW ocw-5_60-s08-lec07_300k

MITOCW ocw-5_60-s08-lec07_300k MITOCW ocw-5_60-s08-lec07_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free.

More information

THE MODERN VIEW OF ATOMIC STRUCTURE

THE MODERN VIEW OF ATOMIC STRUCTURE 44 CHAPTER 2 Atoms, Molecules, and Ions GO FIGURE What is the charge on the particles that form the beam? Experiment Interpretation Incoming a particles Beam of a particles Source of a particles Nucleus

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

Atomic Motion and Interactions

Atomic Motion and Interactions Atomic Motion and Interactions 1. Handout: Unit Notes 2. Have You Seen an Atom Lately? 1. Lab: Oil Spreading on Water 2. Demo: Computer animation of spreading oil 3. Lab: Mixing Alcohol and Water 4. Demo:

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

CHAPTER 2 ATOMS, MOLECULES,

CHAPTER 2 ATOMS, MOLECULES, CHAPTER 2 ATOMS, MOLECULES, AND LIFE LECTURE OUTLINE Case Study: Unstable Atoms Unleashed 2.1 What Are Atoms? A. Atoms Are the Basic Structural Units of Elements (Figures 2-1 and 2-2, and Table 2-1) 1.

More information

MITOCW ocw f99-lec16_300k

MITOCW ocw f99-lec16_300k MITOCW ocw-18.06-f99-lec16_300k OK. Here's lecture sixteen and if you remember I ended up the last lecture with this formula for what I called a projection matrix. And maybe I could just recap for a minute

More information

2 Electric Field Mapping Rev1/05

2 Electric Field Mapping Rev1/05 2 Electric Field Mapping Rev1/05 Theory: An electric field is a vector field that is produced by an electric charge. The source of the field may be a single charge or many charges. To visualize an electric

More information

University of Maryland Department of Physics

University of Maryland Department of Physics Spring 3 University of Maryland Department of Physics Laura Lising Physics 1 March 6, 3 Exam #1 nswer all questions on these sheets. Please write clearly and neatly: We can only give you credit for what

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Thin Layer Chromatography

Thin Layer Chromatography Experiment: Thin Layer Chromatography Chromatography is a technique widely used by organic chemists to separate and identify components in a mixture. There are many types of chromatography, but all involve

More information

Exercise 4: Thin layer chromatography of organic compounds

Exercise 4: Thin layer chromatography of organic compounds Chemistry 162 Exercise 4: Thin layer chromatography of organic compounds Objective: Use thin layer chromatography to separate and characterize the polarity of a mixture of benzene derivatives. Introduction:

More information

The Cycloid. and the Kinematic Circumference. by Miles Mathis

The Cycloid. and the Kinematic Circumference. by Miles Mathis return to updates The Cycloid and the Kinematic Circumference First published August 31, 2016 by Miles Mathis Those of you who have read my papers on π=4 will know I have explained that problem using many

More information

How do you know when valence electrons are relevant to solving a question?

How do you know when valence electrons are relevant to solving a question? Final Exam Questions From All Y all How do you know when valence electrons are relevant to solving a question? Well, obviously if it directly asks about electrons or their configuration. Otherwise, the

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No University of Maryland Department of Physics Physics 122 20. May 2009 (175 points) Post grades on web? (Initial, please) Yes No (If you agree, I will post your grades and your detailed scores for each

More information

MITOCW MITRES18_006F10_26_0501_300k-mp4

MITOCW MITRES18_006F10_26_0501_300k-mp4 MITOCW MITRES18_006F10_26_0501_300k-mp4 ANNOUNCER: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Mass Spectrometry. Ionizer Mass Analyzer Detector

Mass Spectrometry. Ionizer Mass Analyzer Detector GCMS Gas Chromatography Used to separate components of a mixture Mixture is injected, vaporized and carried by an inert gas Compounds separate when they interact with the column at different times Retention

More information

MITOCW MITRES_18-007_Part3_lec5_300k.mp4

MITOCW MITRES_18-007_Part3_lec5_300k.mp4 MITOCW MITRES_18-007_Part3_lec5_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

INTRODUCTION. Amino acids occurring in nature have the general structure shown below:

INTRODUCTION. Amino acids occurring in nature have the general structure shown below: Biochemistry I Laboratory Amino Acid Thin Layer Chromatography INTRODUCTION The primary importance of amino acids in cell structure and metabolism lies in the fact that they serve as building blocks for

More information

State the position of protons, neutrons and electrons in the atom

State the position of protons, neutrons and electrons in the atom 2.1 The Atom 2.1.1 - State the position of protons, neutrons and electrons in the atom Atoms are made up of a nucleus containing positively charged protons and neutral neutrons, with negatively charged

More information

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10.

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = 30 10 10 4x = 40 4 4 x = 10 Sep 5 7:00 AM 1 #. 4 3(x + ) = 5x 7(4 x) 4 3x 6 = 5x 8 + 7x CLT 3x = 1x 8 +3x +3x = 15x 8 +8 +8 6 = 15x 15 15 x = 6 15 Sep 5 7:00 AM #3.

More information

CHAPTER 2 ATOMS, MOLECULES,

CHAPTER 2 ATOMS, MOLECULES, CHAPTER 2 ATOMS, MOLECULES, AND LIFE LECTURE OUTLINE Case Study: Unstable Atoms Unleashed 2.1 What Are Atoms? A. Atoms Are the Basic Structural Units of Elements (Table 2-1) 1. An element is a substance

More information

Chromatography: Candy Coating and Marker Colors Student Version

Chromatography: Candy Coating and Marker Colors Student Version Chromatography: Candy Coating and Marker Colors Student Version In this lab you will separate a mixture of unknown composition using several common household items. You will then perform a more specific

More information

Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved

Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved Mass Spectrometry 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved Mass Spectrometry When a molecule is bombarded with high-energy electrons, one of the process that can occur

More information