SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 A sustainable catalytic pyrrole synthesis Stefan Michlik, 1 Rhett Kempe* 1 1 Lehrstuhl Anorganische Chemie II, Universität Bayreuth, Bayreuth, Germany *To whom correspondence should be addressed. kempe@uni-bayreuth.de Contents General Considerations... 2 Screening Reactions... 2 Ligand and Complex Syntheses... 7 Reaction of 1-Phenylethanol with various Amino Alcohols Reaction of 2-Amino-3-phenyl-propan-1-ol with various Secondary Alcohols Reaction of 2-Amino-3-phenyl-propan-1-ol with various Cyclic Alcohols Reaction of Hexane-2,5-diol with various Amino Alcohols to Symmetric and Unsymmetric Bipyrroles Syntheses of -protected Amino Alcohols and their Conversion with 2-Amino-3-phenyl-propan-1-ol Mechanistic Studies Crystal Structure of [(4-Ph)Tr(P( i Pr) 2 )(HP( i Pr) 2 )Ir(cod)] (Catalyst II) Crystal Structure of [(4-Ph)Tr(HP(iPr) 2 )IrH 3 ] (catalyst resting state) MR-Data ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

2 General Considerations All reactions were carried out in a dry argon or nitrogen atmosphere using standard Schlenk techniques or glove box techniques. Halogenated solvents were dried over P 2 O 5, and nonhalogenated solvents were dried over sodium benzophenone ketyl. Deuterated solvents were ordered from Cambridge Isotope Laboratories, vented, stored over molecular sieves and distilled. All chemicals were purchased from commercial sources with purity with over 97% and used without further purification. MR spectra were received using an IOVA 400 and 300 MHz spectrometer at 298 K or a BRUKER 300 MHz spectrometer at 300 K. Chemical shifts are reported in ppm relative to the deuterated solvent. Elemental analyses were carried out on a Vario elementar EL III. GC analyses were carried out on an Agilent 6890 etwork GC system equipped with a HP-5 column (30 m x 0.32 µm x 0.25 µm). GC/MS analyses were carried out on a Thermo Focus GC/Trace DSQ system equipped with a HP-5MS column (30 m x 0.32 µm x 0.25 µm). X-ray crystal structure analyses were performed with a STOE-IPDS II equipped with an Oxford Cryostream low-temperature unit. Screening Reactions General screening procedure: In a pressure tube catalyst, solvent, secondary alcohol, amino alcohol and base were combined. The pressure tube was closed with a Teflon cap or a semipermeable membrane and stirred for 24 h. The reaction mixture was cooled to room temperature and quenched by addition of 2 ml of water. Dodecane as internal standard was added and after shaking, a small fraction of the organic phase was analysed by GC. The following reaction was investigated. Supplementary Figure S1. Screening reaction of 1-phenylethanol with 2-amino-1-butanol ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

3 Supplementary Table S1. Base Screening Base Yield [%] KO t Bu 55 KOH 32 K(SiMe 3 ) 2 0 KOSiMe 3 0 K 3 PO 4 4 KH 47 K 2 CO 3 0 KOAc 0 ao t Bu 37 ah 2 25 aoac 0 a 2 CO 3 0 LiH 0 Li t Bu 12 Mg(O(C 2 H 5 )) 2 0 Reaction conditions: 1.0 eq. 1-phenylethanol (120 µl), 1.1 eq. 2-amino-1-butanol (104 µl), 1.1 eq. base, 3.0 ml THF, 1 mol% catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S2. Solvent Screening Solvent Yield [%] THF 55 DME 54 toluene 41 hexane 49 DMSO 0 diglyme 45 dioxane 48 Reaction conditions: 1.0 eq. 1-phenylethanol (120 µl), 1.1 eq. 2-amino-1-butanol (104 µl), 1.1 eq. KO t Bu, 3.0 ml solvent, 1 mol% catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S3. Amount of KO t Bu Base Amount According to Secondary Alcohol [eq.] Yield [%] without base 0 Reaction conditions: 1.0 eq. 1-phenylethanol (120 µl), 1.1 eq. 2-amino-1-butanol (104 µl), 3.0 ml solvent, KO t Bu, 1 mol% catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S4. Alcohol Ratio Amino Alcohol /Secondary Alcohol [eq.] Yield [%] 3.0 / / ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

4 1.1 / / / / / / Reaction conditions: 1.1 mmol KO t Bu, 3.0 ml THF, 1 mol% catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S5. Solvent Amount Solvent Amount [ml] Yield [%] Reaction conditions: 2.0 eq. 1-phenylethanol (240 µl), 1.0 eq. 2-amino-1-butanol (96 µl) 1.1eq. KO t Bu, 1 mol% catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S6. Temperature Screening Temperature [ C] Oil Bath Yield [%] Reaction conditions: 2.0 eq. 1-phenylethanol (240 µl), 1.0 eq. 2-amino-1-butanol (96 µl) 1.1 eq. KO t Bu, 1 mol% catalyst I, 24 h (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. Supplementary Table S7. Catalyst Loading Cat. Loading [mol%] Yield [%] Reaction conditions: 2.0 eq. 1-phenylethanol (240 µl), 1.0 eq. 2-amino-1-butanol (96 µl) 1,1eq. KO t Bu, catalyst I, 24 h, 110 C (reaction tubes closed with Teflon caps). Yields determined by GC analyses with dodecane as internal standard. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

5 Supplementary Table S8. Iridium Catalyst Screening Catalyst Yield [%] I 10 II 63 III 33 IV 54 V [IrOMe(cod)] 2 2 VI [IrCl(cod)] 2 3 Reaction conditions: 2.0 eq. 1-phenylethanol (2.4 ml), 1.0 eq. 2-amino-1-butanol (0.96 ml) 1.1eq. KO t Bu (1.24 g), 0.01 mol% catalyst ( 1.0 ml, M in THF), 10.0 ml THF, 24 h, 90 C (reaction tubes closed with a semipermeable membrane, for more details please see Supplementary Figure S2, next page). Yields determined by GC analyses with dodecane as internal standard. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

6 Supplementary Figure S2: Reaction flask with a semi-permeable membrane as used for the pyrrole syntheses. A silicone tube (Rotilabo ) inner diameter 7 mm, outer diameter 10 mm and 30 cm length was used as membrane. A maximum reaction temperature of 90 C was determined inside the reaction flask due to a pressure increase (1 bar overpressure) caused by the membrane. There are a few reasons for using the semi-permeable membrane. 1. low boiling substrates and 2. low boiling solvents which essentially means more solvent flexibility. Low boiling solvents are especially attractive in the work-up procedures since the solvent can be removed easily (also in the presence of products with rather low boiling points). Furthermore, a rather high throughput can be accomplished. One can easily run 60 flasks in a parallel fashion in a rather small fume hood. As a minor drawback the semi-permeable membrane means essentially adding a short rubber tube on top of the reaction flask. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

7 Ligand and Complex Syntheses Supplementary Figure S3: Ligand and complex syntheses Synthesis of PyHP(iPr) 2 2-Aminopyridine (20.0 mmol, 1.88 g) was dissolved in 100 ml THF and triethylamine (20.0 mmol, 2.8 ml) was added and the solution was cooled to 0 C. Then chlorodiisopropylphosphine (20.0 mmol, 3.2 ml) was added drop wise with a syringe. The solution was allowed to warm to room temperature and stirred over night at 50 C. The suspension was filtered over a glass filter frit with a pad of celite (4 cm) and washed with 50 ml of THF. The solvent was concentrated in vacuo to 10 ml and left to crystallize at -20 C. The supernatant solution was decanted and the solid washed with 5 ml of cold hexane and subsequently dried in vacuo yielding PyHP(iPr) 2 as a colorless solid (19.2 mmol = 96%). 1 H MR (400 MHz, C 6 D 6, 298 K): δ = 8.18 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), (m, 1H), 7.10 (ddd, J = 8.5, 7.2, 1.7 Hz, 1H), 6.37 (ddd, J = 7.3, 7.1, 0.9 Hz, 1H), 4.86 (d, J = 10.6 Hz, 1H), (m, 2H), (m, 12H) ppm. 13 C MR (100 MHz, C 6 D 6, 298 K): δ = (d, J = 20.0 Hz), (d, J = 1.2 Hz), (d, J = 2.3 Hz), 114.5, (d, J = 18.6 Hz), 26.5 (d, J = 11.6 Hz), 18.7 (d, J = 20.4 Hz), 17.1 (d, J = 8.0 Hz) ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = ppm. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

8 Synthesis of [(PyP(iPr) 2 )Ir(cod)] (Cat. I) PyHP(iPr) 2 (2.0 mmol, 420 mg) was dissolved in 20 ml THF, cooled to -30 C and n-buli (2.0 mmol, 1.6 M, 1.25 ml) was added drop wise with a syringe. The reaction mixture was stirred at -30 C for 30 min and was then allowed to warm to room temperature and stirred for 1h. Then the reaction mixture was added to a solution of [IrCl(cod)] 2 (1.0 mmol, 671 mg) (with a flexible tube). The reaction mixture was stirred for 30 min at room temperature before the solvent was removed in vacuo. The residue was suspended in diethyl ether and filtered over a glass filter frit with a pad of celite (1 cm) and washed with 10 ml of cold diethyl ether. Solvent was removed in vacuo and the residue was recrystallized from hexane affording dark red crystals (1.6 mmol, 80%). 1 H MR (400 MHz, C 6 D 6, 298 K): δ = 7.30 (d, J = 8.8 Hz, 1H), 7.20 (d, J = 6.4 Hz, 1H), (m, 1H), 5.65 (t, J = 6.4 Hz, 1H), (m, 2H), (m, 2H), (m, 4H), (m, 4H), (m, 2H), 1.23 (dd, J = 13.9, 7.0 Hz, 6H), 1.07 (dd, J = 13.9, 7.0 Hz, 6H) ppm. 13 C MR (100 MHz, C 6 D 6, 298 K): δ = (d, J = 2.9 Hz), (d, J = 2.5 Hz), (d, J = 22.5 Hz,) 105.9, 88.3 (d, J = 11.3 Hz), 56.14, 34.4, (d, J = 2.3 Hz), 29.2 (d, J = 1.6 Hz), (d, J = 38.9 Hz), 17.9 (d, J = 3.5 Hz), 17.5 ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = ppm. elemental analysis calcd (%) for C 27 H 32 Ir 2 P: C 44.78, H 5.93, 5.50; found: C 44.77, H 5.68, Synthesis of (4-Ph)Tr(HP(iPr) 2 ) 2 Benzoguanamine (30.0 mmol, 5.61 g) was dissolved in 150 ml THF and triethylamine (40.0 mmol, 2.8 ml) was added and the solution was cooled to 0 C. Then chlorodiisopropylphosphine (60.0 mmol, 9.6 ml) was added drop wise with a syringe. The ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

9 solution was allowed to warm to room temperature and stirred over night at 50 C. The suspension was filtered over a glass filter frit with a pad of celite (4 cm) and washed with 50 ml of THF. The solvent was concentrated in vacuo, recrystallized in toluene yielding (4- Ph)Tr(HP(iPr) 2 ) 2 as colorless crystals (12.06 g = 28.8 mmol = 96%). 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 5.25 (s_br, 2H), (m, 4H), (m, 24H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 171.7, (d, J = 12.7 Hz), 137.4, 132.0, 128.9, 128.8, 26.8 (d, J = 14.4 Hz), 19.2 (d, J = 21.0 Hz), 18.0 (d, J = 9.3 Hz) ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = 52.69, ppm. 31 P MR (161 MHz, C 6 D 6, 353 K): δ = ppm. elemental analysis: for C 21 H 35 5 P 2 : C 60.13, H 8.41, 16.70; found: C 60.12, H 8.13, Synthesis of [(4-Ph)Tr(P(iPr) 2 )(HP(iPr) 2 )Ir(cod)] (Cat. II) [IrOMe(cod)] 2 (2.0 mmol, 1.32g) was dissolved in 40 ml THF and subsequently a solution of (4-Ph)Tr(HP(iPr) 2 ) 2 (4.0 mmol, 1.67 g) dissolved in THF was added drop wise. A red solution was obtained. The solution was stirred over night at 50 C. The solvent was removed in vacuo, yielding a deep red solid in quantitative yield. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 6.06 (s_br, 1H), (m, 2H), 3.89 (s_br, 2H), (m, 10H), (m, 2H), (m, 24H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = (t, J = 2.2 Hz), 137.9, 131.6, 130.7, 129.1, 128.7, 55.0, 37.0 (t, J = 3.3 Hz), 32.5, 28.5 (s_br), 18.0 (s_br), 16.9 ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = 83.34, ppm. elemental analysis (%) for C 29 H 46 Ir 5 P 2 calcd: C 48.45, H 6.45, 9.74; found: C 48.77, H 6.44, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

10 Synthesis of Py(HP(iPr) 2 ) 2 2,6-Diaminopyridine (30.0 mmol, 3.24 g) was dissolved in 150 ml THF and triethylamine (40.0 mmol, 2.8 ml) was added and the solution was cooled to 0 C. Then chlorodiisopropylphosphine (60.0 mmol, 9.6 ml) was added drop wise with a syringe. The solution was allowed to warm to room temperature and stirred over night at 50 C. The suspension was filtered over a glass filter frit with a pad of celite (4 cm) and washed with 50 ml of THF. The solvent was concentrated in vacuo, recrystallized in hexane yielding Py(HP(iPr) 2 ) 2 as colorless crystals (6.14g = 18.0 mmol = 60%). 1 H MR (400 MHz, C 6 D 6 ): δ = 7.20 (t, J = 7.9 Hz, 1H), 6.72 (dd, J = 7.9, 1.8 Hz, 2H), 4.48 (d, J = 9.6 Hz, 2H), (m, 4H), (m, 24 H) ppm. 13 C MR (75 MHz, CD 2 Cl 2, 298 K): δ = 159,6 (d, J = 20.5 Hz), 140.1, 98.6 (d, J = 18.2Hz), 26.9 (d, J = 11.6 Hz), 19.0 (d, J = 19.9 Hz), 17.4 (d, J = 8.3 Hz) ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = 52.40, ppm. 31 P MR (161 MHz, C 6 D 6, 353 K): δ = ppm. Synthesis of [Py(P(iPr) 2 )(HP(iPr) 2 )Ir(cod)] (Cat. III) [IrOMe(cod)] 2 (1.0 mmol, 662 mg) was dissolved in 20 ml THF and subsequently a solution of Py(HP(iPr) 2 ) 2 (2.0 mmol, 682 mg) dissolved in THF was added drop wise. A red solution was obtained. The solution was stirred over night at 50 C. The solvent was removed in vacuo, yielding a deep red solid in quantitative yield. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 6.87 (tt, J = 7.9, 1.6 Hz, 1H), 5.77 (s_br, 2H), 5.64 (t, J = 4.1 Hz, 2 H), 4.84 (s_br, 1H), (m, 2 H), (m, 2H), (m, 4H), (m, 6H), (m, 2 H), (m, 24 H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 138.7(t, J = 2.2 Hz), 130.8, 51.9, 37.2 (t, J = 3.9 Hz), 32.5, 30.0 (t, J = 16.5 Hz), 18.2( t, J = 2.2 Hz), 16.8 ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = ppm. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

11 elemental analysis (%) for C 25 H 44 Ir 3 P 2 calcd: C 46.86, H 6.92, 6.56; found: C 46.98, H 6.89, Synthesis of (4-Me)Tr(HP(iPr) 2 ) 2 6-Methyl-[1,3,5]triazine-2,4-diamine (30.0 mmol, 3.75 g) was dissolved in 150 ml THF and triethylamine (40.0 mmol, 2.8 ml) was added and the solution was cooled to 0 C. Then chlorodiisopropylphosphine (60.0 mmol, 9.6 ml) was added drop wise with a syringe. The solution was allowed to warm to room temperature and stirred over night at 50 C. The suspension was filtered over a glass filter frit with a pad of celite (4 cm) and washed with 50 ml of THF. The solvent was concentrated in vacuo, recrystallized in toluene yielding (4- Me)Tr(HP(iPr) 2 ) 2 as white crystals (12.06g = 28.8 mmol = 96%). 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 5.11 (s_br, 2H), 2.23 (s, 3H), (m, 4H), (m, 24H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 176.3, (d, J = 13.2 Hz), 46.2, 26.6 (d, J = 14.4 Hz), 19.0 (d, J = 21.0 Hz), 17.9 (d, J = 8.9 Hz) ppm. elemental analysis (%) for C 16 H 33 5 P 2 calcd: C 53.77, H 9.31, 19.59; found: C 53.75, H 9.51, P MR (161 MHz, C 6 D 6, 298 K): δ = 52.13, ppm. 31 P MR (161 MHz, C 6 D 6, 353 K): δ = ppm. Synthesis of [(4-Me)Tr(P(iPr) 2 )(HP(iPr) 2 )Ir(cod)] (Cat. IV) [IrOMe(cod)] 2 (0.5 mmol, 332 mg) was dissolved in 40 ml THF and subsequently a solution of (4-Me)Tr(HP(iPr) 2 ) 2 (1.0 mmol, 357 mg) dissolved in THF was added drop wise. A red solution was obtained. The solution was stirred over night at 50 C. The solvent was removed in vacuo, yielding a deep red solid in quantitative yield. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

12 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 6.87 (tt, J = 7.9, 1.6 Hz, 1H), 5.77 (s_br, 2H), 5.64 (t, J = 4.1 Hz, 2 H), 4.84 (s_br, 1H), (m, 2 H), (m, 2H), (m, 4H), (m, 6H), (m, 2 H), (m, 24 H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 138.7, 130.8, 51.9, 37.2 (t, J = 3.9 Hz), 32.5, 30.0 (t, J = 16.5 Hz), 18.2( t, J = 2.2 Hz), 16.8 ppm. elemental analysis (%) for C 24 H 44 Ir 5 P 2 calcd: C 43.89, H 6.75, 10.66; found: C 43.86, H 6.52, P MR (161 MHz, C 6 D 6, 298 K): δ = 84.54, ppm. Reaction of 1-Phenylethanol with various Amino Alcohols Supplementary Table S9: Reaction of 1-phenylethanol with various amino alcohols OH + HO R = aryl, alkyl R H 2 Cat. II 1.1 eq. KO t Bu, 24h, 90 C H R [mol% Cat. II] Product Yield [a] 1a % 1b % 1c % 1d % 1e % ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

13 1f % 1g % 1h % [a] Isolated yield 1a: 2-methyl-5-phenyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-propan-1-ol (797 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 10:1 pentane : Et 2 O; Yield: 1.26 g = 8.0 mmol = 80% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.24 (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), 2.32 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 133.5, 131.0, 129.7, 129.4, 126.1, 123.6, 108.4, 106.7, 13.4 ppm. MS (70 ev, EI); m/z (%): 157 (65, M + ), 156 (100), 104 (2), 77 (5). elemental analysis (%) for C 11 H 11 calcd C 84.04, H 7.05, 8.91; found: C H b: 2-ethyl-5-phenyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1- phenylethanol (2.4 ml, 20.0 mmol), 2-amino-butan-1-ol (960 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 pentane: Et 2 O; Yield: 1.59 g = 9.3 mmol = 93% as colorless solid. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

14 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.23 (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), 2.68 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 136.3, 133.6, 130.8, 129.4, 126.1, 123.7, 106.7, 21.5, 14.1 ppm. MS (70 ev, EI); m/z (%): 171 (38, M + ), 156 (100), 128 (8), 115 (6), 77 (5). elemental analysis (%) for C 12 H 13 calcd: C 84.17, H 7.65, 8.18; found: C 84.33, H 7.69, c: 3-(5-phenyl-1H-pyrrol-2-ylmethyl)-1H-indole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-3-(1H-indol-3-yl)-propan-1-ol (1.90 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 10:1 pentane : Et 2 O;Yield: 1.76 g = 6.5 mmol = 65% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.24 (s_br, 1H), 8.16 (s_br, 1H), (m, 1H), (m, 3H), (m, 2H), (m, 4H), (m, 1H), (m, 1H), 4.16 (s, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 137.1, 133.5, 133.3, 131.2, 129.3, 127.8, 126.1, 123.7, 123.0, 122.7, 120.0, 119.3, 114.1, 111.7, 108.2, 106.6, 24.5 ppm. MS (70 ev, EI); m/z (%): 272 (100, M + ), 270 (10), 167 (10), 136 (10), 117 (38), 77 (8). elemental analysis (%) for C 19 H 16 2 calcd: C 83.79, H 5.92, 10.29; found: C 83.62, H 5.98, d: 2-isopropyl-5-phenyl-1H-pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), 1- phenylethanol (2.4 ml, 20.0 mmol), 2-amino-3-methyl-butan-1-ol (1.03 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 100:1 30:1 pentane : Et 2 O; Yield: 1.64 g = 8.9 mmol = 89% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.23 (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), 1.30 (d, J = 6.7 Hz, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.0, 133.6, 130.7, 129.4, 126.1, 123.8, 106.4, 105.5, 27.8, 23.1 ppm. MS (70 ev, EI); m/z (%): 185 (28, M + ), 170 (100), 153 (5), 115 (8), 77 (5). ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

15 elemental analysis (%) for C 13 H 15 calcd: C 84.28, H 8.16, 7.56; found: C 84.46, H 8.23, e: 2-sec-butyl-5-phenyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-3-methyl-pentan-1-ol (1.17 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 30:1 pentane : Et 2 O; Yield: 1.84 g = 7.9 mmol = 79% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 2H), (m, 3H), (m, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 139.9, 133.6, 130.5, 129.3, 126.1, 123.7, 106.4, 106.2, 35.0, 30.8, 20.5, 12.2 ppm. MS (70 ev, EI); m/z (%): 199 (22, M + ), 184 (8), 170 (100), 168 (10), 115 (6), 77 (5). elemental analysis (%) for C 14 H 17 calcd C 84.37, H 8.60, 7.03; found: C 84.66, H 8.89, f: 2-isobutyl-5-phenyl-1H-pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-4-methyl-pentan-1-ol (1.28 ml, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 20:1 pentane : Et 2 O; Yield: 1.39 g = 6.9 mmol = 69% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.19 (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), 2.50 (d, J = 7.0 Hz), (m, 1H), 0.96 (d, J = 6.7 Hz, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 133.9, 133.6, 130.7, 129.4, 126.0, 123.6, 108.5, 106.6, 37.8, 29.8, 22.7 ppm. MS (70 ev, EI); m/z (%): 199 (18, M + ), 156 (100), 115 (5), 77 (5). elemental analysis (%) for C 14 H 17 calcd C 84.37, H 8.60, 7.03; found: C 84.46, H 8.50, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

16 1g: 2,5-diphenyl-1H-pyrrole: Cat. II (2.0 ml, 0.02 mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-2-phenyl-ethanol (1.37 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 10:1 5:1 hexane : Et 2 O; Yield: 1.88 g = 8.6 mmol = 86% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.72 (s_br, 1H), (m, 4H), (m, 4H), (m, 2H), 6.59 (d, J = 2.6 Hz, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 133.0, 129.5, 127.3, 127.0, 124.2, ppm. MS (70 ev, EI); m/z (%): 219 (100, M + ), 216 (14), 114 (24), 109 (12), 77 (4). elemental analysis (%) for C 16 H 13 calcd: C 87.64, H 5.98, 6.39; found: C H h: 2-benzyl-5-phenyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 5:1 pentane : Et 2 O; Yield: 1.84 g = 7.9 mmol = 79% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.18 (s_br, 1H), (m, 2H), (m, 4H), (m, 3H), (m, 1H), (m, 1H), (m, 1H), 4.02 (s, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.2, 133.4, 132.9, 129.3, 129.2, 129.1, 127.0, 126.3, 123.8, 109.0, 106.6, 34.7 ppm. MS (70 ev, EI); m/z (%): 233 (84, M + ), 156 (100), 128 (15), 115 (8), 77 (6). elemental analysis (%) for C 17 H 15 calcd: C 87.52, H 6.48, 6.00; found: C 87.62, H 6.21, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

17 Reaction of 2-Amino-3-phenyl-propan-1-ol with various Secondary Alcohols Supplementary Table S10. Reaction of 2-amino-3-phenyl-propan-1-ol with various secondary alcohols OH HO + Cat. II R H 1.1 eq. KO t H 2 Bu, 24h, 90 C R = aryl, alkyl R [mol% Cat. II] Product Yield [a] 1i % 1j % 1k % 1l % 1m % 1n % 1o % ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

18 1p % 1q % 1r % 1s % 1t % 1u % 1v % [a] Isolated yield ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

19 1i: 2-benzyl-5-methyl-1H-pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), propan-2-ol (3.06 ml, 40.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 20:1 pentane : Et 2 O; Yield: 1.43 g = 8.4 mmol = 85% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.59 (s_br, 1H), (m, 2H), (m, 3H), 5.79 (t, J = 2.9 Hz, 1H), (m, 1H), 3.90(s, 2H), 2.18 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 129.8, 129.0, 127.4, 126.8, 106.9, 106.2, 34.7, 13.2 ppm. MS (70 ev, EI); m/z (%): 171 (100, M + ), 156 (72), 154 (18), 128 (8), 94 (100), 77 (8). elemental analysis (%) for C 12 H 13 calcd: C 84.17, H 7.65, 8.18; found: C 84.20, H 7.86, j: 2-benzyl-5-butyl-1H-pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), hexan-2-ol (2.52 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 30:1 pentane : Et 2 O; Yield: 1.62 g = 7.6 mmol = 76% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.61 (s_br, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), 3.92 (s, 2H), (m, 2H), (m, 2H), (m, 2H), 0.92 (t, J = 7.3 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 132.7, 129.5, 129.1, 129.0, 126.7, 106.8, 105.2, 34.7, 32.5, 27.9, 23.0, 14.2 ppm. MS (70 ev, EI); m/z (%): 213 (60, M + ), 198 (20), 184 (100), 170 (35), 155 (10), 128 (6), 84 (4), 77 (6). elemental analysis (%) for C 15 H 19 calcd: C 84.46, H 8.98, 6.57; found: C H k: 2-benzyl-5-hexyl-1H-pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), octan-2-ol (3.1 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 10:1 pentane : Et 2 O; Yield: 2.34 g = 9.7 mmol = 97% as colorless oil. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

20 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.60 (s_br, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), 3.90 (s, 2H), (m, 2H), (m, 2H), (m, 6H), (m, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 132.8, 129.5, 129.1, 126.7, 107.5, 106.8, 105.2, 34.7, 32.2, 30.3, 29.6, 28.3, 23.2, 14.4 ppm. MS (70 ev, EI); m/z (%): 241 (18, M + ), 170 (100), 167 (4), 93 (4), 91 (7), 80 (5). elemental analysis (%) for C 17 H 23 calcd: C 84.59, H 9.60, 5.80; found: C 84.28, H 9.86, l: 2-benzyl-5-nonyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), undecan-2-ol (4.16 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 40:1 pentane : Et 2 O; Yield: 2.09 g = 7.4 mmol = 74% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.60 (s_br, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), 3.91 (s, 2H), (m, 2H), (m, 2H), (m, 12H), (m, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 132.8, 129.5, 129.1, 129.0, 126.7, 106.7, 105.2, 34.7, 32.5, 30.4, 30.1, 30.0, 30.0, 29.9, 28.3, 23.3, 14.5 ppm. MS (70 ev, EI); m/z (%): 283 (21, M + ), 184 (8), 170 (100), 156 (3), 106 (4), 91 (8), 80 (4). elemental analysis (%) for C 20 H 29 calcd: C 84.75, H 10.31, 4.94; found: C 84.85, H 10.52, m: 2-benzyl-5-(4-methyl-pent-3-enyl)-1H-pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 6-methyl-hept-5-en-2-ol (3.04 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 70:1 40:1 pentane : Et 2 O; Yield: 1.84g = 7.7 mmol = 77% as colorless oil 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.64 (s_br, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), (m, 1H), 3.90 (s, 2H), 2.53 (t, J = 7.3 Hz, 2H), 2.23 (q, J = 7.3 Hz, 2H), 1.66 (d, J = 1.2 Hz, 3H), 1.54 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 133.0, 132.5, 129.7, 129.1, 129.0, 126.8, 124.4, 106.7, 105.4, 34.7, 28.9, 28.3, 26.0, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

21 17.9 ppm. MS (70 ev, EI); m/z (%): 239 (100, M + ), 224 (44), 184 (6), 170 (20), 148 (48), 133 (8), 94 (8), 91 (32). elemental analysis (%) for C 17 H 21 calcd: C 85.30, H 8.84, 5.85; found: C 85.65, H 9.13, n: 2-benzyl-5-isopropyl-1H-pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 3-methylbutan-2-ol (2.15 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 30:1 pentane : Et 2 O; Yield: 1.45 g = 7.3 mmol = 73% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.66 (s_br, 1H), (m, 2H), (m, 3H), (m, 2H), 3.93 (s, 2H), (m, 1H), 1.21 (d, J = 7.0 Hz, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 138.8, 129.5, 129.1, 129.0, 126.7, 106.6, 103.3, 34.7, 27.6, 23.1 ppm. MS (70 ev, EI); m/z (%): 199 (52, M + ), 184 (100), 106 (16), 91 (26). elemental analysis (%) for C 14 H 17 calcd: C 84.37, H 8.60, 7.03; found: C 84.16, H 8.29, o: 2-benzyl-5-(4-methoxy-phenyl)-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1-(4-methoxy-phenyl)-ethanol (2.82 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 5:1 pentane : Et 2 O; Yield: 2.22 g = 8.4 mmol = 84% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.07 (s_br, 1H), (m, 4H), (m, 3H), (m, 2H), , (m, 1H), (m, 1H), 4.00 (s, 2H), 3.79 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 158.6, 140.3, 132.1, 131.8, 129.1, 126.9, 126.4, 125.2, 114.7, 108.8, 105.4, 105.3, 55.8, 34.7 ppm. MS (70 ev, EI); m/z (%): 263 (100, M + ), 248 (31), 219 (5), 186 (38), 143 (10), 102 (8), 77 (6). ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

22 elemental analysis (%) for C 18 H 17 O calcd: C 82.10, H 6.51, 5.32; found: C 81.92, H 6.57, p: 2-benzyl-5-(4-chloro-phenyl)-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1-(4-chloro-phenyl)-ethanol (2.67 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 5:1 pentane : Et 2 O; Yield: 2.02 g = 7.5 mmol = 75% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.14 (s_br, 1H), (m, 9H), (m, 1H), (m, 1H), 4.01 (s, 1H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.0, 133.4, 131.9, 131.5, 130.6, 129.4, 129.2, 129.1, 127.0, 125.0, 109.2, 107.2, 34.7 ppm. MS (70 ev, EI); m/z (%): 267 (100, M + ), 230 (5), 192 (22), 190 (82), 154 (18), 127 (12), 101 (8), 77 (8). elemental analysis (%) for C 17 H 14 Cl calcd: C 76.26, H 5.27, 5.23; found: C 76.26, H 5.43, q: 2-benzyl-5-(4-bromo-phenyl)-1H-pyrrole: Cat. II (2.0 ml, 0.02 mmol, 0.01 M in THF), 1-(4-bromo-phenyl)-ethanol (4.0 g, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 30:1 5:1 pentane : Et 2 O; Yield: 2.35 g = 7.5 mmol = 75% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.15 (s_br, 1H), (m, 2H), (m, 7H), (m, 1H), (m, 1H), 4.00 (s, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.0, 133.5, 132.3, 130.6, 129.2, 129.1, 127.0, 125.3, 123.8, 119.5, 109.3, 107.3, 34.7 ppm. MS (70 ev, EI); m/z (%): 311 (100), 234 (95), 202 (10), 154 (77), 115 (27), 102 (22), 77 (17). elemental analysis (%) for C 17 H 14 Br calcd: C 65.40, H 4.52, 4.49; found C 65.54, H 4.60, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

23 1r: 2-benzyl-5-ferrocenyl-1H-pyrrole: Cat. II (2.0 ml, 0.02 mmol, 0.01 M in THF), 1- ferrocenyl-ethanol (4.6 g, 20.0 mmol) 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 20:1 pentane : Et 2 O; Yield: 2.67 g = 7.8 mmol = 78% deep red solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.84 (s_br, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), (m, 2H), (m, 2H), 4.02 (s, 5H), 3.98 (s_br, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.6, 130.8, 129.5, 129.1, 129.0, 126.9, 108.1, 105.7, 80.0, 69.7, 68.3, 65.5, 34.6 ppm. MS (70 ev, EI); m/z (%): 341 (100, M + ), 275 (18), 250 (27), 218 (9), 171 (9), 121 (12), 91 (5), 77 (3). elemental analysis (%) for C 21 H 19 Fe calcd: C 73.92, H 5.61, 4.10; found: C 74.19, H 5.77, s: 2-benzyl-5-furan-2-yl-1H-pyrrole: Cat. II (5.0 ml, 0.05 mmol, 0.01 M in THF), 1-furan-2- yl-ethanol (2.1 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 15:1 pentane : Et 2 O; Yield: 930 mg = 4.2 mmol = 42% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.25 (s_br, 1H), (m, 2H), (m, 3H), 6.43 (dd, J = 3.4, 1.9 Hz, 1H), (m, 1H), 6.30 (dd, J = 3.4, 0.7 Hz, 1H), (m, 1H), 4.00 (s, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.0, 140.6, 140.1, 132.3, 129.2, 129.1, 127.0, 123.8, 112.0, 108.6, 106.1, 102.1, 34.5 ppm. MS (70 ev, EI); m/z (%): 223 (100, M + ), 146 (100), 117 (7), 91 (14), 77 (6). elemental analysis (%) for C 15 H 13 O calcd: C 80.69, H 5.87, 6.27; found: C 80.60, H 5.94, 6.55 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

24 1t: 2-benzyl-5-thiophen-2-yl-1H-pyrrole: Cat. II (5.0 ml, 0.05 mmol, 0.01 M in THF), 1- thiophen-2-yl-ethanol (2.56 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 15:1 pentane : Et 2 O; Yield: 1.36 g = 5.7 mmol = 57% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.06 (s_br, 1H), (m, 2H), (m, 3H), 7.11 (dd, J = 5.1, 1.3 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), 3.99 (s, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.0, 137.0, 132.6, 129.2, 129.1, 128.1,127.0, 126.4, 122.7, 120.7, 108.9, 107.3, 34.6 ppm. MS (70 ev, EI); m/z (%): 239 (89, M + ), 204 (6), 162 (100), 102 (6), 91 (7). elemental analysis (%) for C 15 H 13 S calcd: C 75.28, H 5.47, 5.85; found: C 75.06, H 5.50, u: 4-(5-benzyl-1H-pyrrol-2-yl)-butan-2-ol: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), hexane-2,5-diol (2.36 g, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 10.0 mmol), 24 h at 90 C. Purification by column chromatography 2:1 1:1 pentane : Et 2 O; Yield: 1.60 g = 7.0 mmol = 70% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.95 (br_s, 1H), (m, 2H), (m, 3H), (m, 2H), 3.90 (s, 2H), (m, 1H), 2.61 (dt, J = 7.7, 2.5 Hz, 1H), (m, 2H), 1.59 (br_s, 1H), 1.18 (d, J = 6.4 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.9, 132.0, 129.9, 129.1, 129.0, 126.7, 106.7, 105.4, 68.1, 39.4, 34.7, 24.6, 24.0 ppm. MS (70 ev, EI); m/z (%): 229 (56, M + ), 184 (100), 170 (75), 156 (6), 128 (5), 106 (15), 91 (30), 80 (14), 65 (18). elemental analysis (%) for C 15 H 19 O calcd: C 78.56, H 8.35, 6.11; found: C 78.78, H 8.64, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

25 1v: 2,2-dimethyl-5-phenyl-2H-pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 1- phenylethanol (2.4 ml, 20.0 mmol), 2-amino-2-methyl-propan-1-ol (1.1 ml, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 2:1 pentane : Et 2 O; Yield: 0.94 g = 5.5 mmol = 55% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 7.41 (d, J = 5.0 Hz, 1H), 6.79 (d, J = 5.0 Hz, 1H), 1.38 (s, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 169.6, 153.0, 135.0, 130.6, 129.1, 128.1, 123.3, 80.0, 23.7 ppm. MS (70 ev, EI); m/z (%): 171 (81, M + ), 170 (100), 156 (37), 129 (12), 104 (18), 77 (12). elemental analysis (%) for C 12 H 13 calcd: C 84.17, H 7.65, 8.18; found: C 84.03, H 7.88, Reaction of 2-Amino-3-phenyl-propan-1-ol with various Cyclic Alcohols Supplementary Table S11: Reaction of 2-amino-3-phenyl-propan-1-ol with various secondary alcohols and cyclic alcohols [mol% Cat. II] Product Yield [a] 2a % 2b % 2c % 2d % 2e % ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

26 2f % 2g % 2h % 2i % 2j % 2k % 2l % [a] Isolated yield 2a: 5-benzyl-3-methyl-2-phenyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), 1- phenyl-propan-1-ol (2.74 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 20:1 hexane : Et 2 O; Yield: 1.55 g = 6.2 mmol = 63% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.86 (s_br, 1H), (m, 10H), 5.89 (d, J = 2.9 Hz, 1H), 3.97 (s, 2H), 2.23 (s,3h) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.3, 134.3, 131.3, 129.2, 129.1, 127.7, 127.0, 126.3, 126.0, 116.9, 111.3, 34.6, 12.9 ppm. MS (70 ev, EI); m/z (%): 247 (100, M + ), 232 (47), 170 (83), 128 (6), 115 (11), 77 (6) ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

27 elemental analysis (%) for C 18 H 17 calcd: C 87.41, H 6.93, 5.66; found: C 87.31, H 7.01, b: 5-benzyl-2-ethyl-3-methyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), pentan-3-ol (2.16 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 30:1 hexane : Et 2 O; Yield: 1.31 g = 6.6 mmol = 66% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.44 (s_br, 1H), (m, 2H), (m, 3H), 5.67 (d, J = 2.6 Hz, 1H), 3.87 (s, 2H), 2.50 (q, J = 7.6 Hz, 2H), 1.97 (s, 3H), 1.12 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 129.1, 129.0, 128.3, 126.7, 113.6, 108.8, 34.7, 19.4, 14.9, 11.0 ppm. MS (70 ev, EI); m/z (%): 199 (82, M + ), 184 (100), 169 (25), 107 (9), 91 (25), 77 (8). elemental analysis (%) for C 14 H 17 calcd: C 84.37, H 8.60, 7.03; found: C 84.18, H 8.74, c: 5-benzyl-2-butyl-3-propyl-1H-pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), nonan-5-ol (3.49 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 pentane : Et 2 O; Yield: 1.33 g = 5.2 mmol = 52% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.41 (s_br, 1H), (m, 2H), (m, 3H), 5.69 (d, J = 2.9 Hz, 1H), 3.88 (s, 2H), (m, 2H), (m, 2H), (m, 4H), (m, 2H), (m, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.0, 129.1, 129.0, 128.4, 127.9, 126.7, 119.7, 107.4, 34.7, 33.3, 28.6, 25.9, 25.3, 23.1, 14.5, 14.3 ppm. MS (70 ev, EI); m/z (%): 255 (31, M + ), 226 (9), 212 (100), 184 (12), 91 (16) ppm. elemental analysis (%) for C 18 H 25 calcd: C 84.65, H 9.87, 5.48; found: C 84.33, H 10.11, 5.29 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

28 2d: 2-(1H-indol-3-ylmethyl)- 1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (5.0 ml, 0.05 mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-3-(1H-indol-3-yl)- propan-1-ol (1.90 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 10:1 2:1 pentane : Et 2 O; Yield: 1.49 g = 5.6 mmol = 56 % as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.07 (s_br, 1H), (m, 1H), 7.46 (s_br, 1H), (m, 1H), (m, 1H), (m, 1H), (m, 1H), 5.74 (d, J = 2.9 Hz, 1H), 4.01 (s, 2H), (m, 4H), (m, 2H), (m, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 137.0, 129.3, 127.9, 127.0, 122.8, 122.5, 121.7, 119.8, 119.4, 114.8, 111.7, 108.2, 32.6, 30.1, 29.6, 29.0, 28.8, 24.0 ppm. MS (70 ev, EI); m/z (%): 264 (100, M + ), 263 (85), 235 (15), 221 (32), 148 (51), 130 (16), 116 (23), 104 (22), 90 (6), 77 (8). elemental analysis (%) for C 18 H 20 2 calcd: C 81.78, H 7.63, 10.60; found: C 82.12, H 7.95, H 2e: 2-methyl-1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-propan-1-ol (797 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 20:1 hexane : Et 2 O; Yield: 1.16 g = 7.8 mmol = 78% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.42 (s_br, 1H), 5.57 (d, J = 2.93 Hz, 1H), (m, 2H), (m, 2H), 2.16 (s, 3H), (m, 2H), (m, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 129.1, 123.3, 121.8, 108.5, 32.7, 30.2, 29.6, 28.9, 13.0 ppm. MS (70 ev, EI); m/z (%): 149 (88, M + ), 148 (100), 134 (15), 120 (40), 107 (32), 94 (30), 91 (11), 77 (8). elemental analysis (%) for C 10 H 15 calcd: C 80.48, H 10.13, 9.39; found: C 80.85, H 10.30, 9.65 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

29 2f: 2-ethyl-1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-butan-1-ol (960 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 20:1 pentane : Et 2 O; Yield: 1.44 g = 8.8 mmol = 88% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.45 (s_br, 1H), 5.58 (d, J = 2.9 Hz, 1H), (m, 2H), (m, 4H), (m, 2H), (m, 4H), 1.18 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 130.1, 128.9, 121.6, 106.9, 32.6, 30.2, 29.6, 29.0, 28.9, 21.2, 14.3 ppm. MS (70 ev, EI); m/z (%): 163 (50, M + ), 148 (100), 134 (26), 106 (10), 77 (8). elemental analysis (%) for C 11 H 17 calcd: C 80.93, H 10.50, 8.58; found: C 80.60, H 10.87, g: 2-isopropyl-1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-3-methyl-butan-1-ol (1.1 ml, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 40:1 pentane : Et 2 O; Yield: 1.49 g = 8.4 mmol = 84% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.47 (s_br, 1H), (d, J = 2.9 Hz, 1H), (m, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 4H), 1.20 (t, J = 6.7 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 134.8, 128.7, 121.3, 105.6, 32.6, 30.1, 29.6, 29.0, 28.9, 27.4, 23.2 ppm. MS (70 ev, EI); m/z (%): 177 (15, M + ), 162 (100), 106 (5), 77 (6). elemental analysis (%) for C 12 H 19 calcd: C 81.30, H 10.80, 7.90; found: C 81.40, H 11.14, h: 2-sec-butyl-1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (0.3 ml, mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-3-methyl-pentan-1-ol (1.17 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 40:1 pentane : Et 2 O; Yield: 1.52 g = 7.9 mmol = 79 % as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.43 (s_br, 1H), 5.57 (d, J = 2.9 Hz, 1H), (m, 2H), (m, 3H), (m, 2H), (m, 4H), (m, 2H), 1.17 (d, J = 6.7 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 133.7, 128.6, 121.2, 106.2, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

30 34.6, 32.6, 30.8, 30.1, 29.7, 29.1, 28.9, 20.5, 12.3 ppm. MS (70 ev, EI); m/z (%): 191 (10, M + ), 176 (7), 162 (100), 132 (4), 106 (3) 77 (2). elemental analysis (%) for C 13 H 21 calcd: C 81.61, H 11.06, 7.32; found: C 81.74, H 11.19, i: 2-benzyl-1,5,6,7,8,9-hexahydro-cyclohepta[b]pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), cycloheptanol (2.4 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 30:1 10:1 pentane : Et 2 O; Yield: 1.82 g = 8.0 mmol = 80% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.40 (s_br, 1H), (m, 2H), (m, 3H), 5.65 (d, J = 2.9 Hz, 1H), 3.84 (s, 2H), (m, 2H), (m, 2H), (m, 2H), (m, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.0, 129.9, 129.1, 129.0, 126.8, 126.7, 121.8, 108.9, 34.6, 32.6, 30.1, 29.6, 28.9, 28.8 ppm. MS (70 ev, EI); m/z (%): 225 (100, M + ), 196 (28), 148 (20), 134 (30), 91 (40), 77 (10). elemental analysis (%) for C 16 H 19 calcd: C 85.28, H 8.50, 6.22; found: C 85.24, H 8.71, j: 2-benzyl-1,5,6,7-tetrahydro-cyclopenta[b]pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), cyclopentanol (1.82 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 30:1 20:1 pentane : Et 2 O; Yield: 999 mg = 5.1 mmol = 51% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.53 (s_br, 1H), (m, 2H), (m, 3H), 5.71 (d, J = 1.8 Hz, 1H), (m, 4H), (m, 2H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.0, 135.9, 134.2, 129.1, 126.8, 126.7, 102.6, 35.4, 29.5, 26.1, 25.9 ppm. MS (70 ev, EI); m/z (%): 197 (93, M + ), 196 (100), 182 (10), 169 (25), 152 (5), 120 (81), 106 (22), 91 (34), 85 (15), 77 (13). elemental analysis (%) for C 14 H 15 calcd: C 85.24, H 7.66, 7.10; found: C 85.55, H 7.79, 6.97 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

31 2k: 2-benzyl-5,6,7,8,9,10-hexahydro-1H-cycloocta[b]pyrrole: Cat. II (0.5 ml, mmol, 0.01 M in THF), cyclooctanol (2.64 ml, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 40:1 20:1 pentane : Et 2 O; Yield: 1.85 g = 7.7 mmol = 77% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.41 (s_br, 1H), (m, 2H), (m, 3H), 5.66 (d, J = 2.9 Hz, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 4H), (m, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.1, 129.1, 129.0, 128.1, 127.7, 126.6, 119.5, 108.0, 34.7, 31.3, 30.3, 26.6, 26.3, 25.9, 25.5 ppm. MS (70 ev, EI); m/z (%): 239 (100, M + ), 210 (62), 196 (45), 148 (35), 118 (10), 91 (52). elemental analysis (%) for C 16 H 19 calcd: C 85.30, H 8.84, 5.85; found: C 85.66, H 8.92, l: 2-benzyl-5,6,7,8,9,10,11,12,13,14-decahydro-1H-cyclododeca[b]pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), cyclododecanol (3.68 g, 20.0 mmol), 2-amino-3-phenyl-propan-1- ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 60:1 40:1 hexane : Et 2 O; Yield: 1.1 g = 3.74 mmol = 37% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.37 (s_br, 1H), (m, 2H), (m, 3H), 5.68 (d, J = 2.9 Hz, 1H), 3.88 (s, 2H), 2.51 (t, J = 6.9 Hz, 2H), 2.36 (t, J = 6.9 Hz, 2H), 1.63 (m, 4H), (m, 8H), (m, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 141.0, 129.4, 129.1, 129.0, 128.1, 126.7, 120.5, 107.0, 34.8, 29.6, 28.6, 25.4, 25.2, 25.1, 25.0, 23.0, 22.9, 22.8, 22.5 ppm. MS (70 ev, EI); m/z (%): 295 (100, M + ), 266 (7), 252 (14), 238 (12), 210 (30), 204 (35), 196 (40), 184 (38), 171 (40), 91 (40). elemental analysis (%) for C 21 H 29 calcd: C 85.37, H 9.89, 4.74; found: C 85.11, H 10.11, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

32 Reaction of Hexane-2,5-diol with various Amino Alcohols to Symmetric and Unsymmetric Bipyrroles Supplementary Table S12: Reaction of hexane-2,5-diol with various amino alcohols to symmetric and unsymmetric bipyrroles [mol% Cat. II] Product Yield [a] 3a % 3b % [a] Isolated yield 3a: 1,2-bis(5-benzyl-1H-pyrrol-2-yl)ethane: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), hexane-2,5-diol (1.18 g, 10.0 mmol), 2-amino-3-phenyl-propan-1-ol (6.04 g, 40.0 mmol), 20 ml THF, KO t Bu (2.48 g, 22.0 mmol), 24 h at 90 C. Purification by column chromatography 8:1 4:1 pentane : Et 2 O; Yield: 1.43 g = 4.2 mmol = 42% as colorless solid. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

33 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.55 (s_br, 2H), (m, 4H), (m, 6H), (m, 4H), 3.86 (s, 4H), 2.77 (s, 4H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.7, 131.7, 130.0, 129.0, 126.8, 106.7, 105.8, 34.6, 28.5 ppm. MS (70 ev, EI); m/z (%): 340 (2, M + ), 325 (2), 249 (50), 183 (60), 170 (100), 156 (28), 91 (30). elemental analysis (%) for C 24 H 24 2 calcd: C 84.67, H 7.11, 8.23; found: C 84.42, H 7.17, b: 2-benzyl-5-(2-(5-ethyl-1H-pyrrol-2-yl)ethyl)-1H-pyrrole: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 4-(5-benzyl-1H-pyrrol-2-yl)-butan-2-ol (4.584 g, 20.0 mmol), 2-amino-1- butanol (960 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 8:1 4:1 pentane : Et 2 O; Yield: 2.31 g = 8.3 mmol = 83% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.58 (s_br, 1H), (m, 2H), (m, 3H), (m, 2H), (m, 2H), 3.89 (s, 2H), 2.81 (s, 4H), 2.53 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 140.7, 133.4, 131.9, 130.7, 130.1, 129.1, 129.0, 126.8, 106.7, 105.7, 105.6, 104.4, 34.7, 28.7, 28.6, 21.3, 14.2 ppm. MS (70 ev, EI); m/z (%): 278 (2, M + ), 186 (1), 170 (100), 108 (75), 93 (12). elemental analysis (%) for C 19 H 22 2 calcd: C 81.97, H 7.97, 10,06; found: C 81.83, H 8.25, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

34 Syntheses of -protected Amino Alcohols and their Conversion with 2-Amino-3-phenyl-propan-1-ol Supplementary Table S13: Syntheses of -protected amino alcohols and their conversion with 2-amino-3-phenylpropan-1-ol R 1 R 1 X X X= CH, H H 2 + OH R 2 + HO HO R 2 OH R 3 H 2 cat. II KO t Bu cat. II 1.1 eq. KO t Bu, 24h, 90 C [mol% Cat. II] Product Yield [a] R 1 R 1 X X H H R 2 OH R 2 H R % 3c % % 3d % ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

35 0.3 89% 3e % [a] Isolated yield 1-(phenylamino)propan-2-ol: Cat. II (0.4 mmol, 288 mg), aniline (7.28 ml, 80.0 mmol) propane-1,2-diol (23.6 ml, mmol), 60 ml THF, KO t Bu (9.04 g, 80.0 mmol), 24 h at 110 C. Purification by HV distillation (3.0x 10-2 mbar, 96 C) 11.11g = 73.5 mmol = 92% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 4.05 (s_br, 1H), (m, 1H), 3.20 (d, J = 12.6 Hz, 1H), 2.97 (dd, J = 12.6, 8.6 Hz, 1H), 2.21 (s_br, 1H), 1.24 (d, J = 6.4 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ =149.1, 129.7, 118.0, 113.6, 66.9, 52.1, 21.3 ppm. 3c: 5-benzyl-2-methyl--phenyl-1H-pyrrol-3-amine: Cat. II (1.0 ml, 0.01 mmol, 0.01 M in THF), 1-phenylamino-propan-2-ol (3.02 g, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 2:1 1:1 pentane : Et 2 O; Yield: 2.17 g = 8.3 mmol = 83% as deep red oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.51 (s_br, 1H), (m, 2H), (m, 3H), (m, 2H), (m, 3H), 5.82 (d, J = 2.9 Hz, 1H), 5.00 (s_br, 1H), 3.91 (s, 2H), 2.07 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.2, 141.5, 129.6, , , 128.1, 126.9, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

36 122.0, 121.8, 117.6, 113.5, 105.6, 34.9, 10.6 ppm. MS (70 ev, EI); m/z (%): 262 (12, M + ), 217 (8), 185 (100), 169 (60), 143 (16), 131 (17), 115 (35), 104 (14), 91 (38), 77 (22). elemental analysis (%) for C 18 H 18 2 calcd: C 82.41, H 6.92, 10.68; found: C 82.22, H 6.71, (phenylamino)hexan-2-ol: Cat. II (0.4 mmol, 288 mg), aniline (7.28 ml, 80.0 mmol), hexane-1,2-diol (24.8 ml, mmol), 40 ml THF, KO t Bu (9.94 g, 88.0 mmol), 72 h at 110 C. Purification by HV distillation ( 1.3 x 10-1 mbar, 133 C) 11.99g = 62 mmol = 78% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 4.04 (s_br, 1H), 3.80 (s_br, 1H), 3.24 (dd, J = 12.6, 2.6 Hz, 1H), 2.97 (dd, J = 12.6, 8.6Hz, 1H), 1.95 (d, J = 1.9 Hz, 1H), (m, 6H), 0.93 (t, J = 6.7 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.2, 129.7, 118.0, 113.6, 70.9, 50.8, 35.4, 28.4, 23.3, 14.4 ppm. MS (70 ev, EI); m/z (%): 193 (6, M + ), 118 (2), 106 (100), 93 (3), 77 (9). 3d: 5-benzyl-2-butyl--phenyl-1H-pyrrol-3-amine: Cat. II (3.0 ml, 0.03 mmol, 0.01 M in THF), 1-phenylamino-hexan-2-ol (3.86 g, 20.0 mmol), 2-amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 8:1 4:1 pentane : Et 2 O; Yield: 2.49 g = 8.2 mmol = 82% as deep red oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.51 (s_br, 1H), (m, 2H), (m, 3H), (m, 2H), (m, 3H), 5.79 (d, J = 2.9 Hz, 1H), 4.96 (s_br, 1H), 3.91 (s, 2H), (m, 2H), (m, 2H), 0.87 (t, J = 7.3 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.4, 140.5, 129.5, , , 128.1, 127.0, 126.8, 121.5, 117.5, 113.5, 105.7, 34.9, 32.4, 25.2, 23.0, 14.2 ppm. MS (70 ev, EI); m/z (%): 304 (1, M + ), 261 (66), 244 (13), 169 (100), 115 (15), 91 (15). elemental analysis (%) for C 21 H 24 2 calcd: C 82.85, H 7.95, 9.20; found: C 82.53, H 8.02, 9.15 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

37 1-(6-methylpyridin-2-ylamino)butan-2-ol: Cat. II (0.3 mmol, 215 mg), 6-methylpyridin-2- amine (10.8 g, mmol) butane-1,2-diol (18.4 ml, mmol), 60 ml THF, KO t Bu (12.4g, mmol), 96 h at 110 C. Purification by HV distillation (2.6x 10-2 mbar, 122 C); Yield: 16.0 g = 89.0 mmol = 89% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 7.29 (dd, J = 8.3,7.2 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 6.27 (d, J = 8.3 Hz, 1H), 4.98 (s_br, 1H), (m, 1H), (m, 1H), (m, 1H), 2.32 (s, 3H), (m, 2H), 0.94 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ =159.3, 156.5, 138.4, 112.4, 105.6, 74.3, 49.3, 28.7, 24.2, 10.5 ppm. 3e: -(5-benzyl-2-ethyl-1H-pyrrol-3-yl)-6-methylpyridin-2-amine: Cat. II (3.0 ml, 0.03 mmol, 0.01 M in THF), 1-(6-methyl-pyridin-2-ylamino)-butan-2-ol (3.60 g, 20.0 mmol), 2- amino-3-phenyl-propan-1-ol (1.51 g, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 2:1 1:2 pentane : Et 2 O; Yield: 2.53 g = 8.7 mmol = 87% as deep red oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.14 (s_br, 1H), (m, 6H), 6.46 (d, J = 7.0 Hz, 1H), 6.30 (s_br, 1H), 6.27 (d, J = 8.5 Hz, 1H), 5.83 (d, J = 2.9 Hz, 1H), 3.94 (s, 2H), 2.49 (q, J = 7.6 Hz, 2H), 2.34 (s, 3H), 1.11 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 16.1, 157.2, 140.5, 138.3, 129.1, 129.0, , 126.8, 119.3, 112.5, 105.9, 103.3, 34.8, 24.4, 18.8, 14.4 ppm. MS (70 ev, EI); m/z (%): 291 (42, M + ), 276 (50), 184 (100), 168 (35), 142 (30), 115 (32), 91 (44). elemental analysis (%) for C 19 H 21 3 calcd C 78.32, H 7.26, 14.42; found: C 78.08, H ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

38 Supplementary Table S14: Reaction of 1-phenylethanol with 1-amino-alcohol to 4-substituted pyrroles [mol% Cat. II] Product Yield [a] % [a] Isolated yield 4-ethyl-2-phenyl-1H-pyrrole: Cat. II (5.0 ml, 0.05 mmol, 0.01 M in THF), 1-phenylethanol (2.4 ml, 20.0 mmol) 1-aminobutan-2-ol (960 µl, 10.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 10:1 pentane : Et 2 O; Yield: 889 mg = 5.2 mmol = 52% as colorless solid. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.28 (s_br, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 1H), 2.53 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 133.5, 132.1, 129.4, 128.6, 126.4, 124.0, 116.2, 106.5, 20.7, 15.7 ppm. MS (70 ev, EI); m/z (%): 171 (46), 156 (100), 128 (20), 115 (10), 78 (19). 2,5-diethylpyrazine: Cat. II (71 mg, 0.1 mmol), 2-aminobutan-1-ol (3.8 ml, 40.0 mmol), 10 ml THF, KO t Bu (2.5 g, 22.0 mmol), 24 h at 90 C. Purification by column chromatography 5:1 pentane : Et 2 O; Yield: 0.54 g = 3.9 mmol = 19% as yellow oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 8.33 (s, 2H), 2.77 (q, J = 7.6 Hz, 4H), 1.27 (t, J = 7.6 Hz, 6H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 156.2,143.3, 28.7, 13.9 ppm. MS (70 ev, EI); m/z (%): 136, (55, M + ), 135 (100), 121 (96), 108 (8), 94 (4), 80 (5), 67 (6). ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

39 2-(1-phenylethylideneamino)butan-1-ol: acetophenone (35.0 ml, mmol) (±)2- aminobutan-1-ol (33.0 ml, mmol), molecular sieve 3Ǻ (40 g), 200 ml THF, 48 h reflux. Purification by HV distillation (3.0 x 10-3, 52 C); Yield: 53.5 g = mmol = 93% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), 4.09 (dd, J = 7.7, 6.9 Hz, 0.31 H), 3.76 (t, J = 7.3 Hz, 0.65H), 3.32 (t, J = 7.7 Hz, 0.69 H), (m, 0.35 H), 1.85 (s_br, 1H), (m, 5H), (m, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 146.2, 128.5, 127.6, 126.4, 125.9, 71.2, 60.4, 29.9, 27.2, 11.8 ppm. MS (70 ev, EI); m/z (%): 190 (1), 176 (100), 160 (75), 145 (8), 132 (7), 114 (50), 105 (63), 91 (33), 77 (32). 2-(1-phenylpentylideneamino)butan-1-ol: valerophenone (20.0 ml, mmol) (±)2- aminobutan-1-ol (19.0 ml, mmol), molecular sieve 3Ǻ (20 g), 200 ml THF, 48 h reflux. Purification by HV distillation (3.8 x 10-2, 110 C); Yield: 21.5 g = 92.2 mmol = 76% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 3H), (m, 0.28H), 3.76 (t, J = 7.4 Hz, 0.71H), (m, 1H), (m, 1H), 1.95 (s_br, 1H), (m, 2H), (m, 1H), (m, 1H), (m, 4H), (m, 3H), (m, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 145.8, 128.2, 127.5, 127.1, 126.5, 71.1, 61.0, 60.1, 42.3, 26.9, 23.5, 14.3, 11.7 ppm. MS (70 ev, EI); m/z (%): 233 (1, M + ), 232 (1), 202 (11), 176 (100), 156 (6), 120 (7), 105 (35), 91 (12), 77 (16). 2-(phenylamino)ethanol: cat. II (0.5 mmol, 359 mg), aniline (23.3 ml, mmol) ethane- 1,2-diol (50.0 ml, mmol), 200 ml THF, KO t Bu (31.0 g, mmol), 72 h at 110 C. Purification by HV distillation (2.3 x 10-1, 107 C); Yield: g = 80.0 mmol = 32% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 2H), (m, 1H), (m, 2H), 4.08 (s_br, 1H), 3.77 ( t, J = 5.3 Hz, 2H), 3.25 (t, J = 5.3 Hz, 2H), 2.44 (s_br, 1H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.0, 129.7, 118.1, 113.6, 61.6, 46.6 ppm. MS (70 ev, EI); m/z (%): 137 (25, M + ), 106 (100), 77 (20). ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

40 tert-butyl-1-hydroxybutan-2-ylcarbamate: To 2-aminobutan-1-ol (18.9 ml, 200 mmol) in 500 ml water and 400 ml THF was added a 2 CO 3 (70.0 g, 660 mmol). After cooling to 0 C, di-tert-butyl-dicarbonate (45.0 g, 206 mmol) dissolved in 100 ml THF was added drop wise. The solution was allowed to warm to room temperature and stirred for further 4h. The solution was extracted 4 times with Et 2 O. The combined organic phases were dried over a 2 SO 4, filtered and the solvent was removed by rotary evaporation. Purification by HV distillation (8.8 x 10-2 mbar, 99 C); Yield: 36.5 g = 192 mmol = 96% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = 4.73 (s_br, 1H), (m, 1H), (m, 2H), 2.67 (s_br, 1H), (m, 2H), 1.42 (s, 9H), 0.93 (t, J = 7.6 Hz, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 157.1, 79.6, 65.6, 54.8, 28.7, 25.1, 10.9 ppm. (5-methylcyclohexa-1,3-diene-1,3,5-triyl)tribenzene: Cat. II (36 mg, 0.05 mmol), 1-phenyl-1- ethanol (2.4 ml, 20.0 mmol), 10 ml THF, KO t Bu (1.24 g, 11.0 mmol), 24 h at 90 C. Purification by column chromatography 100:1 pentane : Et 2 O 3:1 pentane : Et 2 O; Yield: = 527 mg = 1.6 mmol = 33% as colorless oil. 1 H MR (300 MHz, CD 2 Cl 2 ): δ = (m, 15H), 6.79 (q, J = 1.5 Hz,1H)), 6.27 (d, J = 1.5 Hz, 1H), 3.18 (dd, J = 16.7, 1.5 Hz, 1H), 2.89 (dd, J = 16.7, 1.8 Hz, 1H), 1.64 (s, 3H) ppm. 13 C MR (75 MHz, CD 2 Cl 2 ): δ = 149.3, 141.5, 141.2, 137.6, 136.5, 132.7, 129.1, 129.0, 128.8, 128.0, 127.0, 126.7, 126.6, 126.4, 125.8, 121.9, 41.9, 40.9, 27.5 ppm. MS (70 ev, EI); m/z (%): 322 (100, M + ), 307 (80), 291 (14), 265 (8), 231 (24), 215 (31), 202 (12), 165 (8), 115 (9), 105 (29), 91 (17), 77 (10). ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

41 Mechanistic Studies Synthesis of [(4-Ph)Tr(HP(iPr) 2 ) 2 IrH 3 ] Cat. II (1.0 mmol, 719 mg) was dissolved in 4 ml benzene-d 6 and stirred in a 60 bar H 2 atmosphere at 25 C for 2 days. An orange solution was obtained. Crystals suitable for X-Ray analysis were obtained from this solution. Due to the high reactivity of this compound MRanalyses was done directly from the reaction solution. 1 H MR (400 MHz, C 6 D 6 ): δ = (m, 2H), (m, 3H), 5.90 (s_br, 2H), (m, 4H), (m, 24H), (dt, J = 18.3, 5.1 Hz, 2H), (tt, J = 14.6, 5.1 Hz, 1H) ppm. 13 C MR (100 MHz, C 6 D 6 ): δ = (t, J = 9.5 Hz), 168.4, 137.1, 132.2, 129.1, 129.0, 69.3, 30.8 (t, J = 16.2 Hz), 28.8, 26.2, 23.9, 19.5 (t, J = 4.4 Hz), 18.8 ppm. 31 P MR (161 MHz, C 6 D 6, 298 K): δ = (dt, J = 13.0, 6.7 Hz) ppm. elemental analysis (%) for [C 21 H 35 Ir 5 P 2 ] x 0.4 C 6 D 6 calcd: C 43.35, H 6.65, 10.80; found: C 43.42, H 6.65, ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

42 Supplementary Figure S3: Formation of the catalyst resting state, an iridium trihydride complex. It can be formed quantitatively by reacting catalyst II with alcohols, H 2 or under catalytic conditions conversion [%] reaction time [h] Supplementary Figure S4. Time conversion plot for the reaction of 1-phenylethanol with 2-amino-butan-1-ol. reaction conditions: 1-phenylethanol (2.4 ml, 20.0 mmol), 2-amino-butan-1-ol (1.92 ml, 20.0 mmol), KO t Bu (2.48 g, 22.0 mmol), cat. II (57 mg, 0.08 mmol), 20 ml dioxane, ml dodecane as internal standard, 110 C 2-ethyl-5-phenyl-1H-pyrrole 1-phenylethanol acetophenone (5-methylcyclohexa-1,3-diene-1,3,5- triyl)tribenzene ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

43 conversion [%] reaction time [h] Supplementary Figure S5. Time conversion plot for the reaction of 1-phenylethanol with 2-amino-butan-1-ol. reaction conditions: 1-phenylethanol (4.8 ml, 40.0 mmol), 2-amino-butan-1-ol (1.92 ml, 20.0 mmol), KO t Bu (2.48 g, 22.0 mmol), cat. II (57 mg, 0.08 mmol), 20 ml dioxane, ml dodecane as internal standard, 110 C 2-ethyl-5-phenyl-1H-pyrrole 1-phenylethanol acetophenone (5-methylcyclohexa-1,3-diene-1,3,5- triyl)tribenzene Possible Reaction Pathways Supplementary Figure S6: Possible reaction pathways for the pyrrole synthesis ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

44 Reactions which confirm Pathway A Supplementary Figure S7: Dehydrogenation of 1-phenylethanol Without base 1-phenylethanol is converted into acetophenone and H 2 by catalyst II, but with base, 1-phenylethanol is converted to acetophenone and several additional aldol condensation products (Supplementary Figure S7). Due to this fact the system 1-phenyl-1- pentanol/valerophenone was used for further mechanistic investigations (Supplementary Figure S9). Supplementary Figure S8: Conversion of 2-(1-phenylethylideneamino)butan-1-ol to 2-ethyl-5-phenyl-1H-pyrrole Under catalytic conditions 2-(1-phenylethylideneamino)butan-1-ol is converted to 2-ethyl-5- phenyl-1h-pyrrole in excellent yield (Supplementary Figure S8). If catalyst or base is used exclusively only a very poor conversion of the imine is observed. This fact clearly points out that both catalyst and base in combination are involved in the cyclisation reaction. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

45 Supplementary Figure S9: Dehydrogenation of 1-phenyl-1-pentanol to valerophenone under catalytic conditions Dehydrogenation of 1-phenyl-1-pentanol is fast. Under standard reaction conditions the secondary alcohol is completely converted to the corresponding ketone within 24 h (Supplementary Figure S9). Supplementary Figure S10: Dehydrogenation and condensation reaction of 2-amino-1-butanol to 2,5- diethylpyrazine In contrast the dehydrogenation and condensation reaction of the amino alcohol to 2,5- diethylpyrazine is very slow under the given reaction conditions (90 C), which was already shown in our previous work. 38 (Supplementary Figure S10) ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

46 Supplementary Figure S11: Pathway A1: reaction of valerophenone with 2-amino-1-butanol under catalytic conditions (cat II, 0.5 mol%) Pathway A2: reaction of 2-(1-phenylpentylideneamino)butan-1-ol under catalytic conditions (cat II, 0.5 mol%) Regardless whether the reaction was started from ketone and amino alcohol (A1, Supplementary Figure S11), or from the preformed Schiff base (A2, Supplementary Figure S11), nearly identical yields were obtained. This indicates that the imine formation is very fast Reactions which contradict Pathway B Supplementary Figure S12: Under catalytic conditions no reaction of 1-phenylethanol with 2- (phenylamino)ethanol is observed ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

47 Supplementary Figure S13: Under catalytic conditions no reaction of 1-phenylethanol with tert-butyl-1- hydroxybutan-2-ylcarbamate o ß-alkylation between 1-phenylethanol and the -protected amino alcohol was observed, regardless which protecting group was chosen (Supplementary Figure S12 and Supplementary Figure S13). These experiments show that under the given reaction conditions the ß-alkylation is very unlikely to be the first reaction step (pathway B, Supplementary Figure S6) in the pyrrole syntheses. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

48 Crystal Structure of [(4-Ph)Tr(P( i Pr) 2 )(HP( i Pr) 2 )Ir(cod)]; (Catalyst II) Supplementary Figure S14: Crystal structure of catalyst II data_t257ofma1 _audit_creation_method SHELXL-97 _chemical_name_systematic ;? ; _chemical_name_common? _chemical_melting_point? _chemical_formula_moiety? _chemical_formula_sum 'C29 H46 Ir 5 P2' _chemical_formula_weight loop atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 'International Tables Vol C Tables and ' 'H' 'H' 'International Tables Vol C Tables and ' '' '' ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

49 'International Tables Vol C Tables and ' 'P' 'P' 'International Tables Vol C Tables and ' 'Ir' 'Ir' 'International Tables Vol C Tables and ' _symmetry_cell_setting _symmetry_space_group_name_h-m orthorhombic Fdd2 loop symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x+1/4, y+1/4, z+1/4' 'x+1/4, -y+1/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x+1/4, y+3/4, z+3/4' 'x+1/4, -y+3/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+3/4, y+1/4, z+3/4' 'x+3/4, -y+1/4, z+3/4' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+3/4, y+3/4, z+1/4' 'x+3/4, -y+3/4, z+1/4' _cell_length_a (11) _cell_length_b (2) _cell_length_c (12) _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume (14) _cell_formula_units_z 16 _cell_measurement_temperature 133(2) _cell_measurement_reflns_used _cell_measurement_2theta_min 3.56 _cell_measurement_2theta_max _exptl_crystal_description block _exptl_crystal_colour red _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.19 _exptl_crystal_size_min 0.17 _exptl_crystal_density_meas? _exptl_crystal_density_diffrn _exptl_crystal_density_method 'not measured' _exptl_crystal_f_ _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_t_min _exptl_absorpt_correction_t_max _exptl_absorpt_process_details? _exptl_special_details ;? ; _diffrn_ambient_temperature 133(2) _diffrn_radiation_wavelength ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

50 _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean? _diffrn_standards_number? _diffrn_standards_interval_count? _diffrn_standards_interval_time? _diffrn_standards_decay_%? _diffrn_reflns_number _diffrn_reflns_av_r_equivalents _diffrn_reflns_av_sigmai/neti _diffrn_reflns_limit_h_min -23 _diffrn_reflns_limit_h_max 23 _diffrn_reflns_limit_k_min -49 _diffrn_reflns_limit_k_max 49 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 1.78 _diffrn_reflns_theta_max _reflns_number_total 5231 _reflns_number_gt 3973 _reflns_threshold_expression >2\s(I) MoK\a 'fine-focus sealed tube' graphite STOE-IPDSII Omega-Scan _computing_data_collection X-AREA-STOE _computing_cell_refinement X-AREA-STOE _computing_data_reduction X-RED32 _computing_structure_solution SIR-97 _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics? _computing_publication_material? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2\s(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(fo^2^)+(0.0846p)^2^ p] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, ' _refine_ls_abs_structure_flack 0.014(17) _refine_ls_number_reflns 5231 _refine_ls_number_parameters 318 _refine_ls_number_restraints 4 _refine_ls_r_factor_all _refine_ls_r_factor_gt ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

51 _refine_ls_wr_factor_ref _refine_ls_wr_factor_gt _refine_ls_goodness_of_fit_ref _refine_ls_restrained_s_all _refine_ls_shift/su_max _refine_ls_shift/su_mean loop atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_u_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ir1 Ir (3) (14) (4) (18) Uani 1 1 d... P1 P (2) (9) (2) (9) Uani 1 1 d... P2 P (18) (9) (4) (10) Uani 1 1 d (6) (3) (9) 0.050(3) Uani 1 1 d (6) (3) (8) 0.045(3) Uani 1 1 d (6) (4) (8) 0.062(4) Uani 1 1 d (6) (3) (8) 0.049(3) Uani 1 1 d... H1 H Uiso 1 1 calc R (7) (3) (10) 0.064(4) Uani 1 1 d... C1 C (9) (4) (11) 0.060(3) Uani 1 1 d... H1 H Uiso 1 1 calc R.. C2 C (9) (4) (12) 0.060(3) Uani 1 1 d... H2 H Uiso 1 1 calc R.. C3 C (9) (4) (12) 0.066(3) Uani 1 1 d... H3A H Uiso 1 1 calc R.. H3B H Uiso 1 1 calc R.. C4 C (11) (4) (13) 0.077(4) Uani 1 1 d D.. H4A H Uiso 1 1 calc R.. H4B H Uiso 1 1 calc R.. C5 C (18) (5) (17) 0.141(9) Uani 1 1 d D.. H5 H Uiso 1 1 calc R.. C6 C (15) (6) (18) 0.141(9) Uani 1 1 d D.. H6 H Uiso 1 1 calc R.. C7 C (10) (4) (13) 0.077(4) Uani 1 1 d D.. H7A H Uiso 1 1 calc R.. H7B H Uiso 1 1 calc R.. C8 C (9) (4) (11) 0.066(3) Uani 1 1 d... H8A H Uiso 1 1 calc R.. H8B H Uiso 1 1 calc R.. C9 C (7) (4) (10) 0.050(4) Uani 1 1 d... C10 C (8) (3) (9) 0.048(4) Uani 1 1 d... C11 C (8) (4) (11) 0.054(4) Uani 1 1 d... C12 C (8) (4) (11) 0.054(4) Uani 1 1 d... H12 H Uiso 1 1 calc R.. C13 C (8) (4) (11) 0.058(4) Uani 1 1 d... H13 H Uiso 1 1 calc R.. C14 C (9) (5) (14) 0.071(5) Uani 1 1 d... H14 H Uiso 1 1 calc R.. C15 C (8) (4) (11) 0.057(4) Uani 1 1 d... H15 H Uiso 1 1 calc R.. C16 C (8) (4) (10) 0.056(4) Uani 1 1 d... H16 H Uiso 1 1 calc R.. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

52 C17 C (7) (3) (9) 0.043(3) Uani 1 1 d... C18 C (10) (4) (14) 0.067(5) Uani 1 1 d... H18A H Uiso 1 1 calc R.. H18B H Uiso 1 1 calc R.. H18C H Uiso 1 1 calc R.. C19 C (9) (4) (12) 0.066(5) Uani 1 1 d... H19A H Uiso 1 1 calc R.. H19B H Uiso 1 1 calc R.. H19C H Uiso 1 1 calc R.. C20 C (9) (5) (13) 0.069(5) Uani 1 1 d... H20A H Uiso 1 1 calc R.. H20B H Uiso 1 1 calc R.. H20C H Uiso 1 1 calc R.. C21 C (12) (6) (14) 0.093(7) Uani 1 1 d... H21A H Uiso 1 1 calc R.. H21B H Uiso 1 1 calc R.. H21C H Uiso 1 1 calc R.. C22 C (9) (4) (12) 0.066(4) Uani 1 1 d... H22A H Uiso 1 1 calc R.. H22B H Uiso 1 1 calc R.. H22C H Uiso 1 1 calc R.. C23 C (10) (5) (16) 0.090(7) Uani 1 1 d... H23A H Uiso 1 1 calc R.. H23B H Uiso 1 1 calc R.. H23C H Uiso 1 1 calc R.. C24 C (11) (5) (14) 0.081(6) Uani 1 1 d... H24A H Uiso 1 1 calc R.. H24B H Uiso 1 1 calc R.. H24C H Uiso 1 1 calc R.. C25 C (11) (6) (14) 0.087(6) Uani 1 1 d... H25A H Uiso 1 1 calc R.. H25B H Uiso 1 1 calc R.. H25C H Uiso 1 1 calc R.. C26 C (9) (5) (12) 0.065(5) Uani 1 1 d... H26 H Uiso 1 1 calc R.. C27 C (8) (4) (9) 0.047(3) Uani 1 1 d... H27 H Uiso 1 1 calc R.. C28 C (9) (5) (12) 0.071(5) Uani 1 1 d... H28 H Uiso 1 1 calc R.. C29 C (8) (4) (9) 0.049(4) Uani 1 1 d... H29 H Uiso 1 1 calc R.. loop atom_site_aniso_label _atom_site_aniso_u_11 _atom_site_aniso_u_22 _atom_site_aniso_u_33 _atom_site_aniso_u_23 _atom_site_aniso_u_13 _atom_site_aniso_u_12 Ir (3) (3) (3) (3) (3) (3) P (2) 0.056(2) 0.042(2) (16) (16) (17) P (2) 0.063(2) 0.056(2) 0.014(3) 0.008(3) (17) (7) 0.046(7) 0.065(8) 0.005(6) 0.000(6) 0.009(6) (7) 0.039(7) 0.054(7) (5) 0.001(6) (5) (7) 0.088(10) 0.050(7) (7) (6) 0.025(7) (7) 0.057(8) 0.046(7) (6) 0.002(6) 0.003(6) (9) 0.071(10) 0.061(9) 0.006(7) 0.005(7) 0.006(7) C (8) 0.042(6) 0.068(8) (5) (6) 0.010(6) C (8) 0.042(6) 0.068(8) (5) (6) 0.010(6) C (8) 0.069(8) 0.061(7) (6) 0.010(6) (6) C (9) 0.070(8) 0.075(9) (7) 0.016(8) (7) C5 0.22(3) 0.080(12) 0.124(16) 0.006(12) 0.010(18) (14) ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

53 C6 0.22(3) 0.080(12) 0.124(16) 0.006(12) 0.010(18) (14) C (9) 0.070(8) 0.075(9) (7) 0.016(8) (7) C (8) 0.069(8) 0.061(7) (6) 0.010(6) (6) C (8) 0.069(10) 0.048(8) (8) 0.001(6) 0.000(8) C (9) 0.048(9) 0.041(7) 0.005(6) (7) 0.000(7) C (9) 0.068(11) 0.050(8) 0.005(8) (7) 0.000(8) C (9) 0.066(11) 0.052(9) (8) (7) 0.005(8) C (9) 0.068(10) 0.059(11) 0.010(8) (7) 0.014(8) C (10) 0.074(13) 0.087(13) 0.015(10) (10) (9) C (9) 0.072(12) 0.047(8) 0.000(8) 0.004(7) 0.007(9) C (9) 0.052(8) 0.059(11) (7) (8) (8) C (8) 0.043(8) 0.036(7) (6) (6) 0.012(7) C (11) 0.074(12) 0.072(12) 0.011(10) (9) (9) C (12) 0.064(11) 0.064(10) 0.013(8) (9) 0.003(9) C (10) 0.077(12) 0.077(11) (10) (9) 0.000(9) C (14) 0.13(2) 0.073(13) 0.016(13) (11) (14) C (10) 0.066(11) 0.074(11) 0.007(9) 0.006(9) 0.002(9) C (11) 0.106(16) 0.109(16) 0.059(14) (11) (11) C (16) 0.056(11) 0.086(13) 0.008(10) 0.038(12) 0.006(11) C (13) 0.113(17) 0.072(12) (12) (10) 0.020(13) C (10) 0.079(12) 0.071(11) (9) 0.006(8) 0.007(9) C (8) 0.053(9) 0.040(8) 0.005(7) 0.005(6) (7) C (11) 0.087(13) 0.060(11) 0.011(9) 0.018(9) 0.012(10) C (8) 0.058(9) 0.046(8) 0.006(7) 0.001(7) (7) _geom_special_details ; All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. ; loop geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ir (16).? Ir1 C (17).? Ir1 C (18).? Ir1 P (4).? Ir1 P (4).? P (13).? P1 C (16).? P1 C (15).? P (15).? P2 C (18).? P2 C (19).? 1 C (19).? 1 C9 1.37(2).? 2 C (18).? 2 C (19).? 3 C9 1.41(2).? 3 C (19).? 4 C (18).? 5 C9 1.36(2).? C1 C2 1.39(2).? C1 C8 1.52(2).? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

54 C2 C3 1.50(2).? C3 C4 1.53(2).? C4 C (17).? C5 C (18).? C6 C (17).? C7 C8 1.57(2).? C10 C (2).? C11 C (2).? C11 C (2).? C12 C (2).? C13 C (2).? C14 C (3).? C15 C (2).? C18 C (2).? C19 C (2).? C20 C (2).? C21 C (3).? C22 C (2).? C23 C (3).? C24 C (3).? C25 C (3).? loop geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 3 Ir1 C (5)..? 3 Ir1 C (5)..? C1 Ir1 C2 38.1(6)..? 3 Ir1 P2 78.7(4)..? C1 Ir1 P2 91.1(5)..? C2 Ir1 P2 98.6(5)..? 3 Ir1 P1 81.4(4)..? C1 Ir1 P (5)..? C2 Ir1 P1 99.4(5)..? P2 Ir1 P (14)..? 4 P1 C (6)..? 4 P1 C (6)..? C29 P1 C (7)..? 4 P1 Ir1 98.6(5)..? C29 P1 Ir (5)..? C27 P1 Ir (5)..? 5 P2 C (8)..? 5 P2 C (8)..? C26 P2 C (8)..? 5 P2 Ir (5)..? C26 P2 Ir (6)..? C28 P2 Ir (6)..? C10 1 C (12)..? C17 2 C (13)..? C9 3 C (14)..? C9 3 Ir (10)..? C17 3 Ir (11)..? C17 4 P (11)..? C9 5 P (12)..? C2 C1 C (15)..? C2 C1 Ir1 71.1(11)..? C8 C1 Ir (11)..? C1 C2 C (15)..? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

55 C1 C2 Ir1 70.7(10)..? C3 C2 Ir (13)..? C2 C3 C (16)..? C5 C4 C (17)..? C6 C5 C4 123(3)..? C5 C6 C7 130(2)..? C6 C7 C (17)..? C1 C8 C (13)..? 5 C (14)..? 5 C (14)..? 1 C (13)..? 2 C (13)..? 2 C10 C (14)..? 1 C10 C (13)..? C12 C11 C (15)..? C12 C11 C (15)..? C16 C11 C (15)..? C11 C12 C (15)..? C14 C13 C (18)..? C13 C14 C (18)..? C16 C15 C (15)..? C15 C16 C (15)..? 4 C (13)..? 4 C (14)..? 2 C (13)..? C25 C26 C (17)..? C25 C26 P (12)..? C24 C26 P (13)..? C18 C27 C (14)..? C18 C27 P (11)..? C19 C27 P (10)..? C23 C28 C (17)..? C23 C28 P (15)..? C21 C28 P (13)..? C20 C29 C (14)..? C20 C29 P (11)..? C22 C29 P (11)..? _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max _refine_diff_density_min _refine_diff_density_rms ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

56 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

57 Alert level B occurs because the compound crystallises in very thin plates. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

58 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

59 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

60 Crystal Structure of [(4-Ph)Tr(HP(iPr) 2 )IrH 3 ] (catalyst resting state) Supplementary Figure S15. Crystal Structure of [(4-Ph)Tr(HP(iPr) 2 )IrH 3 ] data_t356hpma _audit_creation_method SHELXL-97 _chemical_name_systematic ;? ; _chemical_name_common? _chemical_melting_point? _chemical_formula_moiety? _chemical_formula_sum 'C33 H47 Ir 5 P2' _chemical_formula_weight loop atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

61 'International Tables Vol C Tables and ' 'H' 'H' 'International Tables Vol C Tables and ' '' '' 'International Tables Vol C Tables and ' 'P' 'P' 'International Tables Vol C Tables and ' 'Ir' 'Ir' 'International Tables Vol C Tables and ' _symmetry_cell_setting trigonal _symmetry_space_group_name_h-m P3(2) loop symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z+2/3' '-x+y, -x, z+1/3' _cell_length_a (4) _cell_length_b (4) _cell_length_c (3) _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume (2) _cell_formula_units_z 9 _cell_measurement_temperature 133(2) _cell_measurement_reflns_used _cell_measurement_2theta_min 2.31 _cell_measurement_2theta_max _exptl_crystal_description prism _exptl_crystal_colour orange _exptl_crystal_size_max 0.44 _exptl_crystal_size_mid 0.21 _exptl_crystal_size_min 0.18 _exptl_crystal_density_meas? _exptl_crystal_density_diffrn _exptl_crystal_density_method 'not measured' _exptl_crystal_f_ _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_t_min _exptl_absorpt_correction_t_max _exptl_absorpt_process_details? _exptl_special_details ;? ; ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

62 _diffrn_ambient_temperature 133(2) _diffrn_radiation_wavelength _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type STOE-IPDSII _diffrn_measurement_method Omega-Scan _diffrn_detector_area_resol_mean? _diffrn_standards_number? _diffrn_standards_interval_count? _diffrn_standards_interval_time? _diffrn_standards_decay_%? _diffrn_reflns_number _diffrn_reflns_av_r_equivalents _diffrn_reflns_av_sigmai/neti _diffrn_reflns_limit_h_min -27 _diffrn_reflns_limit_h_max 27 _diffrn_reflns_limit_k_min -27 _diffrn_reflns_limit_k_max 27 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.16 _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression >2\s(I) _computing_data_collection X-AREA-STOE _computing_cell_refinement X-AREA-STOE _computing_data_reduction X-AREA-STOE _computing_structure_solution SIR-97 _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics? _computing_publication_material? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2\s(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type fullcycle _refine_ls_weighting_scheme calc _refine_ls_weighting_details ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

63 'calc w=1/[\s^2^(fo^2^)+(0.0414p)^2^ p] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, ' _refine_ls_abs_structure_flack (5) _refine_ls_number_reflns _refine_ls_number_parameters 881 _refine_ls_number_restraints 1 _refine_ls_r_factor_all _refine_ls_r_factor_gt _refine_ls_wr_factor_ref _refine_ls_wr_factor_gt _refine_ls_goodness_of_fit_ref _refine_ls_restrained_s_all _refine_ls_shift/su_max _refine_ls_shift/su_mean loop atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_u_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C (5) (5) (6) 0.029(2) Uani 1 1 d... C2 C (5) (5) (5) 0.033(2) Uani 1 1 d... C3 C (5) (5) (6) 0.035(2) Uani 1 1 d... C4 C (5) (4) (6) 0.036(2) Uani 1 1 d... H4 H Uiso 1 1 calc R.. C5 C (5) (5) (7) 0.051(3) Uani 1 1 d... H5 H Uiso 1 1 calc R.. C6 C (6) (5) (7) 0.054(3) Uani 1 1 d... H6 H Uiso 1 1 calc R.. C7 C (6) (5) (6) 0.046(3) Uani 1 1 d... H7 H Uiso 1 1 calc R.. C8 C (5) (5) (6) 0.043(3) Uani 1 1 d... H8 H Uiso 1 1 calc R.. C9 C (4) (4) (5) (18) Uani 1 1 d... C10 C (6) (6) (8) 0.057(3) Uani 1 1 d... ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

64 H10A H Uiso 1 1 calc R.. H10B H Uiso 1 1 calc R.. H10C H Uiso 1 1 calc R.. C11 C (5) (5) (7) 0.052(3) Uani 1 1 d... H11A H Uiso 1 1 calc R.. H11B H Uiso 1 1 calc R.. H11C H Uiso 1 1 calc R.. C12 C (6) (5) (7) 0.046(3) Uani 1 1 d... H12 H Uiso 1 1 calc R.. C13 C (7) (6) (7) 0.059(4) Uani 1 1 d... H13A H Uiso 1 1 calc R.. H13B H Uiso 1 1 calc R.. H13C H Uiso 1 1 calc R.. C14 C (6) (5) (7) 0.051(3) Uani 1 1 d... H14A H Uiso 1 1 calc R.. H14B H Uiso 1 1 calc R.. H14C H Uiso 1 1 calc R.. C15 C (7) (7) (8) 0.064(4) Uani 1 1 d... H15A H Uiso 1 1 calc R.. H15B H Uiso 1 1 calc R.. H15C H Uiso 1 1 calc R.. C16 C (8) (6) (8) 0.077(4) Uani 1 1 d... H16A H Uiso 1 1 calc R.. H16B H Uiso 1 1 calc R.. H16C H Uiso 1 1 calc R.. C17 C (5) (6) (8) 0.055(3) Uani 1 1 d... H17A H Uiso 1 1 calc R.. H17B H Uiso 1 1 calc R.. H17C H Uiso 1 1 calc R.. C18 C (7) (6) (7) 0.059(4) Uani 1 1 d... H18A H Uiso 1 1 calc R.. H18B H Uiso 1 1 calc R.. H18C H Uiso 1 1 calc R.. C19 C (6) (6) (7) 0.051(3) Uani 1 1 d... H19A H Uiso 1 1 calc R.. H19B H Uiso 1 1 calc R.. H19C H Uiso 1 1 calc R.. C20 C (8) (7) (10) 0.078(5) Uani 1 1 d... H20A H Uiso 1 1 calc R.. H20B H Uiso 1 1 calc R.. H20C H Uiso 1 1 calc R.. C21 C (5) (6) (7) 0.056(3) Uani 1 1 d... H21A H Uiso 1 1 calc R.. H21B H Uiso 1 1 calc R.. H21C H Uiso 1 1 calc R.. C22 C (5) (5) (7) 0.047(3) Uani 1 1 d... H22A H Uiso 1 1 calc R.. H22B H Uiso 1 1 calc R.. H22C H Uiso 1 1 calc R.. C23 C (5) (4) (6) 0.031(2) Uani 1 1 d... C24 C (4) (5) (5) 0.031(2) Uani 1 1 d... ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

65 C25 C (4) (4) (5) 0.028(2) Uani 1 1 d... C26 C (6) (6) (7) 0.059(3) Uani 1 1 d... H26A H Uiso 1 1 calc R.. H26B H Uiso 1 1 calc R.. H26C H Uiso 1 1 calc R.. C27 C (5) (5) (6) 0.032(2) Uani 1 1 d... C28 C (5) (5) (7) 0.047(3) Uani 1 1 d... H28A H Uiso 1 1 calc R.. H28B H Uiso 1 1 calc R.. H28C H Uiso 1 1 calc R.. C29 C (6) (6) (7) 0.051(3) Uani 1 1 d... H29A H Uiso 1 1 calc R.. H29B H Uiso 1 1 calc R.. H29C H Uiso 1 1 calc R.. C30 C (7) (8) (9) 0.060(4) Uani 1 1 d... H30A H Uiso 1 1 calc R.. H30B H Uiso 1 1 calc R.. H30C H Uiso 1 1 calc R.. C31 C (7) (7) (9) 0.061(4) Uani 1 1 d... H31A H Uiso 1 1 calc R.. H31B H Uiso 1 1 calc R.. H31C H Uiso 1 1 calc R.. C32 C (6) (6) (7) 0.048(3) Uani 1 1 d... H32A H Uiso 1 1 calc R.. H32B H Uiso 1 1 calc R.. H32C H Uiso 1 1 calc R.. C33 C (5) (5) (7) 0.049(3) Uani 1 1 d... H33A H Uiso 1 1 calc R.. H33B H Uiso 1 1 calc R.. H33C H Uiso 1 1 calc R.. C34 C (6) (5) (7) 0.051(3) Uani 1 1 d... H34A H Uiso 1 1 calc R.. H34B H Uiso 1 1 calc R.. H34C H Uiso 1 1 calc R.. C35 C (5) (6) (8) 0.065(3) Uani 1 1 d... H35A H Uiso 1 1 calc R.. H35B H Uiso 1 1 calc R.. H35C H Uiso 1 1 calc R.. C36 C (8) (7) (10) 0.089(5) Uani 1 1 d... H36A H Uiso 1 1 calc R.. H36B H Uiso 1 1 calc R.. H36C H Uiso 1 1 calc R.. C37 C (5) (5) (5) 0.030(2) Uani 1 1 d... C38 C (4) (5) (5) (19) Uani 1 1 d... C39 C (6) (6) (8) 0.060(3) Uani 1 1 d... H39A H Uiso 1 1 calc R.. H39B H Uiso 1 1 calc R.. H39C H Uiso 1 1 calc R.. C40 C (6) (7) (7) 0.052(3) Uani 1 1 d... H40A H Uiso 1 1 calc R.. H40B H Uiso 1 1 calc R.. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

66 H40C H Uiso 1 1 calc R.. C41 C (5) (5) (7) 0.042(2) Uani 1 1 d... H41 H Uiso 1 1 calc R.. C42 C (5) (5) (7) 0.033(3) Uani 1 1 d... H42 H Uiso 1 1 calc R.. C43 C (6) (5) (6) 0.045(3) Uani 1 1 d... H43 H Uiso 1 1 calc R.. C44 C (6) (5) (7) 0.036(2) Uani 1 1 d... H44 H Uiso 1 1 calc R.. C45 C (6) (6) (7) 0.043(3) Uani 1 1 d... H45 H Uiso 1 1 calc R.. C46 C (5) (5) (6) 0.041(2) Uani 1 1 d... H46 H Uiso 1 1 calc R.. C47 C (6) (7) (7) 0.062(3) Uani 1 1 d... H47 H Uiso 1 1 calc R.. C48 C (6) (6) (7) 0.057(3) Uani 1 1 d... H48 H Uiso 1 1 calc R.. C49 C (5) (6) (6) 0.050(3) Uani 1 1 d... H49 H Uiso 1 1 calc R.. C50 C (5) (5) (5) 0.036(2) Uani 1 1 d... C51 C (5) (5) (6) 0.045(2) Uani 1 1 d... H51 H Uiso 1 1 calc R.. C52 C (6) (6) (7) 0.062(3) Uani 1 1 d... H52 H Uiso 1 1 calc R.. C53 C (5) (4) (6) 0.042(2) Uani 1 1 d... H53 H Uiso 1 1 calc R.. C54 C (5) (5) (5) 0.032(2) Uani 1 1 d... C55 C (5) (5) (5) 0.037(2) Uani 1 1 d... H55 H Uiso 1 1 calc R.. C56 C (5) (5) (6) 0.037(2) Uani 1 1 d... H56 H Uiso 1 1 calc R.. C57 C (6) (5) (6) 0.052(3) Uani 1 1 d... H57 H Uiso 1 1 calc R.. C58 C (5) (5) (6) 0.042(2) Uani 1 1 d... H58 H Uiso 1 1 calc R.. C59 C (5) (5) (6) 0.043(2) Uani 1 1 d... H59 H Uiso 1 1 calc R.. C60 C (5) (6) (8) 0.041(3) Uani 1 1 d... H60 H Uiso 1 1 calc R.. C61 C (5) (6) (6) 0.047(3) Uani 1 1 d... H61 H Uiso 1 1 calc R.. C62 C (6) (6) (6) 0.049(3) Uani 1 1 d... H62 H Uiso 1 1 calc R.. C63 C (6) (7) (7) 0.047(3) Uani 1 1 d... H63 H Uiso 1 1 calc R.. C64 C (4) (3) (5) 0.059(3) Uiso 1 1 d G.. H64 H Uiso 1 1 calc R.. C65 C (3) (3) (5) 0.073(3) Uiso 1 1 d G.. H65 H Uiso 1 1 calc R.. C66 C (3) (3) (5) 0.058(3) Uiso 1 1 d G.. H66 H Uiso 1 1 calc R.. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

67 C67 C (3) (3) (5) 0.057(3) Uiso 1 1 d G.. H67 H Uiso 1 1 calc R.. C68 C (3) (3) (5) 0.065(3) Uiso 1 1 d G.. H68 H Uiso 1 1 calc R.. C69 C (3) (4) (5) 0.061(3) Uiso 1 1 d G.. H69 H Uiso 1 1 calc R.. C70 C (4) (3) (5) 0.090(4) Uiso 1 1 d G.. H70 H Uiso 1 1 calc R.. C71 C (4) (4) (5) 0.060(3) Uiso 1 1 d G.. H71 H Uiso 1 1 calc R.. C72 C (3) (4) (5) 0.074(3) Uiso 1 1 d G.. H72 H Uiso 1 1 calc R.. C73 C (4) (3) (6) 0.106(5) Uiso 1 1 d G.. H73 H Uiso 1 1 calc R.. C74 C (5) (4) (6) 0.093(4) Uiso 1 1 d G.. H74 H Uiso 1 1 calc R.. C75 C (3) (5) (6) 0.081(4) Uiso 1 1 d G.. H75 H Uiso 1 1 calc R.. C76 C (3) (4) (6) 0.078(3) Uiso 1 1 d G.. H76 H Uiso 1 1 calc R.. C77 C (4) (4) (6) 0.074(3) Uiso 1 1 d G.. H77 H Uiso 1 1 calc R.. C78 C (4) (3) (5) 0.075(3) Uiso 1 1 d G.. H78 H Uiso 1 1 calc R.. C79 C (3) (4) (5) 0.080(4) Uiso 1 1 d G.. H79 H Uiso 1 1 calc R.. C80 C (4) (4) (6) 0.086(4) Uiso 1 1 d G.. H80 H Uiso 1 1 calc R.. C81 C (4) (3) (5) 0.064(3) Uiso 1 1 d G.. H81 H Uiso 1 1 calc R.. C82 C (4) (3) (5) 0.068(3) Uiso 1 1 d G.. H82 H Uiso 1 1 calc R.. C83 C (3) (4) (5) 0.077(4) Uiso 1 1 d G.. H83 H Uiso 1 1 calc R.. C84 C (3) (3) (6) 0.077(4) Uiso 1 1 d G.. H84 H Uiso 1 1 calc R.. C85 C (4) (3) (6) 0.081(4) Uiso 1 1 d G.. H85 H Uiso 1 1 calc R.. C86 C (4) (4) (6) 0.082(4) Uiso 1 1 d G.. H86 H Uiso 1 1 calc R.. C87 C (3) (4) (6) 0.084(4) Uiso 1 1 d G.. H87 H Uiso 1 1 calc R.. C88 C (4) (4) (6) 0.103(5) Uiso 1 1 d G.. H88 H Uiso 1 1 calc R.. C89 C (5) (4) (6) 0.079(4) Uiso 1 1 d G.. H89 H Uiso 1 1 calc R.. C90 C (4) (5) (6) 0.091(4) Uiso 1 1 d G.. H90 H Uiso 1 1 calc R.. C91 C (4) (4) (7) 0.115(5) Uiso 1 1 d G.. H91 H Uiso 1 1 calc R.. C92 C (5) (4) (6) 0.097(5) Uiso 1 1 d G.. ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

68 H92 H Uiso 1 1 calc R.. C93 C (5) (5) (6) 0.090(4) Uiso 1 1 d G.. H93 H Uiso 1 1 calc R.. C94 C (6) (3) (7) 0.107(5) Uiso 1 1 d G.. H94 H Uiso 1 1 calc R.. C95 C (4) (4) (6) 0.092(4) Uiso 1 1 d G.. H95 H Uiso 1 1 calc R.. C96 C (5) (4) (6) 0.093(4) Uiso 1 1 d G.. H96 H Uiso 1 1 calc R.. C97 C (5) (3) (6) 0.076(3) Uiso 1 1 d G.. H97 H Uiso 1 1 calc R.. C98 C (4) (5) (6) 0.112(5) Uiso 1 1 d G.. H98 H Uiso 1 1 calc R.. C99 C (6) (5) (7) 0.117(6) Uiso 1 1 d G.. H99 H Uiso 1 1 calc R (4) (4) (4) (16) Uani 1 1 d (4) (4) (5) (17) Uani 1 1 d (3) (3) (5) (16) Uani 1 1 d (4) (4) (4) (17) Uani 1 1 d... H4A H Uiso 1 1 calc (4) (4) (5) (18) Uani 1 1 d... H5A H Uiso 1 1 calc (4) (4) (5) (17) Uani 1 1 d (4) (4) (5) (17) Uani 1 1 d (4) (4) (5) (16) Uani 1 1 d (4) (4) (5) (18) Uani 1 1 d... H9 H Uiso 1 1 calc (4) (4) (5) (18) Uani 1 1 d... H10 H Uiso 1 1 calc (4) (4) (4) (19) Uani 1 1 d (4) (4) (5) (17) Uani 1 1 d (4) (4) (4) (16) Uani 1 1 d (4) (4) (5) (18) Uani 1 1 d... H14 H Uiso 1 1 calc (4) (4) (5) (17) Uani 1 1 d... H15 H Uiso 1 1 calc... P1 P (13) (12) (14) (5) Uani 1 1 d... P2 P (15) (14) (15) (6) Uani 1 1 d... P3 P (15) (14) (16) (6) Uani 1 1 d... P4 P (13) (14) (14) (5) Uani 1 1 d... P5 P (12) (12) (14) (5) Uani 1 1 d... P6 P (13) (12) (17) (6) Uani 1 1 d... Ir1 Ir (4) (17) (15) (10) Uani 1 1 d... Ir2 Ir (3) (3) (18) (10) Uani 1 1 d... Ir3 Ir (17) (17) (3) (7) Uani 1 1 d... loop atom_site_aniso_label _atom_site_aniso_u_11 _atom_site_aniso_u_22 _atom_site_aniso_u_33 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

69 _atom_site_aniso_u_23 _atom_site_aniso_u_13 _atom_site_aniso_u_12 C (5) 0.040(5) 0.024(5) (4) (4) 0.030(4) C (5) 0.038(5) 0.023(5) (4) 0.011(4) 0.020(4) C (5) 0.035(4) 0.029(5) (4) 0.005(4) 0.012(4) C (5) 0.030(4) 0.039(5) (4) 0.008(4) 0.021(4) C (6) 0.040(5) 0.059(7) 0.005(5) 0.006(5) 0.021(5) C (7) 0.028(5) 0.065(7) 0.014(5) 0.022(6) 0.022(5) C (6) 0.039(6) 0.032(6) (4) 0.007(5) 0.017(5) C (6) 0.034(6) 0.038(6) 0.004(4) 0.010(5) 0.020(5) C (4) 0.025(4) 0.022(5) 0.000(4) (4) 0.010(4) C (6) 0.060(7) 0.063(8) (6) 0.000(5) 0.026(5) C (6) 0.042(6) 0.050(6) (5) (5) 0.014(5) C (7) 0.036(6) 0.044(6) (5) (5) 0.019(5) C (9) 0.055(7) 0.038(6) 0.018(5) 0.019(6) 0.039(7) C (6) 0.045(6) 0.050(7) (5) 0.002(5) 0.024(5) C (9) 0.082(9) 0.052(7) (7) (7) 0.061(8) C (13) 0.072(9) 0.072(9) (7) (8) 0.076(10) C (7) 0.059(7) 0.056(7) (6) 0.001(5) 0.031(5) C (10) 0.040(7) 0.041(7) (5) 0.002(7) 0.031(6) C (7) 0.050(6) 0.042(6) (5) (5) 0.030(5) C (13) 0.079(10) 0.077(11) (8) (8) 0.061(9) C (6) 0.061(7) 0.066(8) 0.025(6) 0.018(5) 0.036(5) C (5) 0.060(6) 0.042(6) 0.003(5) 0.000(4) 0.019(5) C (5) 0.029(4) 0.024(5) (4) (4) 0.012(4) C (5) 0.043(5) 0.020(5) (4) (4) 0.021(4) C (4) 0.031(4) 0.020(5) (4) (4) 0.012(4) C (8) 0.042(6) 0.048(7) 0.005(5) 0.020(6) 0.017(6) C (5) 0.032(5) 0.035(6) 0.000(4) (4) 0.021(4) C (6) 0.050(6) 0.050(6) (5) (5) 0.026(5) C (6) 0.057(7) 0.054(7) (6) (5) 0.028(6) C (8) 0.089(9) 0.054(8) (7) (6) 0.070(8) C (8) 0.073(9) 0.067(8) (7) (7) 0.055(8) C (6) 0.053(6) 0.036(6) (5) (5) 0.027(5) C (5) 0.048(5) 0.045(6) 0.004(5) 0.009(5) 0.014(4) C (6) 0.045(6) 0.044(6) 0.004(5) 0.001(5) 0.016(5) C (5) 0.079(8) 0.083(9) 0.006(7) 0.011(5) 0.035(6) C (11) 0.065(8) 0.113(13) 0.042(8) 0.033(10) 0.060(8) C (5) 0.041(5) 0.021(4) (4) (4) 0.023(4) C (4) 0.036(5) 0.016(4) (4) (4) 0.013(4) C (7) 0.046(6) 0.071(8) 0.017(5) 0.006(6) 0.024(5) C (7) 0.076(8) 0.039(6) (6) (5) 0.052(6) C (6) 0.041(6) 0.040(6) (4) (5) 0.024(5) C (5) 0.038(5) 0.028(7) 0.006(4) 0.009(4) 0.028(5) C (7) 0.039(5) 0.033(6) 0.001(4) (5) 0.032(5) C (6) 0.021(5) 0.035(6) (4) (5) 0.011(5) C (6) 0.048(6) 0.043(7) (5) 0.003(5) 0.029(5) C (5) 0.052(6) 0.038(6) 0.010(5) 0.009(5) 0.033(5) C (8) 0.090(10) 0.057(8) (7) (6) 0.056(7) C (7) 0.073(8) 0.056(7) (6) 0.002(6) 0.054(7) ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

70 C (6) 0.067(7) 0.044(6) (5) (5) 0.040(6) C (6) 0.047(5) 0.023(4) (4) (4) 0.033(4) C (6) 0.049(6) 0.047(6) (5) (5) 0.032(5) C (9) 0.065(7) 0.069(8) (6) (7) 0.060(7) C (6) 0.033(5) 0.034(5) (4) (5) 0.023(4) C (5) 0.043(5) 0.022(5) (4) (4) 0.030(4) C (6) 0.041(5) 0.021(5) (4) (4) 0.023(5) C (6) 0.042(5) 0.032(6) 0.000(4) 0.007(4) 0.030(5) C (7) 0.053(6) 0.042(6) (5) 0.004(5) 0.049(6) C (6) 0.041(5) 0.048(6) 0.008(4) 0.016(5) 0.039(5) C (6) 0.054(6) 0.040(5) 0.007(4) 0.003(4) 0.040(5) C (6) 0.041(6) 0.061(8) (5) 0.000(5) 0.024(5) C (5) 0.060(7) 0.047(6) 0.008(5) 0.001(5) 0.026(5) C (7) 0.052(6) 0.031(6) (5) 0.007(5) 0.037(6) C (7) 0.068(9) 0.040(6) 0.009(6) 0.006(5) 0.048(7) (4) 0.052(4) 0.014(4) (4) 0.004(3) 0.026(4) (4) 0.025(4) 0.027(4) (3) (3) 0.006(3) (3) 0.023(3) 0.031(4) 0.001(3) 0.000(3) 0.010(3) (4) 0.034(4) 0.013(4) (3) (3) 0.021(3) (4) 0.034(4) 0.023(4) (3) (3) 0.016(3) (4) 0.034(4) 0.033(4) (4) 0.005(4) 0.015(3) (4) 0.037(4) 0.028(4) (3) (3) 0.024(3) (4) 0.031(4) 0.029(4) (3) (3) 0.018(3) (4) 0.040(5) 0.029(4) 0.002(3) 0.004(3) 0.027(4) (4) 0.038(4) 0.026(4) 0.002(3) 0.003(4) 0.020(4) (4) 0.057(5) 0.014(4) (4) (3) 0.015(4) (4) 0.025(3) 0.031(5) (3) (3) 0.021(3) (4) 0.030(4) 0.022(4) (3) (3) 0.025(3) (4) 0.044(5) 0.021(4) 0.007(3) 0.004(3) 0.023(3) (4) 0.037(4) 0.022(4) 0.004(3) 0.007(3) 0.023(4) P (13) (11) (12) (10) (10) (10) P (15) (13) (12) (11) (12) (13) P (15) (13) (13) (11) (11) (13) P (13) (13) (12) (11) (10) (11) P (13) (12) (12) (10) (10) (10) P (12) (14) (14) (11) (10) (11) Ir (2) (17) (2) (15) (19) (17) Ir (2) (2) (2) (18) (17) (2) Ir (17) (2) (17) (17) (19) (14) _geom_special_details ; All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. ; loop_ ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

71 _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C (13).? C (13).? C (12).? C (13).? C (12).? C2 C (13).? C3 C (14).? C3 C (15).? C4 C (13).? C5 C (17).? C6 C (17).? C7 C (14).? C (11).? C (12).? C (12).? C10 C (15).? C11 C (14).? C12 C (17).? C12 C (16).? C12 P (13).? C15 C (17).? C16 C (15).? C17 C (16).? C18 C (15).? C19 C (16).? C20 C (18).? C21 C (13).? C22 C (15).? C (12).? C (13).? C (13).? C (12).? C (12).? C24 C (13).? C (12).? C (13).? C (12).? C26 C (18).? C (14).? C (13).? C (11).? C28 C (16).? C29 C (15).? C30 C (15).? C31 C (15).? C32 C (15).? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

72 C33 C (14).? C34 C (16).? C35 C (14).? C36 C (15).? C (13).? C (12).? C37 C (13).? C (12).? C (12).? C (13).? C39 C (14).? C40 C (15).? C41 P (11).? C42 P (12).? C43 P (11).? C44 P (12).? C45 P (12).? C46 P (10).? C47 C (18).? C47 C (18).? C48 C (14).? C49 C (15).? C50 C (14).? C51 C (14).? C53 P (10).? C54 C (14).? C54 C (14).? C55 C (13).? C56 C (15).? C57 C (14).? C58 C (12).? C60 P (13).? C61 P (11).? C62 P (12).? C63 P (13).? C64 C ? C64 C ? C65 C ? C66 C ? C67 C ? C68 C ? C70 C ? C70 C ? C71 C ? C72 C ? C73 C ? C74 C ? C76 C ? C76 C ? C77 C ? C78 C ? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

73 C79 C ? C80 C ? C82 C ? C82 C ? C83 C ? C84 C ? C85 C ? C86 C ? C88 C ? C88 C ? C89 C ? C90 C ? C91 C ? C92 C ? C94 C ? C94 C ? C95 C ? C96 C ? C97 C ? C98 C ? 1 Ir (8).? 4 P (8).? 5 P (8).? 6 Ir (7).? 9 P (8).? 10 P (8).? 11 Ir (8).? 14 P (8).? 15 P (8).? P1 Ir (3).? P2 Ir (3).? P3 Ir (3).? P4 Ir (3).? P5 Ir (2).? P6 Ir (3).? loop geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 5 C (8)..? 5 C (9)..? 1 C (8)..? 2 C (9)..? 2 C2 C (9)..? 3 C2 C (9)..? C4 C3 C (9)..? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

74 C4 C3 C (9)..? C8 C3 C (9)..? C3 C4 C (10)..? C6 C5 C (10)..? C5 C6 C (9)..? C6 C7 C (11)..? C3 C8 C (10)..? 2 C (8)..? 2 C (8)..? 4 C (7)..? C14 C12 C (10)..? C14 C12 P (9)..? C13 C12 P (8)..? 13 C (9)..? 13 C (8)..? 11 C (8)..? 12 C (9)..? 12 C24 C (8)..? 13 C24 C (8)..? 12 C (9)..? 12 C (9)..? 11 C (8)..? 10 C (8)..? 10 C (9)..? 6 C (9)..? 7 C (8)..? 7 C37 C (8)..? 8 C37 C (8)..? 7 C (9)..? 7 C (8)..? 6 C (8)..? C11 C41 C (9)..? C11 C41 P (8)..? C10 C41 P (7)..? C40 C42 C (10)..? C40 C42 P (8)..? C32 C42 P (8)..? C15 C43 C (10)..? C15 C43 P (8)..? C16 C43 P (9)..? C17 C44 C (11)..? C17 C44 P (8)..? C18 C44 P (8)..? C20 C45 C (11)..? C20 C45 P (9)..? C19 C45 P (8)..? C22 C46 C (9)..? C22 C46 P (7)..? C21 C46 P (7)..? C48 C47 C (11)..? C47 C48 C (12)..? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

75 C50 C49 C (11)..? C49 C50 C (9)..? C49 C50 C (10)..? C51 C50 C (9)..? C50 C51 C (10)..? C47 C52 C (12)..? C33 C53 C (8)..? C33 C53 P (7)..? C39 C53 P (7)..? C59 C54 C (9)..? C59 C54 C (8)..? C55 C54 C (9)..? C54 C55 C (9)..? C57 C56 C (9)..? C58 C57 C (8)..? C57 C58 C (9)..? C54 C59 C (9)..? C31 C60 C (10)..? C31 C60 P (9)..? C29 C60 P (8)..? C34 C61 C (10)..? C34 C61 P (7)..? C35 C61 P (8)..? C36 C62 C (11)..? C36 C62 P (9)..? C26 C62 P (8)..? C28 C63 C (11)..? C28 C63 P (8)..? C30 C63 P (9)..? C65 C64 C ? C64 C65 C ? C67 C66 C ? C66 C67 C ? C69 C68 C ? C68 C69 C ? C71 C70 C ? C70 C71 C ? C73 C72 C ? C72 C73 C ? C75 C74 C ? C74 C75 C ? C77 C76 C ? C78 C77 C ? C77 C78 C ? C80 C79 C ? C81 C80 C ? C80 C81 C ? C83 C82 C ? C82 C83 C ? C83 C84 C ? C84 C85 C ? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

76 C87 C86 C ? C86 C87 C ? C89 C88 C ? C88 C89 C ? C91 C90 C ? C90 C91 C ? C93 C92 C ? C92 C93 C ? C95 C94 C ? C96 C95 C ? C97 C96 C ? C96 C97 C ? C97 C98 C ? C98 C99 C ? C1 1 C (8)..? C1 1 Ir (6)..? C9 1 Ir (6)..? C2 2 C (8)..? C2 3 C (8)..? C9 4 P (6)..? C1 5 P (7)..? C27 6 C (8)..? C27 6 Ir (6)..? C38 6 Ir (7)..? C38 7 C (8)..? C27 8 C (8)..? C38 9 P (7)..? C27 10 P (7)..? C23 11 C (8)..? C23 11 Ir (7)..? C25 11 Ir (6)..? C24 12 C (8)..? C23 13 C (8)..? C25 14 P (7)..? C23 15 P (7)..? 4 P1 C (4)..? 4 P1 C (4)..? C41 P1 C (5)..? 4 P1 Ir (3)..? C41 P1 Ir (4)..? C44 P1 Ir (4)..? 5 P2 C (4)..? 5 P2 C (5)..? C43 P2 C (6)..? 5 P2 Ir (3)..? C43 P2 Ir (4)..? C12 P2 Ir (4)..? 9 P3 C (4)..? 9 P3 C (5)..? C63 P3 C (5)..? 9 P3 Ir (3)..? ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

77 C63 P3 Ir (4)..? C62 P3 Ir (4)..? 10 P4 C (5)..? 10 P4 C (5)..? C60 P4 C (6)..? 10 P4 Ir2 99.6(3)..? C60 P4 Ir (4)..? C61 P4 Ir (4)..? 14 P5 C (4)..? 14 P5 C (4)..? C53 P5 C (5)..? 14 P5 Ir (3)..? C53 P5 Ir (3)..? C42 P5 Ir (4)..? 15 P6 C (4)..? 15 P6 C (5)..? C46 P6 C (5)..? 15 P6 Ir (3)..? C46 P6 Ir (4)..? C45 P6 Ir (4)..? 1 Ir1 P1 82.4(2)..? 1 Ir1 P2 81.3(2)..? P1 Ir1 P (10)..? 6 Ir2 P3 82.4(2)..? 6 Ir2 P4 81.2(2)..? P3 Ir2 P (9)..? 11 Ir3 P5 82.3(2)..? 11 Ir3 P6 81.2(2)..? P5 Ir3 P (8)..? _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max _refine_diff_density_min _refine_diff_density_rms ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

78 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

79 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

80 ATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved.

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel* Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2Mg 2 2Li ** Stefan H. Wunderlich and Paul Knochel* Ludwig Maximilians-Universität München, Department Chemie & Biochemie

More information

A Sustainable Multi-Component Pyrimidine Synthesis

A Sustainable Multi-Component Pyrimidine Synthesis Supporting Information A Sustainable Multi-Component Pyrimidine Synthesis Nicklas Deibl, Kevin Ament, and Rhett Kempe* Anorganische Chemie II - Katalysatordesign, Universität Bayreuth, 95440 Bayreuth,

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions

Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions SUPPORTIG IFORMATIO Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions Alexey Volkov, a Fredrik Tinnis, a and Hans Adolfsson.* a a Department of Organic Chemistry,

More information

Supporting Information

Supporting Information Supporting Information An efficient and general method for the Heck and Buchwald- Hartwig coupling reactions of aryl chlorides Dong-Hwan Lee, Abu Taher, Shahin Hossain and Myung-Jong Jin* Department of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information General and highly active catalyst for mono and double Hiyama coupling reactions of unreactive aryl chlorides in water Dong-Hwan Lee, Ji-Young Jung, and Myung-Jong

More information

Supporting Information

Supporting Information Supporting Information An Extremely Active and General Catalyst for Suzuki Coupling Reactions of Unreactive Aryl Chlorides Dong-Hwan Lee and Myung-Jong Jin* School of Chemical Science and Engineering,

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Pd-Catalyzed C-H Activation/xidative Cyclization of Acetanilide with orbornene:

More information

Supporting Information

Supporting Information Electronic upplementary Material (EI) for rganic Chemistry rontiers. This journal is the Partner rganisations 0 upporting Information Convenient ynthesis of Pentafluoroethyl Thioethers via Catalytic andmeyer

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol. SI-1 Supporting Information Non-Racemic Bicyclic Lactam Lactones Via Regio- and cis-diastereocontrolled C H insertion. Asymmetric Synthesis of (8S,8aS)-octahydroindolizidin-8-ol and (1S,8aS)-octahydroindolizidin-1-ol.

More information

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Efficient Pd-Catalyzed Amination of Heteroaryl Halides 1 Efficient Pd-Catalyzed Amination of Heteroaryl Halides Mark D. Charles, Philip Schultz, Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Supporting

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry Supporting Information General Remarks Most of chemicals were purchased from Sigma-Aldrich, Strem,

More information

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen Supporting information for [Pd(HC)(PR 3 )] (HC = -Heterocyclic Carbene) Catalyzed Alcohol Oxidation Using Molecular Oxygen Václav Jurčík, Thibault E. Schmid, Quentin Dumont, Alexandra M. Z. Slawin and

More information

Supporting Information

Supporting Information Supporting Information Copper-catalyzed Borylation of Primary and Secondary Alkyl Halides with Bis(neopentyl glycolate) Diboron at Room Temperature Xin Lou,* 1,2 Zhen-Qi Zhang, 2 Jing-Hui Liu, 2 and Xiao-Yu

More information

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Iridium-catalyzed regioselective decarboxylative allylation of β-ketoacids: efficient construction

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN A Direct, ne-step Synthesis of Condensed Heterocycles: A Palladium-Catalyzed Coupling Approach Farnaz Jafarpour and Mark Lautens* Davenport Chemical Research Laboratories, Chemistry

More information

Supplementary Information

Supplementary Information Supplementary Information NE Difference Spectroscopy: SnPh 3 CH (b) Me (b) C()CH (a) Me (a) C()N Me (d) Me (c) Irradiated signal Enhanced signal(s) (%) Me (a) Me (c) 0.5, Me (d) 0.6 Me (b) - Me (c) H (a)

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Ring-pening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Jumreang Tummatorn, and Gregory B. Dudley, * Department of Chemistry and Biochemistry, Florida State University,

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

Accessory Information

Accessory Information Accessory Information Synthesis of 5-phenyl 2-Functionalized Pyrroles by amino Heck and tandem amino Heck Carbonylation reactions Shazia Zaman, *A,B Mitsuru Kitamura B, C and Andrew D. Abell A *A Department

More information

Supporting Information

Supporting Information Supporting Information Frustrated Lewis Pair-Like Splitting of Aromatic C-H bonds and Abstraction of Halogen Atoms by a Cationic [( F PNP)Pt] + Species Jessica C. DeMott, Nattamai Bhuvanesh and Oleg V.

More information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 24 Supporting Information Poly(4-vinylimidazolium)s: A Highly Recyclable rganocatalyst Precursor

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

Directed Zincation of Sensitive Aromatics and

Directed Zincation of Sensitive Aromatics and 1 TMPZn Li: A ew Active Selective Base for the Directed Zincation of Sensitive Aromatics and Heteroaromatics Marc Mosrin and Paul Knochel* Department Chemie & Biochemie, Ludwig-Maximilians-Universität,

More information

Supporting Information

Supporting Information Supporting Information Precision Synthesis of Poly(-hexylpyrrole) and its Diblock Copolymer with Poly(p-phenylene) via Catalyst-Transfer Polycondensation Akihiro Yokoyama, Akira Kato, Ryo Miyakoshi, and

More information

Preparation of the reagent TMPMgCl LiCl [1] (1):

Preparation of the reagent TMPMgCl LiCl [1] (1): Regio- and Chemoselective Magnesiation of Protected Uracils and Thiouracils using TMPMgCl LiCl and TMP 2 Mg 2LiCl upporting nformation Marc Mosrin, adège Boudet and Paul Knochel Ludwig-Maximilians-Universität

More information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S Supporting Text Synthesis of (2S,3S)-2,3-bis(3-bromophenoxy)butane (3). Under N 2 atmosphere and at room temperature, a mixture of 3-bromophenol (0.746 g, 4.3 mmol) and Cs 2 C 3 (2.81 g, 8.6 mmol) in DMS

More information

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of Supporting Information for Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-mic ligand. Study of the electronic properties and catalytic activities Carmen Mejuto 1, Beatriz Royo

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Peptidic α-ketocarboxylic Acids and Sulfonamides as Inhibitors of Protein Tyrosine Phosphatases Yen Ting Chen, Jian Xie, and Christopher T. Seto* Department of Chemistry, Brown

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthetic chemistry ML5 and ML4 were identified as K P.(TREK-) activators using a combination of fluorescence-based thallium flux and automated patch-clamp assays. ML5, ML4, and ML5a were synthesized using

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

Supporting Information

Supporting Information Supporting Information Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing Table of Contents 1. General Information --------------------------------------------------------------------------2

More information

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site

More information

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis Kazushi Watanabe, Yuto Suzuki, Kenta Aoki, Akira Sakakura, Kiyotake Suenaga, and Hideo Kigoshi* Department of Chemistry,

More information

Synergistic Cu/Ir Catalysis. Table of Contents

Synergistic Cu/Ir Catalysis. Table of Contents Supporting Information for Stereodivergent Synthesis of, -Disubstituted -Amino Acids via Synergistic Cu/Ir Catalysis Liang Wei, 1 Qiao Zhu, 1 Shi-Ming Xu, 1 Xin Chang 1 and Chun-Jiang Wang* 1,2 1 College

More information

Supporting information

Supporting information Supporting information Design and applications of an efficient amphiphilic click Cu I catalyst in water Changlong Wang, a Dong Wang, a Shilin Yu, a Thomas Cornilleau, a Jaime Ruiz, a Lionel Salmon, b and

More information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Ashish Thakur, Kainan Zhang, Janis Louie* SUPPORTING INFORMATION General Experimental: All reactions were conducted under an atmosphere

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany (TMP) 2 Zn 2MgCl 2 2LiCl: A ew Highly Chemoselective Base for the Directed Zincation of Sensitive Aromatics and Heteroaromatics** Stefan H.

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst

Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst Supporting Information Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst Man Wang, Bizhen Yuan, Tongmei Ma, Huanfeng Jiang and Yingwei Li* School

More information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 Supplementary Material (ESI)

More information

A Closer Look at the Bromine-Lithium Exchange with

A Closer Look at the Bromine-Lithium Exchange with SUPPRTIG IFRMATI A Closer Look at the Bromine-Lithium Exchange with tert-butyllithium in an Aryl Sulfonamide Synthesis Christopher Waldmann,*, tmar Schober, Günter Haufe, and Klaus Kopka, Department of

More information

Supporting Information for

Supporting Information for Supporting Information for Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis Koji Endo and Robert H. Grubbs* Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry

More information

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and Supporting Information for A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3- butyn-2-ols Jie Li and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis** Myles B. Herbert, Vanessa M. Marx, Richard L. Pederson, and Robert

More information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Ludovic Marciasini, Bastien Cacciuttolo, Michel Vaultier and Mathieu Pucheault* Institut des Sciences Moléculaires, UMR 5255,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Method Synthesis of 2-alkyl-MPT(R) General information (R) enantiomer of 2-alkyl (18:1) MPT (hereafter designated as 2-alkyl- MPT(R)), was synthesized as previously described 1, with some

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Substitution of Two Fluorine Atoms in a Trifluoromethyl Group: Regioselective Synthesis of 3-Fluoropyrazoles** Kohei Fuchibe, Masaki Takahashi,

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Supporting Information

Supporting Information Supporting Information A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid Lin Wang, Helfried Neumann, and Matthias Beller* anie_201802384_sm_miscellaneous_information.pdf

More information

Supplementary Materials. Table of contents

Supplementary Materials. Table of contents Supplementary Materials Microwave- Assisted Multicomponent Ecofriendly Synthesis of 3-Bihetaryl-2-oxindole Derivatives Grafted with Phenothiazine Moiety A. S. Al-Bogami 1 and A. S. El-Ahl 1,2 * 1 Chemistry

More information

Supporting Information

Supporting Information Electronic upplementary Material (EI) for Journal of Materials Chemistry B. This journal is The Royal ociety of Chemistry 216 upporting Information A dual-functional benzobisthiadiazole derivative as an

More information

Supplementary Information (Manuscript C005066K)

Supplementary Information (Manuscript C005066K) Supplementary Information (Manuscript C005066K) 1) Experimental procedures and spectroscopic data for compounds 6-12, 16-19 and 21-29 described in the paper are given in the supporting information. 2)

More information

Supporting Information:

Supporting Information: Enantioselective Synthesis of (-)-Codeine and (-)-Morphine Barry M. Trost* and Weiping Tang Department of Chemistry, Stanford University, Stanford, CA 94305-5080 1. Aldehyde 7. Supporting Information:

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Visible light-mediated dehydrogenative

More information

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian SUPPLEMETARY OTE Chemistry All solvents and reagents were used as obtained. 1H MR spectra were recorded with a Varian Inova 600 MR spectrometer and referenced to dimethylsulfoxide. Chemical shifts are

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol S1 Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol Julien

More information

Experimental details

Experimental details Supporting Information for A scalable synthesis of the (S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole ((S)-t-BuPyx) ligand Hideki Shimizu 1,2, Jeffrey C. Holder 1 and Brian M. Stoltz* 1 Address:

More information

Supporting Information

Supporting Information Supporting Information ACA: A Family of Fluorescent Probes that Bind and Stain Amyloid Plaques in Human Tissue Willy M. Chang, a Marianna Dakanali, a Christina C. Capule, a Christina J. Sigurdson, b Jerry

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Synthesis of Functionalized Thia Analogues of Phlorins and Covalently Linked Phlorin-Porphyrin Dyads Iti Gupta a, Roland Fröhlich b and Mangalampalli Ravikanth *a a Department of

More information

Supporting Information

Supporting Information Supporting Information Efficient Short Step Synthesis of Corey s Tamiflu Intermediate Nsiama Tienabe Kipassa, Hiroaki kamura, * Kengo Kina, Tetsuo Iwagawa, and Toshiyuki Hamada Department of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium Phosphine Catalyst** Sebastian Wesselbaum, Thorsten vom Stein,

More information

Stereoselective Synthesis of a Topologically Chiral Molecule: The Trefoil Knot

Stereoselective Synthesis of a Topologically Chiral Molecule: The Trefoil Knot Stereoselective Synthesis of a Topologically Chiral Molecule: The Trefoil Knot Laure-Emmanuelle Perret-Aebi, Alexander von Zelewsky 1, Christiane Dietrich- Buchecker and Jean-Pierre Sauvage Bis-5,6-pinene

More information

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation

Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Supporting Information for: Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation Jens Wolfard, Jie Xu,* Haiming Zhang, and Cheol K. Chung* Department of Small Molecule Process Chemistry,

More information

Palladium-Catalyzed Alkylarylation of Acrylamides with

Palladium-Catalyzed Alkylarylation of Acrylamides with Supporting Information Palladium-Catalyzed Alkylarylation of Acrylamides with Unactivated Alkyl Halides Hua Wang, Li-a Guo, and Xin-Hua Duan* Department of Chemistry, School of Science and ME Key Laboratory

More information

dichloropyrimidine (1.5 g, 10.1 mmol) in THF (10 ml) added at -116 C under nitrogen atmosphere.

dichloropyrimidine (1.5 g, 10.1 mmol) in THF (10 ml) added at -116 C under nitrogen atmosphere. Supporting Information Experimental The presence of atropisomerism arising from diastereoisomerism is indicated in the 13 C spectra of the relevant compounds with the second isomer being indicated with

More information

Mild Decarboxylative Activation of Malonic Acid Derivatives by 1,1 - Carbonyldiimidazole. Danny Lafrance*, Paul Bowles, Kyle Leeman and Robert Rafka

Mild Decarboxylative Activation of Malonic Acid Derivatives by 1,1 - Carbonyldiimidazole. Danny Lafrance*, Paul Bowles, Kyle Leeman and Robert Rafka Mild Decarboxylative Activation of Malonic Acid Derivatives by 1,1 - Carbonyldiimidazole. Danny Lafrance*, Paul Bowles, Kyle Leeman and Robert Rafka Development Science and Technology, Pfizer Inc., Eastern

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Boc Groups as Protectors and Directors for Ir-Catalyzed C-H Borylation of. Heterocycles

Boc Groups as Protectors and Directors for Ir-Catalyzed C-H Borylation of. Heterocycles Boc Groups as Protectors and Directors for Ir-Catalyzed C-H Borylation of Heterocycles Venkata A. Kallepalli, Feng Shi, Sulagna Paul, Edith N. nyeozili, Robert E. Maleczka, Jr.,* and Milton R. Smith, III*

More information

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Sonia Amel Diab, Antje Hienzch, Cyril Lebargy, Stéphante Guillarme, Emmanuel fund

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Concise Stereoselective Synthesis of ( )-Podophyllotoxin by Intermolecular Fe III -catalyzed Friedel-Crafts Alkylation Daniel Stadler, Thorsten

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Supporting Information

Supporting Information Supporting Information Design and Enantioselective Synthesis of β-vinyl Tryptamine Building Blocks for Construction of Privileged Chiral Indole Scaffolds Tao-Yan Lin, Hai-Hong Wu, Jian-Jun Feng*, and Junliang

More information

Supporting Information

Supporting Information Electronic upplementary Material (EI) for ChemComm. This journal is The Royal ociety of Chemistry upporting Information Controllably, C C Triple Bond as One-Carbon ynthon to Assembly of Benzothiazole Framework

More information

Supporting Information

Supporting Information Supporting Information for Cu-Mediated trifluoromethylation of benzyl, allyl and propargyl methanesulfonates with TMSCF 3 Xueliang Jiang 1 and Feng-Ling Qing* 1,2 Address: 1 Key Laboratory of Organofluorine

More information

Electronic Supplementary Information. Highly Efficient Deep-Blue Emitting Organic Light Emitting Diode Based on the

Electronic Supplementary Information. Highly Efficient Deep-Blue Emitting Organic Light Emitting Diode Based on the Electronic Supplementary Information Highly Efficient Deep-Blue Emitting rganic Light Emitting Diode Based on the Multifunctional Fluorescent Molecule Comprising Covalently Bonded Carbazole and Anthracene

More information

Towards Environmentally Friendly Processing in Molecular Semiconductors

Towards Environmentally Friendly Processing in Molecular Semiconductors Towards Environmentally Friendly Processing in Molecular emiconductors Zachary B. Henson 1,2, Peter Zalar 1,2, iaofen Chen 1,2, Gregory C. Welch 1,2,3 Thuc- Quyen guyen 1,2,3 and Guillermo C. Bazan 1,2,3

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information Palladium-Catalyzed Oxidative Allylation of Bis[(pinacolato)boryl]methane:

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany S1 Stereoselective Synthesis of α,α-chlorofluoro Carbonyl Compounds Leading to the Construction of luorinated Chiral Quaternary Carbon Centers

More information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) for Effect of Conjugation and Aromaticity of 3,6 Di-substituted

More information

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes Jian Gong, Fuchun Xie, Wenming Ren, Hong Chen and Youhong Hu* State Key Laboratory of Drug Research,

More information

Supporting Information

Supporting Information Supporting Information Construction of Highly Functional α-amino itriles via a ovel Multicomponent Tandem rganocatalytic Reaction: a Facile Access to α-methylene γ-lactams Feng Pan, Jian-Ming Chen, Zhe

More information

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov 1 Synthesis of 5-cinnamoyl-3,4-dihydropyrimidine-2(1H)-ones Supplementary Information Maksim A. Kolosov*, lesia G. Kulyk, Elena G. Shvets, Valeriy D. rlov Department of organic chemistry, V.N.Karazin Kharkiv

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information