CH 611 Advanced Inorganic Chemistry Synthesis and Analysis. Exam #3 12/12/2011. Print Name

Size: px
Start display at page:

Download "CH 611 Advanced Inorganic Chemistry Synthesis and Analysis. Exam #3 12/12/2011. Print Name"

Transcription

1 Print Name Wherever possible give further details of each transformation or catalytic cycle by describing the steric/electronic nature of reagent and/or substrate including bonding schematics to illustrate any specific point you would like to get across. 1(a) A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency (10 points) A catalyst may be defined by its Turnover Number (TN). Each time the complete catalyst cycle occurs, we consider one catalytic turnover to have been completed. The more stable the catalyst the greater the turnover number the more product is formed. The lifetime of the catalyst before deactivation or decomposition is therefore quantified using the turnover number. The catalytic rate, i.e. efficiency, can be conveniently given in terms of the Turnover Frequency (TOF) measured in turnovers per unit time (often per hour). The greater the turnover frequency the more efficient the catalyst is the quicker the product is formed. It should be noted that efficiency does not necessarily equal stability. The best catalysts will of course be highly stable and kinetically favorable. Some catalysts, however, work extremely fast but will decompose after just a few cycles (high turnover frequency + low turnover number). On the other hand, some catalysts are extremely stable but very slow (high turnover number + low turnover frequency). 1

2 1(b) Draw a generic catalytic cycle scheme including the species listed below (10 points). Catalyst precursor (M ) Active catalyst (M) Substrate (S) Catalyst-substrate complex (M-S) Transition state (M-T) Intermediate (M-I) Off loop species (M-S ) Deactivation product (M ) 2

3 1(c) Using the species listed in 1(b), draw a generic free energy diagram describing transformation of substrate to product (10 points). Describe the impact of a catalyst on the overall reaction kinetics, thermodynamics and equilibrium. Energy A catalysts typically reduces the activation energy required along the reaction coordinate (transition state and intermediate formation) thus allowing for more favorable kinetics towards product formation. The catalyst only increases the rate of a process but does not alter its position of equilibrium, which is decided by the relative thermodynamic stabilities of substrate and products (not the transition states or intermediates along the reaction coordinate). 3

4 2(a) Name each of the following reactions accordingly and suggest anticipated products (15 points) PCy 3 Cross metathesis (self metathesis side reaction) Ring opening metathesis polymerization (ROMP) Eneyne ring closing metathesis 4

5 2(b) Draw a complete catalytic cycle for any 1 of the reactions in 2(a) (15 points). PCy 3 -PCy 3 propogation product (cross metathesis) initiation product cis-isomer C 2 C 2 trans-isomer C 2 C C C 2 C C 2 L 3 C C C 2 C 2 C 2 C C 2 5

6 PCy 3 PCy3 excess n 6

7 = Katz mechanism L n M L n M Trost mechanism oxidative addition reductive elimination isomerization MLn 7

8 3. Name the class of reaction below and draw a catalytic cycle to describe product formation (10 points). This is a hydroformylation reaction. binuclear oxidative addition, 2 O - C 3 reductive elimination n-butanal addition ( association) O C 3 oxidative addition 2-2 1,2-insertion O - addition& 1,1'-insertion 8

9 4(a). Name each of the following reactions accordingly and suggest anticipated products (15 points). Negishi coupling Stille coupling Suzuki-Miyura coupling Sonogashira coupling Pd(P 3 ) 4 Br NEt 3 CuI Buchwald-artwig coupling 9

10 4(b). Draw a complete catalytic cycle for the second reaction from 4(a) (15 pionts). 10

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Basics of Catalysis and Kinetics

Basics of Catalysis and Kinetics Basics of Catalysis and Kinetics Nobel laureates in catalysis: Haber (1918) Ziegler and Natta (1963) Wilkinson, Fischer (1973) Knowles, Noyori, Sharpless (2001) Grubbs, Schrock, Chauvin (2006) Ertl (2007)

More information

You may write your answers in the space provided and/or on additional pages.

You may write your answers in the space provided and/or on additional pages. Name: 1 CHEM 633: Advanced rganic Chemistry: Physical Midterm 2 Please answer the following questions clearly and concisely. You may write your answers in the space provided and/or on additional pages.

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016 Chapter 18 covers leaving groups that are directly attached to double-bonded sp 2 carbons. These molecules don t do most of the regular alkyl halide chemistry from Ch. 9 (S N1/ S N2/E1), but they can do

More information

CHEM 344 Final Quiz Fall pts. Name: TA Name:

CHEM 344 Final Quiz Fall pts. Name: TA Name: CHEM 344 Final Quiz Fall 2013 100 pts Name: TA Name: 1 CHEM 344 Final Quiz Fall 2013 100 pts 1) A multi-step synthesis of the NSAID ibuprofen is shown below. a) Fill in the boxes with the appropriate reagent(s)

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals Table Of Contents: Foreword v Preface vii List of abbreviations ix Chapter 1 Introduction 1 (15) 1.1 What is

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

CHEM 344 Organometallic Chemistry Practice Problems (not for credit)

CHEM 344 Organometallic Chemistry Practice Problems (not for credit) CHEM 344 Organometallic Chemistry Practice Problems (not for credit) Name (print): TA name (print): 1) Careful choice of solvent is essential for the successful generation and reaction of a Grignard reagent.

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 5 Alkene: Introduction Thermodynamics and Kinetics Midterm 2... Grades will be posted on Tuesday, Feb. 27 th.

More information

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation rganometallic Study Meeting Chapter 17. Catalytic Carbonylation 17.1 verview C or 3 3 C 3 C C 3 horrcat. Ar-X or alkene ' d cat. 2011/10/6 K.isaki or ' or N n 2 1 alkene, 2 Coorhcat. d cat. alkene C carbon

More information

CHEMISTRY 112A FALL 2014 FINAL EXAM DECEMBER 17, 2014 NAME- WRITE BIG STUDENT ID: SECTION AND/OR GSI IF YOU ARE IN THE LABORATORY COURSE:

CHEMISTRY 112A FALL 2014 FINAL EXAM DECEMBER 17, 2014 NAME- WRITE BIG STUDENT ID: SECTION AND/OR GSI IF YOU ARE IN THE LABORATORY COURSE: CEMISTRY 112A FALL 2014 FINAL EXAM DECEMBER 17, 2014 NAME- WRITE BIG STUDENT ID: SECTIN AND/R GSI IF YU ARE IN TE LABRATRY CURSE: You will have 2 hours 50 minutes in which to work. BE NEAT! Non-legible

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Elimination Reactions. Chapter 6 1

Elimination Reactions. Chapter 6 1 Elimination Reactions Chapter 6 1 E1 Mechanism Step 1: halide ion leaves, forming a carbocation. Step 2: Base abstracts H + from adjacent carbon forming the double bond. Chapter 6 2 E1 Energy Diagram E1:

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting Reductive Elimination from igh-valent Palladium Kazunori agao MacMillan Group eting Why do people focus on rging with C activation Facile reductive elimination DG C palladacycle oxidant complex C etero

More information

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 1. When N 2 O 5 (g) decomposes as shown below at a fixed temperature, the rate of formation of NO 2 is 3.7 10 3 M/s. 2 N 2 O 5

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine?

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? A B C D C 4 + Cl C 3 + Cl C 3 + Cl C 3 Cl + C 3 + Cl 2 C 3 Cl + Cl C 3 Cl + Cl C 2 Cl + Cl (Total 1

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Objectives In this Lecture you will learn to do the following Define what is an elementary reaction.

More information

Definitions and Concepts

Definitions and Concepts 2 Definitions and Concepts It is important that precise and unambiguous terms be used when dealing with rates of reaction and reaction modeling of a chemical system. Many of the definitions provided here

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

from long chain and a trialcohol called.

from long chain and a trialcohol called. Chemistry 1304 Name (please print) Exam 6 (105 points) May 2, 2018 n my honor, I have neither given nor received unauthorized aid on this exam. Signed Date 1. (6 points) A triglyceride has functional groups

More information

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #3 Alkenes and Alkynes. Structure, Synthesis and Reactions. Friday, November 17, 2000, 9:00-9:50 Name: Question 1. Alkenes

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Pearson Edexcel GCE Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Friday 26 May 2017 Morning Time: 1 hour

More information

Lecture 12. Complications and how to solve them

Lecture 12. Complications and how to solve them Lecture 12 Complications and how to solve them 1. Pseudo Order An expression for second order reaction 2A Products Can be written as, -da/dt = k [A] 2 And the integration, 1/A 2 da = kdt 1/A t 1/A o =

More information

ummary Manipulating Radicals

ummary Manipulating Radicals Manipulating Radicals ummary Modern catalysis research tries to address issues such as material scarcity, sustainability or process costs. One solution is to replace expensive and scarce noble metal catalysts

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. INTRODUCTION TO ORGANIC AND BIOCHEMISTRY QUIZ 5 Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the IUPAC name

More information

Organic Chemistry is the chemistry of compounds containing.

Organic Chemistry is the chemistry of compounds containing. Chapter 21 Lecture Notes Organic Chemistry Intro Organic Chemistry is the chemistry of compounds containing. The Bonding of Carbon Because carbon has four valence electrons, it can form covalent bonds.

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *2865542814* CHEMISTRY 9701/22 Paper 2 AS Level Structured Questions October/November 2017 1 hour 15

More information

CHEM 203. Topics Discussed on Oct. 16

CHEM 203. Topics Discussed on Oct. 16 EM 203 Topics Discussed on Oct. 16 ydrogenation (= saturation) of olefins in the presence of finely divided transition metal catalysts (Ni, Pd, Pt, Rh, Ru...): generic alkene R 1 finely divided Pd (or

More information

Sample Question Solutions for the Chemistry of Life Topic Test

Sample Question Solutions for the Chemistry of Life Topic Test Sample Question Solutions for the Chemistry of Life Topic Test 1. Enzymes play a crucial role in biology by serving as biological catalysts, increasing the rates of biochemical reactions by decreasing

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

C h a p t e r N i n e: Addition Reactions of Alkenes

C h a p t e r N i n e: Addition Reactions of Alkenes C h a p t e r N i n e: Addition Reactions of Alkenes. H C 2 H Biosynthesis of a prostaglandin from arachidonic acid: intermediate intramolecular radical addition CHM 321: Summary of Important Concepts

More information

Introduction to Chemical Kinetics. Chemical Kinetics

Introduction to Chemical Kinetics. Chemical Kinetics Introduction to Chemical Kinetics CHEM 102 T. Hughbanks Chemical Kinetics Reaction rates How fast? Reaction mechanisms How? Answers to these questions depend on the path taken from reactants to products.

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Just Chemistry Department Organic Chemistry 217

Just Chemistry Department Organic Chemistry 217 Part 2 Just Chemistry Department Organic Chemistry 217 Chapter 3 Alkenes And Alkynes كيمياء عضوية ك 217 د. حسين المغيض Dr. Hussein Al-Mughaid Direct hydration: Addition of H 2 O (Acid-catalyzed hydration)

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Pearson Edexcel GE entre Number hemistry Advanced Subsidiary Unit 1: The ore Principles of hemistry andidate Number Friday 26 May 2017 Morning Time: 1 hour 30 minutes

More information

SHOW ALL WORK TOTAL POINTS ON EXAM: 150

SHOW ALL WORK TOTAL POINTS ON EXAM: 150 CEM 2 FINAL EXAMINATION FALL 02 NAME DATE: INSTRUCTOR (circle): Voloshchuk Zhang SOW ALL WORK TOTAL POINTS ON EXAM: 150 USE CORRECT UNITS AND SIGNIFICANT DIGITS YOU MAY SOW YOUR WORK ON TE BACK OF TE SEET,

More information

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR St. Olaf College Northfield, Minnesota Contents PREFACE xiii 1 INTRODUCTION TO INORGANIC CHEMISTRY 1 1-1 What Is Inorganic Chemistry? 1 1-2 Contrasts

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

FINAL EXAM Organic Chemistry Chemistry 225b; 9 A.M., Friday, May 9, NAME (print): Section Day: Section Time:

FINAL EXAM Organic Chemistry Chemistry 225b; 9 A.M., Friday, May 9, NAME (print): Section Day: Section Time: FINAL EXAM Organic Chemistry Chemistry 225b; 9 A.M., Friday, May 9, 2008 NAME (print): TA: Section Day: Section Time: Take a few moments to look over the exam. Do problems first with which you are most

More information

Hour Examination # 1

Hour Examination # 1 CEM 347 rganic Chemistry II Spring 2015 Exam # 1 Solutions Key Page 1 of 11 CEM 347 rganic Chemistry II Spring 2015 Instructor: Paul Bracher our Examination # 1 Wednesday, February 11 th, 2015 6:00 8:00

More information

The carbon-carbon double bond is the distinguishing feature of alkenes.

The carbon-carbon double bond is the distinguishing feature of alkenes. Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

CHEMISTRY Scientific Inquiry

CHEMISTRY Scientific Inquiry Chemistry Overview The standards for chemistry establish scientific inquiry skills and core content for all chemistry courses in South Carolina schools. In chemistry, students acquire a fundamental knowledge

More information

Supporting Information. Ab initio Based Kinetic Modeling for the Design of Molecular Catalysts: the Case of H 2 Production Electrocatalysts

Supporting Information. Ab initio Based Kinetic Modeling for the Design of Molecular Catalysts: the Case of H 2 Production Electrocatalysts Supporting Information Ab initio Based Kinetic Modeling for the Design of Molecular Catalysts: the Case of H 2 Production Electrocatalysts Ming-Hsun Ho, Roger Rousseau, John A. S. Roberts, Eric S. Wiedner,

More information

Chem 112A: Final Exam

Chem 112A: Final Exam Chem 112A: Final Exam December 15th, 2010 Please provide all answers in the spaces provided. You are not allowed to use a calculator for this exam, but you may use molecular model kits. nly cyclohexane

More information

Organometallic Rections 1: Reactions at the Metal

Organometallic Rections 1: Reactions at the Metal E Organometallic Rections 1: Reactions at the Metal Three major classes of reactions: 1 Ligand Substitution associative (cf. S N 2) dissociative (cf. S N 1) interchange (not dealt with in this course)

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. It is possible that in the next several decades we may have to shift toward other carbon

More information

Deactivation Pathways in Transition Metal Catalysis

Deactivation Pathways in Transition Metal Catalysis Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? decomposition active for catalysis inactive for catalysis "One of the reasons for [the] limited understanding [of catalyst

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

CHEM 203. Final Exam December 16, This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 16, This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 16, 2014 Your name: This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4.

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Chemistry Assessment Unit AS 2

Chemistry Assessment Unit AS 2 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2009 Chemistry Assessment Unit AS 2 assessing Module 2: Organic, Physical and Inorganic Chemistry ASC21

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level. Published

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level. Published Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 970/4 Paper 4 A Level Structured Questions October/November 06 MARK SCHEME Maximum Mark: 00

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k.

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k. EXAM I REVIEW KEY Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 1. Given the following reaction: CF 4 + H 2 CHF 3 + HF a. Express the rate law in terms of m, n, and k. Rate

More information

CHEM1902/ N-9 November 2014

CHEM1902/ N-9 November 2014 CEM1902/4 2014-N-9 November 2014 The elimination of 2 O from alcohol A can form the isomeric alkenes B and C. Elimination of Br from the alkyl halide D can generate the same two alkenes. 7 Assign the absolute

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2016 Final Exam This exam is closed note, closed book. Please answer the following questions clearly and concisely. In general, use pictures and less

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

CHAPTER 23 HW: ENOLS + ENOLATES

CHAPTER 23 HW: ENOLS + ENOLATES CAPTER 23 W: ENLS + ENLATES KET-ENL TAUTMERSM 1. Draw the curved arrow mechanism to show the interconversion of the keto and enol form in either trace acid or base. trace - 2 trace 3 + 2 + E1 2 c. trace

More information

the following equilibrium constants. Label the thermodynamic and kinetic regions.

the following equilibrium constants. Label the thermodynamic and kinetic regions. REACTION RATES 1. Distinguish between kinetic and thermodynamic regions of a reaction. 2. How does an increase in pressure affect the rate of a gas-phase reaction? What effect on the rate would doubling

More information

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions Page III-12-1 / Chapter Twelve Lecture Notes Chemical Kinetics: The Rates of Chemical Reactions Chapter 12 Chemistry 222 Professor Michael Russell Shroud of Turin Shroud of Jesus?!? Fake or Real? Explored

More information

CHEM120 - ORGANIC CHEMISTRY WORKSHEET 1

CHEM120 - ORGANIC CHEMISTRY WORKSHEET 1 EM120 - RGANI EMISTRY WRKSEET 1 Some of the objectives To understand and know the hybridization concept Be able to distinguish different geometries, including basic bond lengths and angles within organic

More information

Insertion and elimination. Peter H.M. Budzelaar

Insertion and elimination. Peter H.M. Budzelaar Peter H.. Budzelaar Insertion reactions If at a metal centre you have a) a σ-bound group (hydride, alkyl, aryl) b) a ligand containing a π-system (olefin, alkyne, C) the σ-bound group can migrate to the

More information

Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination

Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination Chapter 8 Outline: Alkenes: Structure and Preparation via β-elimination 1. What is β elimination? 2. Alkenes: structure, steroisomerism and stability 3. Elimination Reactions o E2 Mechanism o E1 Mechanism

More information

CHEM 102 Winter 10 Exam 2(a)

CHEM 102 Winter 10 Exam 2(a) CHEM 102 Winter 10 Exam 2(a) On the answer sheet (scantron) write your Name, Student ID Number, and Recitation Section Number. Choose the best (most correct) answer for each question AND ENTER IT ON YOUR

More information

F322: Chains, Energy and Resources Basic Concepts

F322: Chains, Energy and Resources Basic Concepts F322: hains, Energy and Resources Basic oncepts 1. Some of the hydrocarbons in kerosene have the formula 10 22. (i) What is the name of the straight chain hydrocarbon with the formula 10 22? (ii) Draw

More information

The lifetime of the catalyst, and therefore its stability, are measured in terms of its TN.

The lifetime of the catalyst, and therefore its stability, are measured in terms of its TN. A catalyst may be defined by its Turnover Number (TN). Each time the complete catalyst cycle occurs, we consider one catalytic turnover to have been completed (one mole of product formed per mole of catalyst).

More information

Name: CHEM 633/634 Problem Set 1: Review Due Tues, Aug 29, 2017 (First Lecture!)

Name: CHEM 633/634 Problem Set 1: Review Due Tues, Aug 29, 2017 (First Lecture!) ame: CEM 633/634 Problem Set 1: Review Due Tues, Aug 29, 2017 (First Lecture!) Please print this problem set. Answers must be in the spaces or boxes provided to receive full credit. You may work in groups,

More information

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

Q1. The following pairs of compounds can be distinguished by simple test tube reactions.

Q1. The following pairs of compounds can be distinguished by simple test tube reactions. Q1. The following pairs of compounds can be distinguished by simple test tube reactions. For each pair of compounds, give a reagent (or combination of reagents) that, when added separately to each compound,

More information

Experiment 10: Molecular Models

Experiment 10: Molecular Models B hemistry 162 Laboratory Manual Name Section Experiment 10: Molecular Models Modeling the shape of small organic molecules Previously we have considered molecules and ions for which one chemical formula

More information

Page (Extra space) (4) Benzene can be converted into amine U by the two-step synthesis shown below.

Page (Extra space) (4) Benzene can be converted into amine U by the two-step synthesis shown below. Q1. The hydrocarbons benzene and cyclohexene are both unsaturated compounds. Benzene normally undergoes substitution reactions, but cyclohexene normally undergoes addition reactions. (a) The molecule cyclohexatriene

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Examination #1 Bonding, Alkanes, Alkenes & Alkynes Thursday, September 12, 2013, 8:00 8:50 am Question 1. Atomic Structure

More information

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers Advanced Higher Chemistry Unit 2 - Chemical Reactions KINETICS Learning Outcomes Questions & Answers KHS Chemistry Dec 2006 page 1 6. KINETICS 2.128 The rate of a chemical reaction normally depends on

More information