Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved

Size: px
Start display at page:

Download "Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved"

Transcription

1 Mass Spectrometry 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved

2 Mass Spectrometry When a molecule is bombarded with high-energy electrons, one of the process that can occur is the ejection of an electron from the neutral molecule to form a charged species with one unpaired electron. This species is called a radical cation (M + ) M + e 2e + M

3 Mass Spectrometry This radical cation can fragment, ejecting a radical to form a carbocation, or it can eject an even electron molecule to generate a new radical cation. Carbocations, however, only fragment to form new carbocation species. M + R + a radical M + R + + an even-electron molecule R B + an even-electron molecule

4 Mass Spectrometry This fragmentation can be simple, such as the loss of methoxy radical from the methyl 2-methylbenzoate radical cation... C C 3 C 3 C 3 C 3 C C 2

5 Mass Spectrometry This fragmentation can be simple, such as the loss of methoxy radical from the methyl 2-methylbenzoate radical cation, or the concerted loss of methanol. C C 3 C 3 C 3 C 3 C C 2

6 Mass Spectrometry The charged species formed can be characterized by their mass (m) and their charge (z) as their mass-tocharge ratio (). C = 119 C 3 C 3 C 3 = 150 C 3 C C 2 = 118

7 Mass Spectrometry In the electron impact mass spectrometer, a gas-phase beam of sample molecules are ionized by an electron beam to produce radical cations and their fragmentation products. Molecular Source Electron Beam Ion Accelerating Array Magnetic Field Bends Path of Charged Particles Collector Exit Slit

8 Mass Spectrometry These ions are accelerated in an analyzing tube, which uses a magnetic field to focus ions of a given ratio on a exit slit, where they collide with a collector and are detected by the analyzer circuitry. Molecular Source Electron Beam Ion Accelerating Array Magnetic Field Bends Path of Charged Particles Collector Exit Slit

9 Mass Spectrometry By changing the force of the applied field, the spectrometer can scan through all of the ions produced, detecting the intensity of each ion independently, along with its ratio. Molecular Source Electron Beam Ion Accelerating Array Magnetic Field Bends Path of Charged Particles Collector Exit Slit

10 Mass Spectrometry The output, a plot of relative intensity vs. ratio, is called a mass spectrum. Molecular Source Electron Beam Ion Accelerating Array Magnetic Field Bends Path of Charged Particles Collector Exit Slit

11 . Mass Spectrometry = 119 C A representative mass spectrum is shown below for methyl 2- methylbenzoate. C 3 = 150 C 3 C 3 C 3 = 118 C C

12 . Mass Spectrometry = 119 C In the mass spectrum, the parent ion is called the molecular ion (M + ) and the most intense peak is called the base peak. C 3 = 150 C 3 C 3 C 3 = 118 C C base peak 118 M

13 Mass Spectrometry The relative intensities of peaks in the mass spectrum depend on the ease of the required fragmentation and the stability of the ion which is formed. C C 3 = 150 C 3 C 3 C 3 = 119 a stable oxonium ion C C 2 = 118

14 . Mass Spectrometry = 119 C The mass spectrum will therefore tell us the molecular weights of the compound and of its most stable cationic fragments. C 3 = 150 C 3 C 3 C 3 = 118 C C base peak 118 M

15 The mass spectrum of toluene is shown below. The most stable carbocation which can be readily derived from this molecule is the benzyl carbocation. Toluene (MW = 92) would therefore be expected to lose a hydrogen radical to give the benzyl carbocation ( = 91). 91 = 92 = 91 C 3 C = 91 =

16 The benzyl carbocation ( = 91), however, rapidly rearranges to form the more stable tropylium cation. Loss of ethyne from this ion gives the peak at = 65. In general, the presence of a peak in the mass spectrum at = 91 strongly suggests the presence of a benzyl unit in the parent molecule. 91 = 92 = 91 C 3 C 2 92 loss of C = 91 =

17 Reviewing Carbocations and Carbocation Stability Two views of the 2-propyl carbocation sp 2 hybridization planar, with 120 o bond angles

18 Alkyl groups are electron releasing and stabilize carbocations by an inductive effect, as shown by electrostatic potential maps for the ethyl, 2-propyl and tert- butyl carbocations.

19 ne of the most stable carbocations known is the cycloheptatrienyl cation (the tropylium ion) in which the positive charge is evenly distributed over all seven ring carbons by resonance. δ δ δ δ δ δ δ Tropylium cation, showing the uniform distribution of the positive charge.

20 Summary of Carbocation Stability 1. Most Stable: Carbocations adjacent to heteroatoms having unshared pairs of electrons so that the positive charge is delocalized by resonance. R R R R Cl R Cl R N R N R R R

21 2. Alkyl or aryl carbocations where the positive charge can be delocalized by resonance C 2 C 2 C 2 C 2

22 3. Alkyl carbocations are most easily ranked by the nature of the cationic carbon, i.e.: primary, secondary, tertiary, etc. You should also note that carbocations are sp 2 hybridized and therefore must always be planar. C 3 3 C C 3 3 C C 3 C 2 C 3 not planar -- very unstable

23 . The mass spectrum of 2-methylbutane. 3 C C 3 C 3 MW =

24 . The mass spectrum of 2-methylbutane. In general an M-15 peak suggests loss of a methyl group. + C 3 3 C C 3 C 3 C 3 C 3 = M-15 M

25 . The mass spectrum of acetone. MW = 58 3 C C 3 43 M-15 M

26 . The mass spectrum of acetone. In general, carbonyl compounds will tend to cleave on either side of the carbonyl group, forming stabilized oxonium ions C C 3 M-15 + C 3 the acylium ion C 3 M

27 . The mass spectrum of acetophenone. 3 C MW = 120 M M-15 M

28 . The mass spectrum of acetophenone. In general, carbonyl compounds will tend to cleave on either side of the carbonyl group, forming stabilized oxonium ions. 3 C M C 3 = M-15 + C = 77 M C

29 . The mass spectrum of hexanal. MW = M M

30 . The mass spectrum of hexanal. Carbonyl compounds and alkyl benzenes with alkyl chains containing 3 or more carbons will undergo McLafferty rearrangement with loss of an alkene. + 2 C C =

31 . The mass spectrum of 2-butanol. MW = M M

32 . The mass spectrum of 2-butanol. Alcohols tend to fragment adjacent to the hydroxyl group to give the stable oxonium ion. 3 C C = 45 + C 3 C 2 45 M M

33 . The mass spectrum of benzyl bromide. Br MW = M M

34 The mass spectrum of benzyl bromide. Compounds containing bromine will display two M + ions or equal intensity in the mass spectrum, at M-1 and M+1. Br + Br = M M

35 Effect of isotopic abundance on halogencontaining species in the mass spectrum. Relative Br Br 2 M+2 M M+2 M M+4 Cl Cl 2 Relative M M M+2 M+2 M+4

36 Fragments commonly lost from M + in the mass spectrum. Mass Group 15 C 3 Mass Group 32 C 3 16 N F 20 F 26 C C 29 C 2 C 3 30 C 2 31 C 3 44 C C 2 C 42 C C C 3 C 44 C 2 44 C C 2 45 C 2 C 3 46 C 3 C 2

37 . In-Class Problem: C

38 . In-Class Problem: C MW = 102; one degree of unsaturation

39 . In-Class Problem: C MW = 102; one degree of unsaturation M

40 . In-Class Problem: C MW = 102; one degree of unsaturation M-15; loss of methyl 87 M

41 . In-Class Problem: C MW = 102; one degree of unsaturation M-31; loss of methoxy 71 M-15; loss of methyl 87 M

42 . In-Class Problem: C MW = 102; one degree of unsaturation 43 M-59; acylium ion or propyl cation 59 M-31; loss of methoxy 71 M-15; loss of methyl 87 M

43 . In-Class Problem: C MW = 102; one degree of unsaturation 3 C C C 3 3 C 3 43 M-59; acylium ion or propyl cation 59 M-31; loss of methoxy 71 M-15; loss of methyl 87 M

44 . In-Class Problem: C MW = 102; one degree of unsaturation 3 C C C 3 3 C 3 43 M-59; acylium ion or propyl cation M-31; loss of methoxy 71 M-15; loss of methyl 3 C C M C

Structural Determination Of Compounds

Structural Determination Of Compounds EXPERIMENT 10 Mass Spectroscopy Structural Determination Of Compounds. Introduction - In mass spectrometry, a substance is bombarded with an electron beam having sufficient energy to fragment the molecule.

More information

3 Use of Mass Spectra to Obtain Structural Information

3 Use of Mass Spectra to Obtain Structural Information 3 Use of Mass Spectra to Obtain Structural Information 1 Mass Spectrometry One of the most sensitive and versatile analytical tools More sensitive than other spectroscopic methods (e.g. IR spectroscopy)

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

Mass Spectroscopy. Dr. Sapna Gupta

Mass Spectroscopy. Dr. Sapna Gupta Mass Spectroscopy Dr. Sapna Gupta What is Mass Spectroscopy It is an analytical technique for measuring the mass-tocharge ratio (m/z) of ions in the gas phase. Mass spectrometry is our most valuable analytical

More information

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] 1 Introduction Outline Mass spectrometry (MS) 2 INTRODUCTION The analysis of the outcome of a reaction

More information

Chapter 20. Mass Spectroscopy

Chapter 20. Mass Spectroscopy Chapter 20 Mass Spectroscopy Mass Spectrometry (MS) Mass spectrometry is a technique used for measuring the molecular weight and determining the molecular formula of an organic compound. Mass Spectrometry

More information

Mass Spectrometry Instrumentation

Mass Spectrometry Instrumentation Mass Spectrometry Instrumentation A mass spectrometer is composed of an inlet system (which introduces the sample to the instrument and vaporizes the sample) A molecular leak (which produces a steady stream

More information

Chapter 5. Mass spectrometry

Chapter 5. Mass spectrometry ionization and fragmentation Chapter 5. Mass spectrometry which fragmentations? mass and frequency, m/z and count rate Reading: Pavia Chapters 3 and 4 Don t need 3.3 B-D, 3.4 B-D Use the text to clarify

More information

Lecture 14 Organic Chemistry 1

Lecture 14 Organic Chemistry 1 CHEM 232 Organic Chemistry I at Chicago Lecture 14 Organic Chemistry 1 Professor Duncan Wardrop February 25, 2010 1 CHEM 232 Organic Chemistry I at Chicago Mass Spectrometry Sections: 13.24-13.25 2 Spectroscopy

More information

MASS SPECTROSCOPY (MS)

MASS SPECTROSCOPY (MS) MASS SPECTOSCOPY (MS) Castor seeds icin (toxic protein) INTODUCTION Does not involve absorption of electromagnetic radiation. It is a spectroscopic technique, by virtue of its use in structure elucidation.

More information

Mass Spectrometry - Background

Mass Spectrometry - Background Mass Spectrometry - Background In mass spectrometry, a substance is bombarded with an electron beam having sufficient energy to fragment the molecule. The positive fragments which are produced (cations

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects Mass Spectrometry Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects 1 Introduction to MS Mass spectrometry is the method of analysis

More information

Identification of functional groups in the unknown Will take in lab today

Identification of functional groups in the unknown Will take in lab today Qualitative Analysis of Unknown Compounds 1. Infrared Spectroscopy Identification of functional groups in the unknown Will take in lab today 2. Elemental Analysis Determination of the Empirical Formula

More information

4.15 Halogenation of Alkanes RH + X 2 RX + HX

4.15 Halogenation of Alkanes RH + X 2 RX + HX 4.15 alogenation of Alkanes R + X 2 RX + X Energetics R + X 2 RX + X explosive for F 2 exothermic for Cl 2 and Br 2 endothermic for I 2 4.16 Chlorination of Methane Chlorination of Methane carried out

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy M 223 Organic hemistry I Prof. had Landrie Lecture 10: September 20, 2018 h. 12: Spectroscopy mass spectrometry infrared spectroscopy i>licker Question onsider a solution that contains 65g R enantiomer

More information

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced I. Mass spectrometry: capable of providing both quantitative and qualitative information about samples as small as 100 pg (!) and with molar masses in the 10 4-10 5 kdalton range A. The mass spectrometer

More information

MASS SPECTROMETRY: BASIC EXPERIMENT

MASS SPECTROMETRY: BASIC EXPERIMENT http://science.widener.edu/svb/massspec/ei.html relative abundance Pavia 8.1-8.5 MASS SPECTROMETRY: BASIC EXPERIMENT scienceaid.co.uk -e Molecule Molecule +. + 2e base peak [Fragments] +. fragment peaks

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations Subject Chemistry Paper No and Title Module No and Title Module Tag Paper No. 5: Organic Chemistry-II (Reaction Mechanism-1) Generation, Structure, Stability and Reactivity of Carbocations CHE_P5_M6 TABLE

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Conjugated Unsaturated Systems 13.1 Introduction Allyl radical C 2 C C 2 C C C Allyl cation C 2 C C 2 C C C 1,3-Butadiene C 2 C C C 2 C C C C Molecules with delocalized π bonds are called conjugated unsaturated

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

Fri 6 Nov 09. More IR Mass spectroscopy. Hour exam 3 Fri Covers Chaps 9-12 Wednesday: Review

Fri 6 Nov 09. More IR Mass spectroscopy. Hour exam 3 Fri Covers Chaps 9-12 Wednesday: Review Fri 6 Nov 09 our exam 3 Fri 11-13 Covers Chaps 9-12 Wednesday: Review More IR Mass spectroscopy Good web site for IR, Mass, NMR spectra: http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng

More information

Teory of Mass Spectrometry Taslim Ersam

Teory of Mass Spectrometry Taslim Ersam Teory of Mass Spectrometry Taslim Ersam I. Fragmentation Chemistry of Ions 1. ne bond σ-cleavages: a. cleavage of C-CC C C C C b. cleavage of C-heteroatom C Z C Z 15/09/2011 1 I. Fragmentation Chemistry

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

CH 3 Cl + Cl 2 CH 2 Cl 2 + HCl

CH 3 Cl + Cl 2 CH 2 Cl 2 + HCl Energetics 414 alogenation of Alkanes X 2 X X X 2 X X explosive for F 2 exothermic for l 2 and Br 2 endothermic for I 2 hlorination of Methane carried out at high temperature (400 ) 415 hlorination of

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

Allylic and Benzylic Reactivity

Allylic and Benzylic Reactivity 17 17 Allylic and Benzylic Reactivity An allylic group is a group on a carbon adjacent to a double bond. A benzylic group is a group on a carbon adjacent to a benzene ring or substituted benzene ring.

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual. CHEM 3780 rganic Chemistry II Infrared Spectroscopy and Mass Spectrometry Review More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages 13-28 in your laboratory manual.

More information

CHAPTER 6. GC EI and CI Fragmentation and Interpretation of Spectra

CHAPTER 6. GC EI and CI Fragmentation and Interpretation of Spectra 1 1 1 1 1 1 1 1 0 1 0 1 CAPTER GC EI and CI Fragmentation and Interpretation of Spectra.1 Introduction Before discussing fragmentation and interpretation, it is important to understand the many ways mass

More information

CHAPTER 2. Fragmentation and Interpretation of Spectra

CHAPTER 2. Fragmentation and Interpretation of Spectra 2.1 Introduction CHAPTER 2 Fragmentation and Interpretation of Spectra Before discussing fragmentation and interpretation, it is important to understand the many ways mass spectra are utilized. For the

More information

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Figure 12.1 - The electron-ionization, magneticsector mass spectrometer Representing the Mass Spectrum Base Peak Parent

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

Physical Properties: Structure:

Physical Properties: Structure: Nomenclature: Functional group suffix = -ol Functional group prefix = hydroxy- Primary, secondary or tertiary? Alcohols are described as primary (1 o ), secondary (2 o ) or tertiary (3 o ) depending on

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Kevin Burgess, February 20, 2017 1 Mass Spectrometry (MS) from chapter(s) in the recommended text A. Introduction Kevin Burgess, February 20, 2017 2 B. Components f Mass Spectrometers mass-to-charge. molecular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) I B) II C) III D) IV E) V

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) I B) II C) III D) IV E) V Practice Questions : Chem 226 / Exam 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about benzene is correct?

More information

Chapter 9. Nuclear Magnetic Resonance and Mass Spectrometry. 1. Introduction. 2. Nuclear Magnetic Resonance (NMR) Spectroscopy

Chapter 9. Nuclear Magnetic Resonance and Mass Spectrometry. 1. Introduction. 2. Nuclear Magnetic Resonance (NMR) Spectroscopy hapter 9 Nuclear Magnetic Resonance and Mass Spectrometry reated by Professor William Tam & Dr. Phillis hang 1. Introduction Spectroscopy the study of the interaction of light with matter Spectroscopy

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

The C-X bond gets longerand weakergoing down the periodic table.

The C-X bond gets longerand weakergoing down the periodic table. Chapter 10: Organohalides Organic molecules containing halogen atoms (X) bonded to carbon are useful compounds in synthesis and on their own. 10.2 Structure of alkyl halides The C-X bond gets longerand

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

Chapter 15 Dienes, Resonance, and Aromaticity

Chapter 15 Dienes, Resonance, and Aromaticity Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 15 Dienes, Resonance, and Aromaticity Solutions to In-Text Problems 15.2 The delocalization energy is the energy

More information

A N I N T R O D U C T I O N T O... MASS SPECTROMETRY. A self-study booklet

A N I N T R O D U C T I O N T O... MASS SPECTROMETRY. A self-study booklet A N I N T R O D U C T I O N T O... MASS SPECTROMETRY A self-study booklet 2 Mass Spectrometry MASS SPECTROMETRY Introduction Theory A mass spectrum can be thought of as being the record of the damage done

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Express, an International Journal of Multi Disciplinary Research ISSN: , Vol. 2, Issue 7,July 2015 Available at:

Express, an International Journal of Multi Disciplinary Research ISSN: , Vol. 2, Issue 7,July 2015 Available at: 2052, Vol. 2, Issue 7,July 2015 Available at: www.express-journal.com Principles and Fragments of Mass Spectra Dr. Nagham Mahmood Aljamali Organic Chemistry, Chemistry Department.,College of Education.

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION

REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION REACTIONS OF HALOALKANES - SUBSTITUTION AND ELIMINATION Haloalkanes (also known as halogenoalkanes and alkyl halides) are organic compounds where one of the hydrogens of an alkane or cycloalkane has been

More information

Name Date Class. aryl halides substitution reaction

Name Date Class. aryl halides substitution reaction 23.1 INTRODUCTION TO FUNCTIONAL GROUPS Section Review Objectives Explain how organic compounds are classified Identify the IUPAC rules for naming halocarbons Describe how halocarbons can be prepared Vocabulary

More information

Chapter 8. Acidity, Basicity and pk a

Chapter 8. Acidity, Basicity and pk a Chapter 8 Acidity, Basicity and pk a p182 In this reaction water is acting as a base, according to our definition above, by accepting a proton from HCl which in turn is acting as an acid by donating a

More information

Homework - Chapter 9 Chem 2310

Homework - Chapter 9 Chem 2310 Homework - Chapter 9 Chem 2310 me:. ntroduction to organic halides 1. Draw a line structure for a compound with the following description: an alkyl halide with the formula C 5 H 11 a vinyl halide with

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Chapter 11. Introduction to Organic Chemistry

Chapter 11. Introduction to Organic Chemistry hapter 11 Introduction to rganic hemistry Properties of arbon and its compounds 2 Properties of arbon and its compounds 3 Properties of arbon and its compounds 4 Properties of arbon and its compounds 5

More information

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin. Vision Cis-trans isomerism is key to vision. 3 C 11 12 3 C C 3 3 C O C 3 11-cis-retinal Protein opsin 3 C 11 12 3 C C 3 3 C N Opsin C 3 Rhodopsin Light photons 3 C N Opsin 3 C 11 12 3 C C 3 C 3 ow rods

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Lecture notes in EI-Mass spectrometry. By Torben Lund

Lecture notes in EI-Mass spectrometry. By Torben Lund 1 Lecture notes in EI-Mass spectrometry By Torben Lund RUC 2015 1. Basic advise: 1) Identify the mole peak M +. 2) Nitogen rule: Determine number of N 3) A+2 elements: Cl, Br, S, Si 4) N C = 100 [M+1]/([M]

More information

BIOB111 - Tutorial activities for session 8

BIOB111 - Tutorial activities for session 8 BIOB111 - Tutorial activities for session 8 General topics for week 4 Session 8 Physical and chemical properties and examples of these functional groups (methyl, ethyl in the alkyl family, alkenes and

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

L.7. Mass Spectrum Interpretation

L.7. Mass Spectrum Interpretation L.7. Mass Spectrum Interpretation Fragmentation reactions Spectrum interpretation Confirmation of ion structural assignment Biomolecule dissociation Fragmentation reactions 1. Fragmentation reactions of

More information

Chapter 15. Free Radical Reactions

Chapter 15. Free Radical Reactions Grossman, CE 230 Chapter 15. Free Radical Reactions A free radical is a species containing one or more unpaired electrons. Free radicals are electrondeficient species, but they are usually uncharged, so

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3 Chapter 8 Questions 1) Which of the following statements is incorrect about benzene? A) All of the carbon atoms are sp hybridized. B) It has delocalized electrons. C) The carbon-carbon bond lengths are

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 BSc. II 3 rd Semester Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 Introduction to Alkyl Halides Alkyl halides are organic molecules containing a halogen atom bonded to an

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic Aromatic Compounds Early in the history of organic chemistry (late 18 th, early 19 th century) chemists discovered a class of compounds which were unusually stable A number of these compounds had a distinct

More information

UNIT (8) OXYGEN CONTAINING ORGANIC COMPOUNDS

UNIT (8) OXYGEN CONTAINING ORGANIC COMPOUNDS UNIT (8) OXYGEN CONTAINING ORGANIC COMPOUNDS 8.1 Alcohols, Phenols, and Ethers An alcohol is an organic compound that contains the hydroxyl group (-OH) attached to an alkyl group. They are essentially

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Halogen compounds are important for several reasons. Simple alkyl and aryl halides, especially chlorides and bromides, are versatile

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

1. neopentyl benzene. 4 of 6

1. neopentyl benzene. 4 of 6 I. 1 H NMR spectroscopy A. Theory 1. The protons and neutrons in atomic nuclei spin, as does the nucleus itself 2. The circulation of nuclear charge can generate a nuclear magnetic moment, u, along the

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Chapter 7 Substitution Reactions

Chapter 7 Substitution Reactions Chapter 7 Substitution Reactions Review of Concepts Fill in the blanks below. To verify that your answers are correct, look in your textbook at the end of Chapter 7. Each of the sentences below appears

More information

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents Alkenes Dr. Munther A. M-Ali For 1 st Stage Setudents Alkenes Family of hydrocarbons, the alkenes, which contain less hydrogen, carbon for carbon, than the alkanes Structure of ethylene, The carbon-carbon

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

8. What is the slow, rate-determining step, in the acidcatalyzed dehydration of 2-methyl-2-propanol?

8. What is the slow, rate-determining step, in the acidcatalyzed dehydration of 2-methyl-2-propanol? CHEMISTRY 313-03 MIDTERM # 2 answer key October 25, 2011 Statistics: Average: 68 pts (68%); Highest: 100 pts (100%); Lowest: 30 pts (30%) Number of students performing at or above average: 56 (54%) Number

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Unit 5: Organic Chemistry

Unit 5: Organic Chemistry Unit 5: Organic Chemistry Organic chemistry: discipline in chemistry focussing strictly on the study of hydrocarbons compounds made up of carbon & hydrogen Organic compounds can contain other elements

More information

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Skills: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H s, relate peak splitting to

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Chapter 17: Alcohols and Phenols

Chapter 17: Alcohols and Phenols hapter 17: Alcohols and Phenols sp 3 alcohol phenol (aromatic alcohol) pka~ 16-18 pka~ 10 Alcohols contain an group connected to a saturated carbon (sp 3 ) Phenols contain an group connected to a carbon

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Hydrocarbons. Chapter 22-23

Hydrocarbons. Chapter 22-23 Chapter 22-23 Hydrocarbons Organic Compounds All Carbon containing compounds Except carbon oxides, carbides, and carbonates which are inorganic. CO & CO2 Na4C CaCO3 +8 oxidation change CH 4 + O 2 CO 2

More information

CHEMISTRY Statistics: 74 pts (74%) 94 pts (94%) 34 pts (34%) 26 (55%) 5 (11%)

CHEMISTRY Statistics: 74 pts (74%) 94 pts (94%) 34 pts (34%) 26 (55%) 5 (11%) CEMISTRY 314-01 MITERM # 1 answer key bruary 06, 2007 Statistics: Average: 74 pts (74%) ighest: 94 pts (94%) Lowest: 34 pts (34%) Number of students performing at or above average: 26 (55%) Number of students

More information

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87 HYDROCARBONS 1. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reactions? Explain. 2. Alkynes on reduction with sodium in liquid ammonia

More information

CH320/328 M Spring 2014

CH320/328 M Spring 2014 CH320/328 M Spring 2014 HW Set #3 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

Q.1 Draw out suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds 2814 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out suitable structures which fit the molecular formula

More information