Chemical Kinetics and

Size: px
Start display at page:

Download "Chemical Kinetics and"

Transcription

1 Chemical Kinetics and Equilibrium Part 2: Chemical Equilibrium David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA

2 The Concept of Equilibrium Kinetics applies to the speed of a reaction, the concentration of product appearing (or of reactant disappearing) per unit time Equilibrium i applies to the extent of a reaction, the concentration of product that has appeared given unlimited time, or when no further macroscopic change occurs. Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.

3 The Cobalt(II) Chloride Equilibrium Co(H 2 O) 6 2+ (aq) +4 Cl (aq) CoCl 4 (aq) +6 H 2 O (l)

4 The equilibrium system N 2 O 4(g) 2 NO 2 (g) Initially, N 2 O 4 (colorless) is added to the reaction container As the system moves toward an equilibrium condition, the color changes as more NO 2 (red-brown) is formed When equilibrium is reached, the numbers of N 2 O 4 and NO 2 molecules is constant and the color remains unchanged

5 The Concept of Equilibrium As a system approaches equilibrium, both the forward and reverse reactions are occurring. At equilibrium, the forward and reverse reactions are proceeding at the same rate.

6 A System at Equilibrium Once equilibrium is achieved, the amount of each reactant and product remains constant.

7 Depicting Equilibrium A system at equilibrium is dynamic on the molecular level, l that t is, both the forward and the reverse reactions are still taking place at the same rate. rate forward = rate backward No net change is observed because changes in one direction are balanced by changes in the other. To show an equilibrium system, we write its equation with a double arrow N 2 O 4(g) 2NO 2(g)

8 Chemical Equilibrium Iron(III) and thiocyanate Fe(H 2 O) 3+ 6 (aq) + SCN - Fe(SCN)(H 2 O) 2+ (aq) 5 (aq) + H 2 O (l) +

9 The Equilibrium Constant

10 The Equilibrium Constant Forward reaction: Rate law: Reverse reaction: Rate law: N 2 O 4 (g) 2 NO 2 (g) Rate = k f [N 2 O 4 ] 2 NO 2 (g) N 2 O 4 (g) Rate = k r [NO 2 ] 2

11 The Equilibrium Constant At equilibrium Rate f = Rate r Substitute t the rate equations k f [N 2 O 4 ] = k r [NO 2 ] 2 Rewriting this, it becomes k f [NO 2 ] 2 = k [N 2 2O r 4 ]

12 The Equilibrium Constant The ratio of the rate constants is a constant at that temperature, so the constants are combined into a single constant, and the expression becomes k f [NO = 2 ] 2 K eq = kr [N 2 O 4 ]

13 The Equilibrium Constant To generalize this expression, consider the reaction aa + bb cc + dd The equilibrium expression for this reaction would be K eq = [C]c [D] d [A] a [B] b This equation is known as the Law of Mass Action

14 The Equilibrium Constant For any reaction of the form: aa+bb + cc +dd [C]c [D] d The equilibrium expression is K eq = [A]a [B] b The values of a, b, c, and d are those of the coefficients in the balanced chemical equation. Note that this is equilibrium, not kinetics. Equilibrium is a State Function, that is, the value of K c depends on the concentrations of the reactants and the products.

15 The Equilibrium Constant Because pressure is proportional p to concentration for gases in a closed system, the equilibrium expression for 4 gases, A, B, C, and D, can also be written K = (P C) c (P D ) d p (P A ) a (P B ) b

16 Relationship between K and K c p From the ideal gas law we know that PV = nrt Rearranging to solve for P, we get n P = RT V Note that n/v is moles/liter or Molarity, so P =MRT

17 Relationship between K and K c p Substituting for P into the expression for K p for each substance, the relationship between K c and K p becomes K p = (M C RT) c (M D RT) d (M A RT) a (M B RT) b Factor out the RT terms to get K n p = K c (RT) Where: n = (moles of gaseous s product) (moles of gaseous s reactant)

18 Equilibrium Can Be Reached from Either Direction Examining the data in the table, above, the equilibrium ratio of [NO 2 ] 2 to [N 2 O 4 ] remains constant at this temperature no matter what the initial concentrations of NO 2 and N 2 O 4 are. Note: There must be sufficient quantities of compounds to reach an equilibrium condition

19 Equilibrium Can Be Reached from Either Direction This is the data from the last two trials from the table on the previous slide.

20 Equilibrium Can Be Reached from Either Direction It does not matter whether we start with N 2 and H 2 or whether we start with NH 3. We will have the same proportions of all three substances at equilibrium at the specified temperature.

21 What Does the Value of K Mean? If K >> 1, the reaction is product-favored; d product predominates at equilibrium.

22 What Does the Value of K Mean? If K >> 1, the reaction is product-favored; product predominates at equilibrium. If K << 1, the reaction is reactant-favored; reactant predominates at equilibrium.

23 Manipulating Equilibrium Constants t The equilibrium constant of a reaction in the reverse reaction is the reciprocal of the equilibrium constant of the forward reaction. N 2 O 4 (g) 2 NO 2 (g) K c = [NO 2 ] 2 [N 2 O 4 ] = at 100 C 2NO 2 (g) N 2O 4 (g) [N 2O 4 K c = 2 4] [NO 2 ] 2 = = 4.72 at 100 C

24 Manipulating Equilibrium Constants t The equilibrium constant of a reaction that has been multiplied by a number is the equilibrium constant raised to a power that is equal to that number. N 2 O 4 (g) [NO 2] 2NO 2 2 (g) K c = = at 100 C [N 2 O 4 ] 2 N 2 O 4 (g) 4 NO 2 (g) K c = [NO 2 ] 4 [N 2 O 4 ] 2 = (0.212) 2 at 100 C

25 Manipulating Equilibrium Constants t The equilibrium constant for a net reaction made up of two or more steps is the product of the equilibrium constants for the individual steps.

26 Heterogeneous Equilibria

27 The Concentrations of Solids and Liquids Are Considered to be Constant Both can be obtained by dividing the density Both can be obtained by dividing the density of the substance by its molar mass and both of these are constants at constant temperature.

28 The Concentrations of Solids and Liquids Are Considered to be Constant Therefore, the concentrations of solids and liquids do not appear in the equilibrium expression PbCl 2 (s) Pb 2+ (aq) + 2 Cl (aq) K c = [Pb 2+ ] [Cl ] 2

29 CaCO 3(s) CO 2(g) + CaO (s) As long as some CaCO 3 or CaO remain in the system, the amount of CO 2 above the solid will remain the same.

30 What Are the Equilibrium Expressions for These Equilibria? SnO 2(s) + 2 CO (g) Sn (s) + 2 CO 2 (g) CaCO 3 (s) CaO (s) + CO 2 (g) Zn (s) + Cu 2+ (aq) Cu (s) + Zn 2+ (aq)

31 Equilibrium i Calculations

32 Equilibrium Calculations A closed system initially containing x 10 3 M H and x M I 2 At 448 C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10 3 M. Calculate K c at 448 C for the reaction taking place, which is H 2(g) + I 2(g) 2HI (g)

33 What Do We Know? (This is our initial data) [H 2 ], M [I 2 ], M [HI], M Initially x x Change At equilibrium 1.87 x 10-3 Note: We assume there is no HI present initially

34 Determine changes: [HI] Increases by 1.87 x 10-3 M [H 2 ], M [I 2 ], M [HI], M Initially x x Change x 10-3 At equilibrium 1.87 x 10-3

35 Stoichiometry tells us [H 2 2] and [I 2 ] decrease by half as much H 2 (g) + I 2 (g) 2 HI (g) [H 2 ], M [I 2 ], M [HI], M Initially x x Change x x x 10-3 At equilibrium 1.87 x 10-3

36 We can now calculate the equilibrium concentrations of all three compounds [H 2 ], M [I 2 ], M [HI], M Initially x x Change x x x 10-3 At equilibrium 6.5 x x x 10-3

37 and substitute the concentrations into the equilibrium constant expression [HI] 2 K c = [H2 ] [I 2 ] = (1.87 x 10-3 ) 2 (6.5 x 10-5 )(1.065 x 10-3 ) = 51 Note that the equilibrium value has no units

38 The Reaction Quotient (Q) The reaction quotient is used when we are given data (i.e., initial iti concentrations) ti for a reaction but we do not know if the system is in equilibrium To calculate Q, one substitutes the initial concentrations of reactants and products into the equilibrium expression. Q gives the same ratio the equilibrium expression gives, but for a system that is not at equilibrium.

39 If Q = K, the system is at equilibrium.

40 If Q > K, there is too much product and the equilibrium shifts to the left.

41 If Q < K, there is too much reactant, and the equilibrium shifts to the right.

42 Le Châtelier s Principle

43 Le Châtelier s Principle Henri Louis Le Châtelier ( ) In 1884, Le Chatelier stated: Any system in stable chemical equilibrium, subjected to the influence of an external cause which tends to change either its temperature or its condensation (pressure, concentration, number of molecules in unit volume), either as a whole or in some of its parts, can only undergo such internal modifications as would, if produced alone, bring about a change of temperature t or of condensation of opposite sign to that resulting from the external cause. In 1888, he restated this as: Every change of one of the factors of an equilibrium occasions a rearrangement of the system in such a direction that the factor in question experiences a change in a sense opposite to the original change.

44 Le Châtelier s Principle Our modern statement is: If a system at equilibrium is disturbed by a change in temperature, t pressure, or the concentration of one of the components, the system will shift its equilibrium position so as to counteract the effect of the disturbance.

45 Le Châtelier s Principle Effect of a change in T: change in K therefore change in P or concentrations at equilibrium Change in concentration (Add or take away reactant or product): K does not change Reaction adjusts to new equilibrium position Use a catalyst: reaction comes more quickly to equilibrium. K not changed.

46 The Effect of Changes in Temperature Co(H 2 O) 6 2+ (aq) + 4 Cl - (aq) + HEAT CoCl 4 2- (aq) + 6 H 2 O (l)

47 Predicting the Effect of a Change in Concentration on the Equilibrium Position PROBLEM: To improve air quality and obtain a useful product, sulfur is often removed from coal and natural gas by treating the fuel contaminant hydrogen sulfide with O 2 ; 2H 2 S(g) + O 2 (g) 2S(s) + 2H 2 O(g) What happens to (a) [H 2 O] if O 2 is added? (c) [O 2 ]ifh 2 S is removed? (b) [H 2 S] if O 2 is added? (d) [H 2 S] if sulfur is added? SOLUTION: Write an expression for Q and compare it to K when the system is disturbed to see in which direction the reaction will progress. Q = [H 2 O] 2 [H 2 S] 2 [O 2 ] (a) When O is added the denominator increases so Q decreases (a) When O 2 is added, the denominator increases, so Q decreases. The reaction must progress to the right to come back to K. Therefore [H 2 O] increases.

48 Predicting the Effect of a Change in Concentration on the Equilibrium Position Q = [H 2O] 2 [H 2 S] 2 [O 2 ] (b) When O 2 is added, the denominator increases and Q decreases. The reaction must progress to the right to come back to K. Therefore [H 2 S] decreases. (c) When H 2 S is removed, the denominator decreases and Q increases. The reaction must progress to the left to come back to K. Therefore [O 2 ] increases. (d) Sulfur is not part of the Q (K) expression because it is a solid. Therefore, as long as some sulfur is present the reaction is unaffected. [H 2 S] is unchanged.

49 The effect of pressure (volume) on an equilibrium system + lower P (higher V) less moles per liter of gas shift to the left higher P (lower V) More moles per liter of gas shift to the right

50 Catalysts increase the rate of both the forward and reverse reactions.

51 Equilibrium is achieved faster, but the equilibrium composition remains unaltered.

52 The Effect of Various Changes on an Equilibrium System

53 The Haber-Bosch Process The Haber-Bosch process is the transformation of atmospheric nitrogen and hydrogen into ammonia (NH 3 ) for the production of ammonia-based fertilizers. Initially developed by Fritz Haber ( ) in 1905 by passing a mixture of N 2 and H 2 over an iron catalyst at 1000 C. Later, Haber modified the process by increasing the pressure to atm. over a catalyst at 500 C. In 1908, BASF acquired the process and assigned Carl Bosch ( ) the task of scaling the process up to industrial quantities. Bosch ss modifications of the Haber process provided ammonium sulphate for use as a fertilizer for the soil. N 2(g) + 3 H 2(g) 2 NH 3(g) + 92 kj. In 1914, Germany s supplies of sodium and potassium nitrates for making explosives were blocked off by the Allied forces. Using the Haber-Bosch process, they were able to produce explosives, prolonging World War I. Fritz Haber Carl Bosch

54 The Haber-Bosch Process K = 3.5 x 10 8 at 298 K If H 2 is added to the system, N 2 will be consumed and the two reagents will form more NH 3.

55 The Haber-Bosch Process This apparatus helps push the equilibrium i to the right by removing the ammonia (NH 3 ) from the system as a liquid.

56 Effect of Temperature on K c for Ammonia Synthesis T (K) K c x x x x x x x 10-2

57 Percent yield of ammonia vs. temperature ( C) at five different operating pressures

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium The Concept of Chapter 15 Chemical AP Chemistry 12 North Nova Education Centre 2017 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system

More information

Chapter 15 Chemical Equilibrium. Equilibrium

Chapter 15 Chemical Equilibrium. Equilibrium Chapter 15 Chemical The Concept of Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system approaches equilibrium, both the forward and

More information

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g)

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g) PowerPoint to accompany The Concept of Equilibrium Chapter 13 Chemical Equilibrium Figure 13.1 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

CHEMISTRY. Chapter 15 Chemical Equilibrium

CHEMISTRY. Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 8 th Edition Chapter 15 Chemical Kozet YAPSAKLI The Concept of Chemical equilibrium is the point at which the concentrations of all species are constant. Chemical equilibrium

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage 1 CHEMICAL EQUILIBRIUM Chapter 16 PLAY MOVIE Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) Properties of an Equilibrium Equilibrium systems are DYNAMIC (in constant motion) REVERSIBLE can be approached from either

More information

The Extent of Chemical Reactions

The Extent of Chemical Reactions Equilibrium: The Extent of Chemical Reactions The Equilibrium State and the Equilibrium Constant The Reaction Quotient and the Equilibrium Constant Equilibrium: The Extent of Chemical Reactions Expressing

More information

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 15 Chemical James F. Kirby Quinnipiac University Hamden, CT The Concept of N 2 O 4 (g) 2 NO 2 (g) Chemical equilibrium occurs when a reaction and its reverse reaction proceed

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

The Concept of Equilibrium

The Concept of Equilibrium Chemical Equilibrium The Concept of Equilibrium Sometimes you can visually observe a certain chemical reaction. A reaction may produce a gas or a color change and you can follow the progress of the reaction

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT 2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? In general terms equilibrium implies a situation that is unchanging or steady. This is generally achieved through a balance of opposing forces. In chemistry equilibrium

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium 1 Chapter 15. 15.1 The Concept of Equilibrium 1,2,3 Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops changing and

More information

The Equilibrium State

The Equilibrium State 15.1 The Equilibrium State All reactions are reversible and under suitable conditions will reach a state of equilibrium. At equilibrium, the concentrations of products and reactants no longer change because

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle Factors Affecting : Le Châtelier s Principle Pressure Factors Affecting : Le Châtelier s Principle Pressure When volume decreases, the pressure increases. systems in which some reactants and products are

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.91, 15.94-99, 15.10-15.103 Example: Ice melting is a dynamic process:

More information

Chemical Equilibrium-A Dynamic Equilibrium

Chemical Equilibrium-A Dynamic Equilibrium CHAPTER 14 Page 1 Chemical Equilibrium-A Dynamic Equilibrium When compounds react, they eventually form a mixture of products and (unreacted) reactants, in a dynamic equilibrium Much like water in a U-shape

More information

The N 2 O 4 -NO 2 Equilibrium

The N 2 O 4 -NO 2 Equilibrium Chemical Equilibria William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 1 Gaseous Chemical Equilibrium For a gaseous chemical equilibrium, more than one gas is present:

More information

For the reaction: A B R f = R r. Chemical Equilibrium Chapter The Concept of Equilibrium. The Concept of Equilibrium

For the reaction: A B R f = R r. Chemical Equilibrium Chapter The Concept of Equilibrium. The Concept of Equilibrium Chemical Equilibrium Chapter 15.1-4 This is the last unit of the year, and it contains quite a lot of material. Do not wait until the end of the unit to begin studying. Use what you have learned about

More information

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp )

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 8 (Chp 15,17): Chemical & Solubility (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants, in a dynamic equilibrium. A dynamic equilibrium consists of a forward

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle CHEMICAL EQUILIBRIUM 6.3 Le Chatelier s Principle At the end of the lesson, students should be able to: a) State Le Chatelier s principle b) Explain the effect of the following factors on a system at equilibrium

More information

A.P. Chemistry. Unit #11. Chemical Equilibrium

A.P. Chemistry. Unit #11. Chemical Equilibrium A.P. Chemistry Unit #11 Chemical Equilibrium I. Chemical Equilibrium the point in a reaction at which the concentrations of products and reactants remain constant Dynamic Equilibrium the equilibrium condition

More information

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Chemical Equilibrium Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Learning objectives Write equilibrium constant expressions for both solutions

More information

Chapter Fifteen. Chemical Equilibrium

Chapter Fifteen. Chemical Equilibrium Chapter Fifteen Chemical Equilibrium 1 The Concept of Equilibrium Dynamic Equilibrium Opposing processes occur at equal rates Forward and reverses reaction proceed at equal rates No outward change is observed

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium Characteristics of Chemical Equilibrium Chapter 14: Chemical Equilibrium 008 Brooks/Cole 1 008 Brooks/Cole Equilibrium is Dynamic Equilibrium is Independent of Direction of Approach Reactants convert to

More information

Chemical Equilibria 2

Chemical Equilibria 2 Chemical Equilibria 2 Reading: Ch 14 sections 6-9 Homework: Chapter 14: 27*, 29*, 31, 33, 41, 43, 45, 51*, 55, 61*, 63, 67*, 69* * = important homework question Review A chemical equilibrium and its respective

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

CHAPTER 3: CHEMICAL EQUILIBRIUM

CHAPTER 3: CHEMICAL EQUILIBRIUM CHAPTER 3: CHEMICAL EQUILIBRIUM 1 LESSON OUTCOME Write & explain the concepts of chemical equilibrium Derive the equilibrium constant Kc or Kp Solving the problem using the ICE table 2 Equilibrium is a

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. Chemistry 12 Unit II Dynamic Equilibrium Notes II.1 The Concept of Dynamic Equilibrium A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. A reversible

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry,

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry CHAPTER 14 Chemical Equilibrium 17-1 What happens? Stoichiometry How Fast? Kinetics applies to the speed of a reaction, the concentration of product that appears (or of reactant that disappears) per unit

More information

Dr. Valverde s AP Chemistry Class

Dr. Valverde s AP Chemistry Class AP* Chemistry Dr. Valverde s AP Chemistry Class Chapter CHEMICAL 13 Review: EQUILIBRIA: Chemical Equilibrium GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the rate

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Fu-Yin Hsu Chemical reaction The speed of a chemical reaction is determined by kinetics. The extent of a chemical reaction is determined by thermodynamics. 14.1 Fetal Hemoglobin

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g)

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

AP* Chapter 13. Chemical Equilibrium

AP* Chapter 13. Chemical Equilibrium AP* Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

The Concept of Equilibrium

The Concept of Equilibrium The Concept of Equilibrium Reversible reactions As the concentrations of the reactants decrease the rate of reaction in the forward direction decreases. As the concentrations of the products increase the

More information

Chemical Equilibrium - Chapter 15

Chemical Equilibrium - Chapter 15 Chemical Equilibrium - Chapter 15 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

1.6 Chemical equilibria and Le Chatelier s principle

1.6 Chemical equilibria and Le Chatelier s principle 1.6 Chemical equilibria and Le Chatelier s principle Reversible reactions: Consider the reaction: Mg(s) + H2SO4(aq) MgSO4(aq) + H2(g) The reaction stops when all of the limiting reagent has been used up.

More information

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle I. PURPOSE OF THE EXPERIMENT (i) To understand the basic concepts of chemical equilibrium (ii) To determine the

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

Dynamic Equilibrium. O 2 Transport, Hg and equilibrium. Tro Chpt 14 Chemical Equilibrium

Dynamic Equilibrium. O 2 Transport, Hg and equilibrium. Tro Chpt 14 Chemical Equilibrium Tro Chpt 14 Chemical Equilibrium The extent of chemical reactions The equilibrium constant, K Calculating equilibrium constants Predicting reaction directions Le Chatelier s Principle Suggested eoc problems

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium?

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium? Chapter 9 Quiz: Chemical Equilibria 1. Which of the following statements is true regarding chemical equilibrium? I. The concentrations of reactants and products at equilibrium are constant, which means

More information

Chemistry 12. Tutorial 5 The Equilibrium Constant (K ) eq

Chemistry 12. Tutorial 5 The Equilibrium Constant (K ) eq Chemistry 12 Tutorial 5 The Equilibrium Constant (K ) eq In this Tutorial you will be shown: 1. What is meant by the equilibrium constant K eq. 2. How to write the expression for K eq given a balanced

More information

Write a balanced reaction.. then write the equation.. then solve for something!!

Write a balanced reaction.. then write the equation.. then solve for something!! Chapter 13 - Equilibrium Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

CHAPTER 7: Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium CHAPTER 7: Chemical Equilibrium Chemical Reactions and Equilibrium Calculating Equilibrium Constants The Reaction Quotient Calculation of Gas-Phase Equilibria The effect of External Stresses: Le Châtelier

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

Chemical Equilibria. OCR Chemistry A H432

Chemical Equilibria. OCR Chemistry A H432 Chemical Equilibria Chemical equilibrium is a dynamic equilibrium. Features of a dynamic equilibrium, which can only be established in a closed system (nothing added or removed): - rates of forward and

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Sample Exercise 15.1 (p. 632) Write the equilibrium expression for K eq for these three reactions: a) 2 O 3(g) 3 O 2(g) b) 2 NO (g) + Cl 2(g) 2 NOCl (g) c) Ag + (aq) +

More information

Ch#13 Outlined Notes Chemical Equilibrium

Ch#13 Outlined Notes Chemical Equilibrium Ch#13 Outlined Notes Chemical Equilibrium Introduction A. Chemical Equilibrium 1. The state where the concentrations of all reactants and products remain constant with time 2. All reactions carried out

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium The Concept of Equilibrium (15.1) Ways of Expressing Equilibrium Constants (15.2) What Does the Equilibrium Constant Tell Us? (15.3) Factors that Affect Chemical

More information

Chapter Outline. The Dynamics of Chemical Equilibrium

Chapter Outline. The Dynamics of Chemical Equilibrium Chapter Outline 14.1 The Dynamics of Chemical Equilibrium 14.2 Writing Equilibrium Constant Expressions 14.3 Relationships between K c and K p Values 14.4 Manipulating Equilibrium Constant Expressions

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

AP Chem Chapter 12 Notes: Gaseous Equilibrium

AP Chem Chapter 12 Notes: Gaseous Equilibrium AP Chem Chapter 12 Notes: Gaseous Equilibrium Equilibrium I. Equilibrium is reached when both the and reactions are occurring at. A. Dynamic Equilibrium: reactions are still occurring but the of reactants

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium May 5 2:04 PM 13.1 The Equilibrium Condition When you finish this section you will be able to list some characteristics of reactions at equilibrium. Chemical equilibrium

More information

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe CHEMISTRY XL-14A CHEMICAL EQUILIBRIA August 20, 2011 Robert Iafe Unit Overview 2 Reactions at Equilibrium Equilibrium Calculations Le Châtelier s Principle Catalysts Reactions at Equilibrium 3 Reversibility

More information

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Equilibrium Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Equilibrium is a state in which there are no observable changes as time goes by. Chemical

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium Topic 4: Introduction, Topic 4: Gaseous Equilibrium Text: Chapter 6 & 15 4.0 Brief review of Kinetic theory of gasses (Chapter 6) 4.1 Concept of dynamic equilibrium 4.2 General form & properties of equilbrium

More information

1301 Dynamic Equilibrium, Keq,

1301 Dynamic Equilibrium, Keq, 1301 Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Equilibrium Concept of Equilibrium & Mass Action Expression Extent

More information

BROWMC15_ PR2 1/26/05 15:07 Page 628 WHAT S AHEAD

BROWMC15_ PR2 1/26/05 15:07 Page 628 WHAT S AHEAD BROWMC15_628-667PR2 1/26/05 15:07 Page 628 C H A P T E R 15 15.1 The Concept of Equilibrium 15.2 The Equilibrium Constant 15.3 Interpreting and Working with Equilibrium Constants 15.4 Heterogeneous Equilibria

More information

AP Chapter 14: Chemical Equilibrium & Ksp

AP Chapter 14: Chemical Equilibrium & Ksp AP Chapter 14: Chemical Equilibrium & Ksp Warm-Ups (Show your work for credit) Name Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 14: Chemical Equilibrium & Ksp 2 Warm-Ups

More information

2.0 Equilibrium Constant

2.0 Equilibrium Constant 2.0 Equilibrium Constant When reactions are reversible and chemical equilibrium is reached, it is important to recognize that not all of the reactants will be converted into products. There is a mathematical

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

1. a. The rates of the forward and reverse reactions are equal at equilibrium.

1. a. The rates of the forward and reverse reactions are equal at equilibrium. CHATER THIRTEEN CHEMICAL EQUILIBRIUM For Review 1. a. The rates of the forward and reverse reactions are equal at equilibrium. b. There is no net change in the composition (as long as temperature is constant).

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information