Chapter 15 Chemical Equilibrium. Equilibrium

Size: px
Start display at page:

Download "Chapter 15 Chemical Equilibrium. Equilibrium"

Transcription

1 Chapter 15 Chemical

2 The Concept of Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.

3 The Concept of As a system approaches equilibrium, both the forward and reverse reactions are occurring. At equilibrium, the forward and reverse reactions are proceeding at the same rate.

4 A System at Once equilibrium is achieved, the amount of each reactant and product remains constant.

5 Depicting In a system at equilibrium, both the forward and reverse reactions are being carried out; as a result, we write its equation with a double arrow N 2 O 4 (g) 2 NO 2 (g)

6 The Constant

7 N O (g) 2NO (g) Remember both forward and reverse reactions are elementary reactions

8 The Constant Forward reaction: N 2 O 4 (g) 2 NO 2 (g) Rate law: Rate = k f [N 2 O 4 ]

9 The Constant Reverse reaction: 2 NO 2 (g) N 2 O 4 (g) Rate law: Rate = k r [NO 2 ] 2

10 The Constant Therefore, at equilibrium Rate f = Rate r k f [N 2 O 4 ] = k r [NO 2 ] 2 Rewriting this, it becomes k f [NO 2 ] 2 = k r [N 2 O 4 ]

11 The Constant The ratio of the rate constants is a constant at that temperature, and the expression becomes K eq = k [NO f 2 ] 2 = k r [N 2 O 4 ]

12 We learn following things from these reactions about equilibrium: 1. When a mixture of reactants and products is formed in which the concentration no longer change with time indicates that an equilibrium is reached. 2. For an equilibrium to occur neither reactant or product can escape. 3. At equilibrium the ratio of concentrations remains constant.

13 The Constant To generalize this expression, consider the elementary reaction aa + bb The law of mass action states that if the system is at equilibrium at a given temperature, then the following ratio is a constant K c = [C]c [D] d [A] a [B] b cc + dd The equilibrium constant for this reaction would be Kc i.e. the constant when molarity of the solution is considered. This relationship is called equilibriumconstant expression.

14 The equilibrium constant expression depends only on the stoichiometry of the reaction, not on its mechanism. And remember that the reactants go into the denominator. Kc is independent of the initial concentration of the reactants and products, but on the concentrations at the equilibrium.

15 The equilibrium constant is written without a unit.

16 What Are the Expressions for These Equilibria?

17 Kc is independent of the initial concentration of the reactants: N 2 O 4 (g) 2 NO 2 (g) As you can see, the ratio of [NO 2 ] 2 to [N 2 O 4 ] remains constant at this temperature no matter what the initial concentrations of NO 2 and N 2 O 4 are Calculate the Kc for yourself.

18 The Constant Because pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written K p = (P C) c (P D ) d (P A ) a (P B ) b

19 The numerical value of K c is different than the numerical value of K p. We must indicate the subscript c or p

20 Relationship between K c and K p From the ideal gas law we know that PV = nrt Rearranging it, we get P = RT n V

21 n V is nothing but molarity ( moles / liter) So for substance A we can write n A V P= RT P = [A] RT or [A] = P RT

22 Relationship between K c and K p aa + bb K c = [C]c [D] d [A] a [B] b cc + dd PA [A]= RT K p = (P C) c (P D ) d (P A ) a (P B ) b

23 Relationship between K c and K p Plugging this into the expression for K p for each substance, the relationship between K c and K p becomes Where K p = K c (RT) n n = (moles of gaseous product) (moles of gaseous reactant)

24 N 2 O 4 (g) 2 NO 2 (g) n = (moles of gaseous product) (moles of gaseous reactant) = 2-1 = 1 Kp = Kc (RT) n So Kp = Kc (RT) If n= 0 i.e. same number of moles of gas appear in the reactant and the product then Kp = Kc As anything raised to 0 is 1

25 In the synthesis of ammonia from nitrogen and hydrogen, N 2 + 3H 2 2NH 3 K c = 9.60 at 300 o C. Calculate K p Δ n = 2-4=-2 Kp = Kc (RT) n = 9.60 (.0821x 573) -2 = 9.60 = 4.34X10-3 (0.0821x 573) 2

26 For the equilibrium 2SO 3 (g) 2SO 2 (g) + O 2 (g) K c = 4.08x 10-3 at 1000K. Calculate K p Kp = Kc (RT) n n = (moles of gaseous product) (moles of gaseous reactant) = 3 2 = 1 Kp = 4.08 x 10-3 ( x 1000) = = 0.3

27 Can Be Reached from Either Direction It does not matter whether we start with N 2 and H 2 or whether we start with NH 3. We will have the same proportions of all three substances at equilibrium.

28 What Does the Value of K Mean? If K >> 1, the reaction is product-favored; product predominates at equilibrium.

29 What Does the Value of K Mean? If K >> 1, the reaction is product-favored; product predominates at equilibrium. If K << 1, the reaction is reactant-favored; reactant predominates at equilibrium.

30 SAMPLE EXERCISE 15.3 Interpreting the Magnitude of an Constant The reaction of N 2 with O 2 to form NO might be considered a means of fixing nitrogen: The value for the equilibrium constant for this reaction at 25 C is K c = Describe the feasibility of fixing nitrogen by forming NO at 25 C. Because Kc is so small, very little NO will form at 25 C. The equilibrium lies to the left, favoring the reactants. Consequently, this reaction is an extremely poor choice for nitrogen fixation, at least at 25 C.

31 PRACTICE EXERCISE For the reaction favored more at the higher or lower temperature? at 298 K and K p = 54 at 700 K. Is the formation of HI

32 PRACTICE EXERCISE For the reaction favored more at the higher or lower temperature? at 298 K and K p = 54 at 700 K. Is the formation of HI Answer: The formation of product, HI, is favored at the lower temperature because Kp is larger at the lower temperature.

33 Manipulating Constants The equilibrium constant of a reaction in the reverse reaction is the reciprocal of the equilibrium constant of the forward reaction. N 2 O 4 (g) 2 NO 2 (g) 2 NO 2 (g) N 2 O 4 (g) [NO K c = 2 ] 2 = at 100 C [N 2 O 4 ] K c = [N 2 O 4 ] [NO 2 ] 2 = = 4.72 at 100 C

34 With this information the direction of the reaction needs to be specified when the equilibrium constant is given. Also the temperature too needs to be given as the constant depends at the temperature.

35 SAMPLE EXERCISE 15.4 Evaluating an Constant When an Equation Is Reversed (a) Write the equilibrium-constant expression for K c for the following reaction: (b) The value for the equilibrium constant for this reaction at 25 C is Kc = , determine the value of this equilibrium constant at 25 C.

36 SAMPLE EXERCISE 15.4 Evaluating an Constant When an Equation Is Reversed (a) Write the equilibrium-constant expression for K c for the following reaction: (b) With the information given in sample exercise 15.3, determine the value of this equilibrium constant at 25 C. SAMPLE EXERCISE 15.3 Interpreting the Magnitude of an Constant The reaction of N 2 with O 2 to form NO might be considered a means of fixing nitrogen: The value for the equilibrium constant for this reaction at 25 C is K c = Describe the feasibility of fixing nitrogen by forming NO at 25 C. a. Writing products over reactants, we have b.

37 PRACTICE EXERCISE For the formation of NH 3 from N 2 and H 2, What is the value of K p for the reverse reaction? at 300 C. Answer:

38 Manipulating Constants The equilibrium constant of a reaction that has been multiplied by a number is the equilibrium constant raised to a power that is equal to that number. N 2 O 4 (g) 2 NO 2 (g) [NO K c = 2 ] 2 = at 100 C [N 2 O 4 ] 2 N 2 O 4 (g) 4 NO 2 (g) [NO K c = 2 ] 4 = (0.212) 2 at 100 C [N 2 O 4 ] 2

39 Manipulating Constants The equilibrium constant for a net reaction made up of two or more steps is the product of the equilibrium constants for the individual steps.

40 [NO] [Br ] 2 2NOBr(g) 2NO+Br (g) Kc = = [NOBr] Br (g) + Cl (g) 2 BrCl (g) Kc = = [BrCl] 2 2 [Br ][Cl ] 2 2 The net sum of these two reactions is 2NOBr(g) + Cl (g) 2NO (g)+ 2 BrCl(g) Kc = [NO] [BrCl] [NO] [Br ] 2 [BrCl] = x 2 2 [NOBr] [Cl [NOBr] 2 ] [Br ][Cl ] 2 2 = x 7.2 =

41 SAMPLE EXERCISE 15.5 Combining Expressions Given the following information, determine the value of K c for the reaction Now we have two equations that sum to give the net equation, and we can multiply the individual K c values to get the desired equilibrium constant.

42 SAMPLE EXERCISE 15.5 continued PRACTICE EXERCISE Given that, at 700 K, K p = 54.0 for the reaction reaction determine the value of K p for the reaction for the

43 Heterogeneous

44 The Concentrations of Solids and Liquids Are Essentially Constant The concentration of a solid and liquids can be derived in terms of moles per unit volume but it is not required in equilibrium constant expressions. Remember we are referring to liquids not dissolved substances.

45 The Concentrations of Solids and Liquids Are Essentially Constant Therefore, the concentrations of solids and liquids do not appear in the equilibrium expression PbCl 2 (s) Pb 2+ (aq) + 2 Cl (aq) K c = [Pb 2+ ] [Cl ] 2

46 CaCO 3 (s) CO 2 (g) + CaO (s) As long as some CaCO 3 or CaO remain in the system, the amount of CO 2 above the solid will remain the same. The equilibrium expression for the reaction is K p =P CO 2

47 SAMPLE EXERCISE 15.6 Writing -Constant Expressions Write the equilibrium-constant expression for Kc for each of the above

48 PRACTICE EXERCISE Write the following equilibrium-constant expressions:

49 Calculations

50 German scientist Fritz Haber developed the method for synthesis of ammonia from N 2 and H 2. Ammonia is used to make to make fertilizes and explosives. He received the noble prize in 1918 for his development of synthetic ammonia.

51 He evaluated the equilibrium constant at various temperatures. Using the method very similar to what we saw before:

52 We do not need to know the equilibrium concentration of all the species. We can use the stoichiometry of the reaction to deduce the equilibrium concentrations of the unknown ones.

53 1.Tabulate all the known initial and equilibriums of all the species. 2.Calculate the change of concentrations for the species for which the initial and equilibrium concentrations are known. 3. Use the stoichiometry of the reaction to calculate the changes in concentration for all other species. 4. Calculate the K c.

54 Calculations Here is an example A closed system initially containing x 10 3 M H 2 and x 10 3 M I 2 At 448 C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10 3 M. Calculate K c at 448 C for the reaction taking place, which is H 2 (g) + I 2 (g) 2 HI (g)

55 What Do We Know? [H 2 ], M [I 2 ], M [HI], M Initially x x Change At equilibrium 1.87 x 10-3 H 2 (g) + I 2 (g) 2 HI (g)

56 [HI] Increases by 1.87 x 10-3 M [H 2 ], M [I 2 ], M [HI], M Initially x x Change x 10-3 At equilibrium 1.87 x 10-3 H 2 (g) + I 2 (g) 2 HI (g)

57 Stoichiometry tells us [H 2 ] and [I 2 ] decrease by half as much [H 2 ], M [I 2 ], M [HI], M Initially x x Change x x x 10-3 At equilibrium 1.87 x 10-3 H 2 (g) + I 2 (g) 2 HI (g)

58 We can now calculate the equilibrium concentrations of all three compounds [H 2 ], M [I 2 ], M [HI], M Initially x x Change x x x 10-3 At equilibrium 6.5 x x x 10-3 H 2 (g) + I 2 (g) 2 HI (g)

59 and, therefore, the equilibrium constant K c = = [HI] 2 [H 2 ] [I 2 ] (1.87 x 10-3 ) 2 (6.5 x 10-5 )(1.065 x 10-3 ) = 51

60 Applications for Constants a. Predict the direction of the reaction b. To calculate equilibrium concentrations.

61 The Reaction Quotient (Q) To calculate Q, one substitutes the initial concentrations on reactants and products into the equilibrium expression. Q gives the same ratio the equilibrium expression gives, but for a system that is not at equilibrium.

62 If Q = K, the system is at equilibrium.

63 If Q > K, there is too much product and the equilibrium shifts to the left.

64 If Q < K, there is too much reactant, and the equilibrium shifts to the right.

65 SAMPLE EXERCISE Predicting the Direction of Approach to At 448 C the equilibrium constant K c for the reaction is Predict in which direction the reaction will proceed to reach equilibrium at 448 C if we start with mol of HI, mol of H 2, and mol of I 2 in a 2.00-L container. First calculate the concentration or Molarity Then calculate the reaction quotient.

66 PRACTICE EXERCISE At 1000 K the value of K p for the reaction is Calculate the value for Q p, and predict the direction in which the reaction will proceed toward equilibrium if the initial partial pressures are Answer: Qp = 16; Qp > Kp, and so the reaction will proceed from right to left, forming more SO 3.

67 Le Châtelier s Principle

68 Le Châtelier s Principle If a system at equilibrium is disturbed by a change in temperature, pressure, or the concentration of one of the components, the system will shift its equilibrium position so as to counteract the effect of the disturbance.

69 The Haber Process The transformation of nitrogen and hydrogen into ammonia (NH 3 ) is of tremendous significance in agriculture, where ammonia-based fertilizers are of utmost importance.

70 The Haber Process If H 2 is added to the system, N 2 will be consumed and the two reagents will form more NH 3.

71 The Haber Process This apparatus helps push the equilibrium to the right by removing the ammonia (NH 3 ) from the system as a liquid.

72 Effect of Volume and Pressure on Reducing the volume of the reaction, hence increasing the pressure causes the equilibrium to move in a direction that reduces the number of moles of gas.

73

74 The volume and pressure do not change the value of K as long as the temperature remains constant.

75 The Effect of Changes in Temperature Co(H 2 O) 6 2+ (aq) + 4 Cl (aq) CoCl 4 2- (aq) + 6 H 2 O (l) This is an endothermic reaction and heat is absorbed when the product is formed.

76 We can treat heat as one of the reactants In an endothermic reaction Reactant + heat Product In an Exothermic reaction Reactant Product + heat When the temperature of a reaction is increased the reaction moves in the direction that consumes heat. And vice versa

77 Catalysts increase the rate of both the forward and reverse reactions.

78 is achieved faster, but the equilibrium composition remains unaltered.

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium The Concept of Chapter 15 Chemical AP Chemistry 12 North Nova Education Centre 2017 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system

More information

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g)

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g) PowerPoint to accompany The Concept of Equilibrium Chapter 13 Chemical Equilibrium Figure 13.1 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept

More information

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 15 Chemical James F. Kirby Quinnipiac University Hamden, CT The Concept of N 2 O 4 (g) 2 NO 2 (g) Chemical equilibrium occurs when a reaction and its reverse reaction proceed

More information

CHEMISTRY. Chapter 15 Chemical Equilibrium

CHEMISTRY. Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 8 th Edition Chapter 15 Chemical Kozet YAPSAKLI The Concept of Chemical equilibrium is the point at which the concentrations of all species are constant. Chemical equilibrium

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Chemical Kinetics and

Chemical Kinetics and Chemical Kinetics and Equilibrium Part 2: Chemical Equilibrium David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA The Concept of Equilibrium Kinetics applies to the speed of a

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

For the reaction: A B R f = R r. Chemical Equilibrium Chapter The Concept of Equilibrium. The Concept of Equilibrium

For the reaction: A B R f = R r. Chemical Equilibrium Chapter The Concept of Equilibrium. The Concept of Equilibrium Chemical Equilibrium Chapter 15.1-4 This is the last unit of the year, and it contains quite a lot of material. Do not wait until the end of the unit to begin studying. Use what you have learned about

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp )

Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 8 (Chp 15,17): Chemical & Solubility (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles

More information

The Concept of Equilibrium

The Concept of Equilibrium Chemical Equilibrium The Concept of Equilibrium Sometimes you can visually observe a certain chemical reaction. A reaction may produce a gas or a color change and you can follow the progress of the reaction

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium 1 Chapter 15. 15.1 The Concept of Equilibrium 1,2,3 Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops changing and

More information

Write a balanced reaction.. then write the equation.. then solve for something!!

Write a balanced reaction.. then write the equation.. then solve for something!! Chapter 13 - Equilibrium Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Chapter Fifteen. Chemical Equilibrium

Chapter Fifteen. Chemical Equilibrium Chapter Fifteen Chemical Equilibrium 1 The Concept of Equilibrium Dynamic Equilibrium Opposing processes occur at equal rates Forward and reverses reaction proceed at equal rates No outward change is observed

More information

Chemical Equilibrium-A Dynamic Equilibrium

Chemical Equilibrium-A Dynamic Equilibrium CHAPTER 14 Page 1 Chemical Equilibrium-A Dynamic Equilibrium When compounds react, they eventually form a mixture of products and (unreacted) reactants, in a dynamic equilibrium Much like water in a U-shape

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle Factors Affecting : Le Châtelier s Principle Pressure Factors Affecting : Le Châtelier s Principle Pressure When volume decreases, the pressure increases. systems in which some reactants and products are

More information

CHAPTER 3: CHEMICAL EQUILIBRIUM

CHAPTER 3: CHEMICAL EQUILIBRIUM CHAPTER 3: CHEMICAL EQUILIBRIUM 1 LESSON OUTCOME Write & explain the concepts of chemical equilibrium Derive the equilibrium constant Kc or Kp Solving the problem using the ICE table 2 Equilibrium is a

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants, in a dynamic equilibrium. A dynamic equilibrium consists of a forward

More information

The Extent of Chemical Reactions

The Extent of Chemical Reactions Equilibrium: The Extent of Chemical Reactions The Equilibrium State and the Equilibrium Constant The Reaction Quotient and the Equilibrium Constant Equilibrium: The Extent of Chemical Reactions Expressing

More information

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. Chemistry 12 Unit II Dynamic Equilibrium Notes II.1 The Concept of Dynamic Equilibrium A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. A reversible

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g)

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

A.P. Chemistry. Unit #11. Chemical Equilibrium

A.P. Chemistry. Unit #11. Chemical Equilibrium A.P. Chemistry Unit #11 Chemical Equilibrium I. Chemical Equilibrium the point in a reaction at which the concentrations of products and reactants remain constant Dynamic Equilibrium the equilibrium condition

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Chemical Equilibrium - Chapter 15

Chemical Equilibrium - Chapter 15 Chemical Equilibrium - Chapter 15 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants

More information

Chemical Equilibria 2

Chemical Equilibria 2 Chemical Equilibria 2 Reading: Ch 14 sections 6-9 Homework: Chapter 14: 27*, 29*, 31, 33, 41, 43, 45, 51*, 55, 61*, 63, 67*, 69* * = important homework question Review A chemical equilibrium and its respective

More information

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry,

More information

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe CHEMISTRY XL-14A CHEMICAL EQUILIBRIA August 20, 2011 Robert Iafe Unit Overview 2 Reactions at Equilibrium Equilibrium Calculations Le Châtelier s Principle Catalysts Reactions at Equilibrium 3 Reversibility

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Fu-Yin Hsu Chemical reaction The speed of a chemical reaction is determined by kinetics. The extent of a chemical reaction is determined by thermodynamics. 14.1 Fetal Hemoglobin

More information

BROWMC15_ PR2 1/26/05 15:07 Page 628 WHAT S AHEAD

BROWMC15_ PR2 1/26/05 15:07 Page 628 WHAT S AHEAD BROWMC15_628-667PR2 1/26/05 15:07 Page 628 C H A P T E R 15 15.1 The Concept of Equilibrium 15.2 The Equilibrium Constant 15.3 Interpreting and Working with Equilibrium Constants 15.4 Heterogeneous Equilibria

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

The N 2 O 4 -NO 2 Equilibrium

The N 2 O 4 -NO 2 Equilibrium Chemical Equilibria William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 1 Gaseous Chemical Equilibrium For a gaseous chemical equilibrium, more than one gas is present:

More information

Chemical Equilibria. OCR Chemistry A H432

Chemical Equilibria. OCR Chemistry A H432 Chemical Equilibria Chemical equilibrium is a dynamic equilibrium. Features of a dynamic equilibrium, which can only be established in a closed system (nothing added or removed): - rates of forward and

More information

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2.

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2. Chapter 16: Chemical Equilibrium What is meant by an equilibrium system? What is an equilibrium expression? N 2 +3 H 2 2 NH 3 1) Only gases and dissolved species appear in an equilibrium expression. 4

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.91, 15.94-99, 15.10-15.103 Example: Ice melting is a dynamic process:

More information

Dr. Valverde s AP Chemistry Class

Dr. Valverde s AP Chemistry Class AP* Chemistry Dr. Valverde s AP Chemistry Class Chapter CHEMICAL 13 Review: EQUILIBRIA: Chemical Equilibrium GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the rate

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM EQUILIBRIUM I. EQUILIBRIUM IS REACHED WHEN BOTH THE FORWARD AND REVERSE REACTIONS ARE OCCURRING AT THE SAME RATE. A. DYNAMIC EQUILIBRIUM: BOTH REACTIONS ARE STILL OCCURRING BUT THE CONCENTRATION OF REACTANTS

More information

AP Chem Chapter 12 Notes: Gaseous Equilibrium

AP Chem Chapter 12 Notes: Gaseous Equilibrium AP Chem Chapter 12 Notes: Gaseous Equilibrium Equilibrium I. Equilibrium is reached when both the and reactions are occurring at. A. Dynamic Equilibrium: reactions are still occurring but the of reactants

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Chemical Equilibrium Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Learning objectives Write equilibrium constant expressions for both solutions

More information

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry CHAPTER 14 Chemical Equilibrium 17-1 What happens? Stoichiometry How Fast? Kinetics applies to the speed of a reaction, the concentration of product that appears (or of reactant that disappears) per unit

More information

1. a. The rates of the forward and reverse reactions are equal at equilibrium.

1. a. The rates of the forward and reverse reactions are equal at equilibrium. CHATER THIRTEEN CHEMICAL EQUILIBRIUM For Review 1. a. The rates of the forward and reverse reactions are equal at equilibrium. b. There is no net change in the composition (as long as temperature is constant).

More information

Ch#13 Outlined Notes Chemical Equilibrium

Ch#13 Outlined Notes Chemical Equilibrium Ch#13 Outlined Notes Chemical Equilibrium Introduction A. Chemical Equilibrium 1. The state where the concentrations of all reactants and products remain constant with time 2. All reactions carried out

More information

1301 Dynamic Equilibrium, Keq,

1301 Dynamic Equilibrium, Keq, 1301 Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Equilibrium Concept of Equilibrium & Mass Action Expression Extent

More information

N H 2 2 NH 3 and 2 NH 3 N H 2

N H 2 2 NH 3 and 2 NH 3 N H 2 Chemical Equilibrium Notes (Chapter 18) So far, we ve talked about all chemical reactions as if they go only in one direction. However, as with many things in life, chemical reactions can go both in the

More information

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Equilibrium Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Equilibrium is a state in which there are no observable changes as time goes by. Chemical

More information

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary Chapter 10 Reaction Rates and Chemical Equilibrium Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary The rate of a reaction is

More information

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short 1 D. Altering Chemical Equations and the Effect on the Equilibrium Constant What is the

More information

Chapter 14: Chemical Equilibrium. Mrs. Brayfield

Chapter 14: Chemical Equilibrium. Mrs. Brayfield Chapter 14: Chemical Equilibrium Mrs. Brayfield 14.2: Dynamic Equilibrium Remember from chapter 13 that reaction rates generally increase with increasing concentration of the reactions and decreases with

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

aa + bb ---> cc + dd

aa + bb ---> cc + dd 17 Chemical Equilibria Consider the following reaction: aa + bb ---> cc + dd As written is suggests that reactants A + B will be used up in forming products C + D. However, what we learned in the section

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chapter 16 - Principles of Chemical Equilibrium

Chapter 16 - Principles of Chemical Equilibrium Chapter 16 - Principles of Chemical Equilibrium -allreactions are "reversible" - principle of micro-reversibility - the "committed step" - much theory - not always obvious - for some the reverse reaction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

1. The Haber- Bosch Process 2. K eq

1. The Haber- Bosch Process 2. K eq Chemistry 12 Equilibrium III Name: Date: Block: 1. The Haber- Bosch Process 2. K eq The Haber- Bosch Process Almost all of the world s ammonia is produced via the Haber- Bosch process and almost all of

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Gaseous Chemical Equilibrium. Masterton and Hurley Chapter 12. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Gaseous Chemical Equilibrium. Masterton and Hurley Chapter 12. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Gaseous Chemical Equilibrium TEXT REFERENCE Masterton and Hurley Chapter 12 Chemistry 1011 Slot 5 1 12.4 Applications of the Equilibrium Constant YOU ARE EXPECTED TO BE ABLE TO: Determine

More information

AP* Chapter 13. Chemical Equilibrium

AP* Chapter 13. Chemical Equilibrium AP* Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium The Concept of Equilibrium (15.1) Ways of Expressing Equilibrium Constants (15.2) What Does the Equilibrium Constant Tell Us? (15.3) Factors that Affect Chemical

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep Lecture 4 Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71 Equilibrium for a Multistep Mechanism A + 2B k 1F k 1R C At equilibrium forward and

More information

Equilibrium Basics. The Reaction Quotient

Equilibrium Basics. The Reaction Quotient Equilibrium Basics Any process which occurs in both directions necessarily has a point where the opposing rates will become equal. Why? From there on, there will be no further change in the macroscopic

More information

Chapter Outline. The Dynamics of Chemical Equilibrium

Chapter Outline. The Dynamics of Chemical Equilibrium Chapter Outline 14.1 The Dynamics of Chemical Equilibrium 14.2 Writing Equilibrium Constant Expressions 14.3 Relationships between K c and K p Values 14.4 Manipulating Equilibrium Constant Expressions

More information

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle CHEMICAL EQUILIBRIUM 6.3 Le Chatelier s Principle At the end of the lesson, students should be able to: a) State Le Chatelier s principle b) Explain the effect of the following factors on a system at equilibrium

More information

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage 1 CHEMICAL EQUILIBRIUM Chapter 16 PLAY MOVIE Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) Properties of an Equilibrium Equilibrium systems are DYNAMIC (in constant motion) REVERSIBLE can be approached from either

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium Characteristics of Chemical Equilibrium Chapter 14: Chemical Equilibrium 008 Brooks/Cole 1 008 Brooks/Cole Equilibrium is Dynamic Equilibrium is Independent of Direction of Approach Reactants convert to

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

Chem 116 POGIL Worksheet - Week 7 Kinetics to Equilibrium

Chem 116 POGIL Worksheet - Week 7 Kinetics to Equilibrium Chem 116 POGIL Worksheet - Week 7 Kinetics to Equilibrium Why? Most chemical reactions are reversible. This means that once products are formed, they can react to reform the reactants. If we allow a reaction

More information

I never let my schooling get in the way of my education.

I never let my schooling get in the way of my education. Chemistry NT I never let my schooling get in the way of my education. Mark Twain Chem NT Chemical Equilibrium Module Describing Chemical Equilibrium The Equilibrium Constant Equilibrium Constant for Sums

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information