Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Large-scale Synthesis of Carbon Shell-coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst Dong Young Chung,,,# Samuel Woojoo Jun,,,# Gabin Yoon,,,# Hyunjoong Kim,, Ji Mun Yoo,, Kug-Seung Lee, Δ Taehyun Kim,, Heejong Shin,, Arun Kumar Sinha,, Soon Gu Kwon, *,, Kisuk Kang, *,, Taeghwan Hyeon, *,, and Yung-Eun Sung, *,, Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea. School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea. Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, South Korea. Δ Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea. Corresponding Author s: S1

2 Figure S1. TEM image of iron oxide nanoparticles (NPs) deposited on to the carbon support. Figure S2. XRD data of iron oxide, intermediate state (heat treatment at 250 o C) and FeP (heat treatment at 400 o C). S2

3 Figure S3. HR-TEM images of FeP nanoparticles with thin (~0.7 nm, left) and thick (~2 nm, right) carbon shell. Figure S4. Nitrogen 1s XPS data for FeP/C with and without the carbon shell. The peak at around ev indicates the presence of N-doped carbon. S3

4 Table S1. Performance of various catalysts for hydrogen evolution reaction in 0.5 M H2SO4. Catalyst Loading (mg cm -2 ) Overpotential (@ 10 ma cm -2 ) Tafel slope (mv decade -1 ) Reference* FeP NA/Ti (13) Ni 2P nanoparticles (12) Cu 3P NW/CF S1 MoC x S2 Ni 5P 4-Ni 2P nanosheet S3 FeP/Ti (14) CoNi@C (31) Fe 0.9Co 0.15S 2/CNT S4 CoMoS S5 CoPS NPIs (38) CoP/Ti 0.9/2 95/85** 50 S6 CoP nanowires (20) Fe 0.5Co 0.5P nanowires (21) Carbon shell-coated FeP/C Current study * Numbers in parentheses refer the reference in the main text. ** Overpotential at current density of 20 ma cm -2. S4

5 Preparation of 4 nm-sized carbon shell-coated FeP NPs By applying the polydopamine coating and heat treatment procedures to 4 nm-sized iron oxide NPs, carbon shell-coated FeP NPs of the same size are successfully obtained (Figures S5a-d). XRD data show that the NPs contain a trace amount of metallic iron and iron phosphate (Figure S5e), being different from 7.6 nm sample which is almost pure FeP (Figure S2). Overpotential at 10 ma cm -2 is 87 mv for 4 nm NPs and 71 mv for 7.6 nm ones (Figure S5f). When iron oxide NPs as small as 2 nm are subjected to the same procedures, they simply dissolve away in the dopamine solution at ph 8.5 during the coating procedure. These observations from 4 nm and 2 nm samples can be explained as follow. Due to Gibbs-Thomson effect, the chemical potential of a spherical NP with radius r increases proportional to 1/r. As a result, too small NPs ( 2 nm) are thermodynamically unstable to withstand the alkaline condition. For the same reason, 4 nm-sized FeP NPs are unstable so that they tend to form FeP-O bonding at the surface in order to lower the surface free energy, even with the carbon shell protection. This tendency in turn increases their overpotential due to the negative effect of surface oxidation to the activity (see Figures 4a and 4b). Such low catalytic activity of small NPs due to intrinsic instability is a general phenomenon. For example, it is known that the activity of Pt NPs for oxygen reduction reaction rapidly decreases as they become smaller than ~ 2 nm, due to strong oxygen binding at the surface. S7,S8 Figure S5. (a-d) TEM images of polydopamine-coated 4 nm NPs before (a, b) and after the heat treatment (c, d). (e) XRD data of the 4 nm NPs before and after the heat treatment. The peaks indicated with arrows correspond to iron phosphate (1) and metallic iron (2), respectively. (f) Polarization curves for 4 nm and 7.6 nm FeP/C with carbon shell. S5

6 Figure S6. Chronopotentiometry results of FeP NPs with and without carbon shell. The measurement was done at current density of -10 ma cm -2. Figure S7. EELS line scan analysis after 5000 cycles for FeP/C with carbon shell (a) and without carbon shell (b). Blue, red, and green lines correspond to P, Fe, and O, respectively. S6

7 Computational Details All calculations were performed using Vienna ab initio simulation package (VASP) S9 in density functional theory (DFT) framework. Exchange-correlation energies were corrected with revised Perdew-Burke- Ernzerhof (RPBE) S10 spin-polarized generalized gradient approximation (GGA). S11 Van der Waals interaction was included in all calculations by DFT-D3 scheme. S12 We used the projected-augmented wave (PAW) pseudopotentials, S13,S14 with plane-wave basis sets as implemented in VASP. An energy cutoff for plane wave basis sets was set to 800 ev to ensure the convergence of calculated systems. All geometric relaxations were repeatedly performed in order that the residual force in the system converges below 0.05 ev/å. For investigating the H adsorption energy in FeP and partially oxidized FeP (FeP-O), a slab model composed of ten layers of (011) surface FeP S15 and a vacuum slab of ~15 Å was adopted as shown in Figure S6. FeP-O model was generated by substituting a single layer of phosphorus to oxygen. Since P- terminated surface was calculated to be more stable than Fe-terminated one, we modeled the slab system with P-termination. Top surface layer was allowed to relax, whereas other layers were fixed to mimic the bulk properties. Hydrogen adsorption energy was calculated as the Gibbs free energy difference between the reaction product and reactant, which is hydrogen-adsorbed FeP system and pristine FeP plus hydrogen gas, respectively. DFT energy of hydrogen adsorption EE HH is defined as EE HH = EE ssssssssssssssssss+hh EE ssssssssssssssssss 1 2 EE HH 2 where EE ssssssssssssssssss+hh is DFT energy of hydrogen-adsorbed substrate, EE ssssssssssssssssss is DFT energy of pristine substrate and EE HH2 is DFT energy of gas phase hydrogen. Since the hydrogen adsorption reaction includes the gas phase in its equation, the entropy and zero-point energy (ZPE) contributions could not be neglected in describing EE HH at room temperature. Therefore, Gibbs free energy of hydrogen adsorption GG HH is defined as GG HH = EE HH + ZZZZZZ TT SS where ZZZZZZ is the zero-point energy difference between the hydrogen-adsorbed substrate and gas phase hydrogen and SS is the entropy difference between the hydrogen-adsorbed substrate and gas phase. ZZZZZZ was obtained by the calculation of the Hessian matrix and the vibrational frequencies as implemented in VASP. Since the energy contribution from the configurational and vibrational entropy in the hydrogen-adsorbed substrate could be neglected, S16 SS was determined by considering the standard entropy of hydrogen gas. The inclusion of the entropy and ZPE contributions results in the following relation: S7

8 GG HH = EE HH ev Since four surface P sites are exposed in the unit cell, there are four different states of hydrogen-adsorbed FeP; hydrogen coverages of 25%, 50%, 75% and 100%. For instance, GG HH at 25% coverage indicates the energy required for covering 25% of the FeP surface to hydrogen from pristine FeP. Identical methods were used for FeP-O model system as well. Figure S8. Slab models of (a) FeP (b) FeP-O used in this work, consisting of (011) surface of FeP with a vacuum slab of ~15 Å S8

9 Figure S9. HER data of carbon shell-coated FeP/C prepared via large scale (Portion 1-5) and typical small scale synthesis (Standard). Portions 1-5 were sampled from the product and tested separately in order to confirm that the large scale product is homogeneous in terms of catalytic property. For the curves of Portions 1-5, overpotential at 10 ma cm -2 is distributed in the range from 70 mv to 73 mv, which is close to that of Standard curve at 71 mv. S9

10 Preparation of carbon shell-coated cobalt phosphide NPs In order to test the applicability of our method to the other transition metal NPs, we applied polydopamine coating and phosphidation procedures to cobalt NPs that were synthesized following the procedure in ref. S17. In the polydopamine coating procedure, the shape of the NPs is changed from solid sphere to hollow shell structure (Figures S10a, b). This can be attributed to the Kirkendall effect that occurs during oxidation of metallic cobalt to Co3O4 in alkaline aqueous solution (Figure S10e). S17 According to XRD data, during the phosphidation, Co3O4 NPs were transformed to mixed phase of Co2P and CoP at first, and then CoP became dominant in the final product. TEM data confirm that the NPs were well confined inside the carbon shell and hollow shell structure is turned back to solid sphere after the phosphidation (Figures S10c, d). This result demonstrates that our method can be extended to other metal and metal oxide NPs provided that they are stable under weak alkaline condition. Figure S10. (a-d) TEM images of carbon-loaded Co3O4 NPs after polydopamine coating (a, b) and cobalt phosphide NPs after phosphidation (c, d). (e) XRD data of the carbon shell-coated NPs before and after phosphidation. S10

11 References S1. Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2014, 53, S2. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Nat. Commun. 2015, 6, S3. Wang, X.; Kolen'Ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. Angew. Chem. Int. Ed. 2015, 54, S4. Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; Wang, Y. L.; Hwang, B. J.; Chen, C. C.; Dai, H. J. Am. Chem. Soc. 2015, 137, S5. Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. Adv. Mater. 2016, 28, S6. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Ed. 2014, 53, S7. Shao, M.; Peles, A.; Shoemaker, K. Nano Lett. 2011, 11, S8. Perez-Alonso, F. J.; McCarthy, D. N.; Nierhoff, A.; Hernandez-Fernandez, P.; Strebel, C.; Stephens, I. E. L.; Nielsen, J. H.; Chorkendorff, I. Angew. Chem. Int. Ed. 2012, 51, S9. Kresse, G. J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15. S10. Hammer, B.; Hansen, L. B.; Nørskov, J. K. P Phys. Rev. B 1999, 59, S11. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, S12. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, S13. Blöchl, P. E.; Phys. Rev. B 1994, 50, S14. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, S15. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Energy Environ. Sci. 2015, 8, S16. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, S17. Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. Adv. Funct. Mater. 2006, 16, S11

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Molybdenum compound MoP as an efficient electrocatalyst for hydrogen evolution

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Supporting Information Self-Supported Nickel Phosphosulphide Nanosheets

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Structural Effect on the Oxygen Evolution Reaction in the Electrochemical Catalyst FePt

Structural Effect on the Oxygen Evolution Reaction in the Electrochemical Catalyst FePt New Physics: Sae Mulli, Vol. 65, No. 9, September 2015, pp. 878 882 DOI: 10.3938/NPSM.65.878 Structural Effect on the Oxygen Evolution Reaction in the Electrochemical Catalyst FePt Wonseok Jeong Gijae

More information

Supporting Information

Supporting Information Supporting Information Nest-like NiCoP for Highly Efficient Overall Water Splitting Cheng Du, a Lan Yang, a Fulin Yang, a Gongzhen Cheng a and Wei Luo a,b* a College of Chemistry and Molecular Sciences,

More information

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts Jin-Xian Feng, Si-Yao Tong, Ye-Xiang Tong, and Gao-Ren Li

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic supplementary information Self-Supported Three-Dimensional Mesoporous Semimetallic

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of 100-800 nm and lengths up to several tens of micrometers with flexible,

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information for: A Highly Efficient Electrocatalyst Based on

More information

Corporation. Ti mesh was provided by Hongshan District, Wuhan Instrument Surgical

Corporation. Ti mesh was provided by Hongshan District, Wuhan Instrument Surgical Supporting Information Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All ph Values Tingting Liu, Xiao Ma, Danni Liu, Shuai Hao,

More information

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium Supporting Information One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium Afriyanti Sumboja, a Tao An, a Hai Yang Goh, b Mechthild Lübke,

More information

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT Supporting Information Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity Minhua Shao,, * Amra Peles,, * Krista Shoemaker UTC Power, South Windsor, CT

More information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction Supporting Information Electronic Modulation of Electrocatalytically Active Center of Cu 7 S 4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction Qun Li, Xianfu Wang*, Kai Tang,

More information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI

More information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting Supporting Information for Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting Zhengfei Dai,,, Hongbo Geng,,, Jiong Wang, Yubo Luo, Bing Li, ǁ Yun Zong, ǁ Jun Yang, Yuanyuan

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information N-Carbon coated P-W 2 C composite as Efficient Electrocatalyst

More information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst Supporting Information Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction Mingjie Zang, [a] Ning Xu, [a] Guoxuan Cao, [a] Zhengjun Chen, [a] Jie Cui, [b]

More information

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries Supplementary Information [100] directed Cu-doped h-coo Nanorods: Elucidation of Growth Mechanism and Application to Lithium-Ion Batteries Ki Min Nam, Young Cheol Choi, Sung Chul Jung, Yong-Il Kim, Mi

More information

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D.

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D. Supporting Information The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang,

More information

Transition Metal Dopants in Hydrogen Evolution Reaction

Transition Metal Dopants in Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information for Electrocatalytic Performance of Ultrasmall Mo 2 C Affected by Different

More information

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes Supporting Information for Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-dependent Oxidation of Pt 3 Co Nanoparticles via in-situ Transmission Electron Microscopy Sheng

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three-dimensional amorphous tungsten-doped

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Facile preparation of NH 2 -functionalized

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information Graphene oxide supported cobalt phosphide nanorods designed

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Supporting Information for

Supporting Information for Supporting Information for Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites Lu Wang *,,, Hai Xiao, Tao Cheng, Youyong Li *,, William A. Goddard III

More information

Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts

Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts Minhua Shao, *, Krista Shoemaker, Amra Peles, Keiichi Kaneko #, Lesia Protsailo UTC Power, South Windsor,

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Construction of Two Dimensional Chiral Networks

Construction of Two Dimensional Chiral Networks Supporting Information Construction of Two Dimensional Chiral Networks through Atomic Bromine on Surfaces Jianchen Lu, De-Liang Bao, Huanli Dong, Kai Qian, Shuai Zhang, Jie Liu, Yanfang Zhang, Xiao Lin

More information

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Supporting Information Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Yanpeng Li 1,2 *, Yifei Yu 2, Robert A. Nielsen 3, William

More information

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Supporting Information Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Teng Wang, Yanru Guo, Zhenxing Zhou, Xinghua Chang, Jie Zheng *,

More information

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Boosting the hydrogen evolution

More information

Supplementary Information for

Supplementary Information for Supplementary Information for One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst Kan Li,,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Hierarchical CoP/Ni 5 P 4 /CoP microsheet arrays as

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Construction of hierarchical Ni-Co-P

More information

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties (Supporting information) Kezhen Qi, a Jiaqin Yang, a Jiaqi Fu, a Guichang

More information

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Three-Dimensional Carbon Foam/N-doped

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT ASSOCIATED CONTENT Supporting Information Gold Cluster-CeO 2 Nanostructured Hybrid Architectures as Catalysts for Selective Oxidation of Inert Hydrocarbons Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/325/5948/1670/dc1 Supporting Online Material for Coordinatively Unsaturated Al 3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-al 2 O 3 Ja Hun

More information

Supplementary Figure 1 SEM image for the bulk LCO.

Supplementary Figure 1 SEM image for the bulk LCO. Supplementary Figure 1 SEM image for the bulk LCO. S1 Supplementary Figure 2 TEM and HRTEM images of LCO nanoparticles. (a)-(c) TEM, HRTEM images, and SAED pattern for the 60 nm LCO, respectively. (d)-(f)

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Supporting Information Pomegranate-Like N, P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Yu-Yun Chen,,,# Yun Zhang,,# Wen-Jie Jiang,, Xing Zhang,, Zhihui

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. X-ray diffraction patterns of (a) pure LDH, (b) AuCl 4 ion-exchanged LDH and (c) the Au/LDH hybrid catalyst. The refined cell parameters for pure, ion-exchanged,

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Xuxu Wang, ab Zhaolin Na, a Dongming Yin, a Chunli Wang, ab Yaoming Wu, a Gang

More information

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond Zhijun Zuo, a Pedro J. Ramírez, b Sanjaya Senanayake, a Ping Liu c,* and José

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Supporting Information: Surface Polarons Reducing Overpotentials in. the Oxygen Evolution Reaction

Supporting Information: Surface Polarons Reducing Overpotentials in. the Oxygen Evolution Reaction Supporting Information: Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction Patrick Gono Julia Wiktor Francesco Ambrosio and Alfredo Pasquarello Chaire de Simulation à l Echelle Atomique

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis and electrochemical properties of spherical and hollow-structured

More information

Supporting information

Supporting information a Supporting information Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron- Embedded Porous Carbons Derived from Metal Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and

More information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Supporting Information Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Wei Tian a, Han Hu b, Yixian Wang a, Peng Li c, Jingyan

More information

Electronic Supplementary Information:

Electronic Supplementary Information: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information: Platinum-Nickel Nanowire Catalysts

More information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets Supporting Information Available ot Electron of Au Nanorods Activates the Electrocatalysis of ydrogen Evolution on MoS Nanosheets Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan

More information

Molybdenum diboride nanoparticles as highly efficient electrocatalyst for the hydrogen evolution reaction. Supporting Information

Molybdenum diboride nanoparticles as highly efficient electrocatalyst for the hydrogen evolution reaction. Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Molybdenum diboride nanoparticles as highly efficient electrocatalyst for the

More information

Supporting Information

Supporting Information Supporting Information Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries Tingting Yu, Qiang Li, Xiangyu Zhao,*,, Hui Xia, Liqun Ma, Jinlan Wang,

More information

Supporting Information

Supporting Information Supporting Information A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO 3 and BaNi 0.83 O 2.5 Jin Goo Lee, 1 Jeemin Hwang, 1 Ho Jung Hwang, 2 Ok Sung Jeon, 1

More information

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Andrew A. Peterson 1,3, Jens K. Nørskov 1,2 SUNCAT Center for Interface Science and Catalysis,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Pyrite FeS 2 for High-rate and Long-life Rechargeable

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation

Supporting Information: Selective Electrochemical Generation of. Hydrogen Peroxide from Water Oxidation Supporting Information: Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation Venkatasubramanian Viswanathan,,, Heine A. Hansen,, and Jens K. Nørskov,, Department of Mechanical

More information

for Magnesium-Ion Batteries

for Magnesium-Ion Batteries [Supporting Information] Cointercalation of Mg 2+ Ions into Graphite for Magnesium-Ion Batteries Dong Min Kim, Sung Chul Jung, Seongmin Ha, Youngjin Kim, Yuwon Park, Ji Heon Ryu ǂ, Young Kyu Han*,, Kyu

More information

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph.

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Supplementary Materials Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Tao Cheng,, Lu Wang, Boris V Merinov, and William

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Supporting Information Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Xin Xiao, Dekang Huang, Yongqing Fu, Ming Wen, Xingxing Jiang, Xiaowei Lv, Man Li, Lin Gao,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Synthesis, Characterizations and Hydrogen. Evolution Reaction Studies. Supporting Information

Synthesis, Characterizations and Hydrogen. Evolution Reaction Studies. Supporting Information MoSe 2 Nanosheets and Their Graphene Hybrids: Synthesis, Characterizations and Hydrogen Evolution Reaction Studies. Hao Tang a, Kunpeng Dou b, Chao-Cheng Kaun b, Qing Kuang a, Shihe Yang a * a Department

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Fig. S1 XRD patterns of a-nifeo x

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst

Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst Supporting information for: Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst Nikolay Kornienko 1, Joaquin Resasco 2, Nigel Becknell 1, Chang-Ming Jiang

More information

Unexpected effects of Zr-doping in the high performance sodium manganese-based layer-tunnel cathode

Unexpected effects of Zr-doping in the high performance sodium manganese-based layer-tunnel cathode Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Unexpected effects of Zr-doping in

More information

CO Adsorption Site Preference on Platinum: Charge Is the Essence

CO Adsorption Site Preference on Platinum: Charge Is the Essence Supporting Information CO Adsorption Site Preference on Platinum: Charge Is the Essence G.T. Kasun Kalhara Gunasooriya, and Mark Saeys *, Laboratory for Chemical Technology, Ghent University, Technologiepark

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Pt-like catalytic behavior of MoNi

More information

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Yan Chen, 1,2,,$, * Shengxi Huang, 3,6, Xiang Ji, 2 Kiran Adepalli, 2 Kedi Yin, 8 Xi Ling, 3,9 Xinwei

More information

Doped Sites at Basal-Planes

Doped Sites at Basal-Planes SUPPORTING INFORMATION Nitrogen-Doped Graphene for High Performance Ultracapacitors and the Importance of Nitrogen- Doped Sites at Basal-Planes Hyung Mo Jeong, Jung Woo Lee, Weon Ho Shin, Yoon Jeong Choi,

More information

Supporting Information

Supporting Information Supporting Information A Porous Two-Dimensional Monolayer Metal-Organic Framework Material and its Use for the Size-Selective Separation of Nanoparticles Yi Jiang, 1 Gyeong Hee Ryu, 1, 3 Se Hun Joo, 4

More information

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations Zhu Feng( ), Dong Shan( ), and Cheng Gang( ) State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors,

More information

Supporting Information

Supporting Information Supporting Information The Origin of Active Oxygen in a Ternary CuO x /Co 3 O 4 -CeO Catalyst for CO Oxidation Zhigang Liu, *, Zili Wu, *, Xihong Peng, ++ Andrew Binder, Songhai Chai, Sheng Dai *,, School

More information

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40%

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40% Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Support Information Chemicals: Potassium borohydride (KBH 4 ), sodium oxalate (NaC 2 O 4

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Ultrasmall tungsten phosphide nanoparticles

More information

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information: Thickness-tunable Core-shell Co@Pt Nanoparticles

More information

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Supporting Information MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Nanoparticles: Low Pt Contents and Robust Activity towards Electrocatalytic Oxygen Reduction Reaction Li-Li Ling,

More information