General Information 1

Size: px
Start display at page:

Download "General Information 1"

Transcription

1 General Information CLEANING F VLUMETRIC GLASSWARE All the volumetric glassware (Burette, Pipette, Volumetric flasks etc) must be perfectly clean, free from dust and greasy impurities. Unreliable results are liable to be obtained with dirty apparatus. The cleanliness of a glass vessel can easily be tested by filling it with distilled water and then pouring it out. If an unbroken film of water remains on the walls, the vessel is clean; the formation of droplets indicates the presence of impurities and the vessel needs cleaning. For cleaning the glassware, firstly soak the apparatus in 10% of soap solution for minutes. Wash it with tape water, then with HCl and finally with distilled water. If vessels are not cleaned by this method then soak the vessel in cleaning mixture (equal volume of concentrated and saturated solution of K 2 Cr 2 7 ) for 1 hour. Pour the mixture and wash thoroughly with tap and distilled water. 1.2 STRENGTH F SLUTIN It is expressed in following ways: (i) Percentage: Number of gms of the substances dissolved in 100 gms of its solution. It is generally used in dilute solutions of electrolytes in water. (ii) Molality: Number of gm moles of substances dissolved in 1000 gms of solvent. (iii) Molarity: Number of gm moles of the substances is dissolved per liter of the solution. If one gm mole of a substances is dissolved in a solvent and the solution is made up to one liter mark of the flask, such solution is called Molar Solution. If w gms of a substance is dissolved in V.c.c. of the solution and Mol. of the substance is M, w 1000 Molarity M V gm/ litre molwt.. 1

2 2 Practical Physical Chemistry (iv) Normality: Number of gm equivalents of the substance dissolved per liter of the solution. If one gm equivalent of an acid, base or salt is dissolved in water and the solution is made up to one liter, such solution is called Normal Solution. If w gms of a substance is dissolved in V.c.c. of the solution and equivalent weight of the substance is E, w Normality E 1000 V gm/ litre Eq. 1.3 STANDARD SLUTIN A solution of known strength is called Standard Solution. It is prepared either by direct weighing of the substance or after titrating it against another standard solution i.e., standardisation with the help of another standard solution. Calculation of Normality of prepared solution (i) Wt. of the substance + Weighing tube x gms. (ii) Wt. of empty weighing tube y gms. (iii) Eq. weight of the substance E. In 100 c.c. measuring flask, the normality of the solution 1000( x- y) 10( x- y) 100 E E 10 Weight taken Eq. Calculation of the desired weight for preparing of standard solution Suppose equivalent weight of the substance is E, and we have to prepare a solution of x normality in V ml measuring flask. Substance in gm per liter x E Substance in gm in V ml 1.4 TITRATIN x E V It is the process for standardisation of a solution. Two solutions are used in every titration where strength of one is generally known. The solution to be pipetted is taken in a conical flask by using pipette of 10 or 20 c.c. and the other solution is taken in the burette. Indicator is added if necessary at this stage of the solution taken in the conical flask and burette solution is generally poured into it. A sharp colour change occurs at the completion of the reaction. This stage is called End Point. Equivalent system is use in the calculations of volumetric results. Such calculations are rendered very simple because at the end point in a titration, the number of equivalent of the substance titrated is equal to the number of equivalents of the standard solution employed. Thus, if the volumes of

3 General Information 3 solutions of two substances A and B with normality N A and N B which exactly react with one another are V A and V B cm 3 respectively, then these volumes contain the same number of milligram equivalents of A and B. Thus, at the equivalence point: Number of mg equivalent of A Number of mg equivalent of B But number of mg equivalent of A N A V A and number of mg equivalent of B N B V B Therefore at the equivalence point: N A V A N B V B This is known as normality equation. When any three quantities in this equation are known, the fourth may be readily calculated. 1.5 EQUIVALENT WEIGHT FR VARIUS VLUMETRIC REACTINS Equivalent weight varies with the type of reaction, and since it is difficult to give a clear definition of equivalent weight that may cover all the reactions. Sometimes, a compound possesses different equivalent weights in different chemical reactions. Thus the equivalent weight of a substance can be determined only after considering the reaction in which it is participating and this is done as described here: (i) Neutralization Reactions (a) Equivalent weight of Acids: Molecular weight ofacid Equivalent of an acid Number of replaceable hydrogenatoms or Mol. wtofacid. Basicity of acid Monobasic acids are: HC1, HBr, HI, HN, CH 3 CH, etc. Dibasic acids are:, C 2, etc. Tribasic acids are: H 3 P and H 3 B, etc. So equivalent of HC1 Equivalent of (b) Equivalent weight of Bases: Equivalent of base Molecularweightof base Number of replaceableofhydroxylgroups Mol. ofthe base Acidityofthe base Monoacid bases are: NaH, KH, etc. Diacid bases are: Ba(H) 2. 8, Ca(H) 2 etc. So, equivalent of NaH

4 4 Practical Physical Chemistry 315 Equivalent of Ba(H) (ii) Redox Reactions (a) Equivalent weight of an oxidising agent: Its equivalent weight depend upon the amount of oxygen liberates for a reaction. Potassium permanganate (KMn ): It acts as an oxidising agent in acidic, neutral and alkaline mediums. The amount of oxygen made available for oxidation is different for different mediums and hence equivalent weight varies with the nature of the medium. Acid medium: 2KMn + 3 K 2 + 2Mn [] From this equation, it follows that: 2KMn 5[] (Molecular weight of KMn 158) or i.e., 8.0 gm of oxygen will be made available by gm weight of KMn4 5 Equivalent of KMn in acid medium 31.6 Neutral medium: 2KMn + 2Mn 2 + 2KH + 3[] From this equation, it follow that: 2KMn 3[] or or i.e., 8.0 gm of oxygen will be made available by gm weight of KMn4 Equivalent of KMn in neutral medium Alkaline medium: 2KMn + 2KH 2K 2 Mn + + [] From this equation it follows that: 2KMn [] or i.e., 8.0 gm oxygen will be made available by 158 gm weight of KMn Equivalent of KMn in alkaline medium 158 (b) Equivalent weight of a reducing agents: Ferrous ammonium sulphate [Fe.(NH 4 ) 2.6 ] (F.A.S.) In acidic medium: 2Fe + + Fe 2 ( ) 3 +

5 General Information 5 From this equation it follows that: 2 moles of ferrous salt [] 2 Fe.(NH 4 ) 2.6 [] (Mol. of FAS 392.0) i.e., 8.0 gm oxygen will combine with gm of F.A.S. Eq. of F.A.S It may be noted that in writing chemical reactions Fe is only shown, since in F.A.S. it is the only constituent, (NH 4 ) 2 is not active in redox reaction and hence does not take part in chemical reaction. The equivalent weights of some important acids and alkalies have been collected in the following Table 1.1: Table 1.1 Acid/Base Mol. Basicity/ Acidity Eq. Acid/Base Mol. Basicity/ Acidity Eq. HCl Ca(H) HN Na 2 C CH 3 CH K 2 C CaC C NaHC H 3 P KHC NaH C CH C CH KH KHC 2. C Ba(H) Na 2 B

6 6 Practical Physical Chemistry Table 1.2. Equivalent Weights of xidising and Reducing Agents by Ionic Equations Substance Mol. Partial Ionic equation No. of Electrons Gained/Lost per Molecule Eq. xidants KMn (acid) 158 Mn 4 + 8H+ + 5e Mn e Mol. /5 KMn (neutral) 158 Mn e Mn 2 + 4H 3e Mol. /3 KMn (basic) 158 Mn 4 + e Mn 2 4 1e Mol. K 2 Cr 2 7 (acid) Cr H+ + 6e 2Cr e Mol. /6 2 (acid) H + + 2e 2 2e Mol. /2 Mn 2 (acid) 87 Mn 2 + 4H + + 2e Mn e Mol./2 HN (conc.) 63 N 3 + 2H+ + e N 2 + 1e Mol. HN (dil.) 63 N + 4H + + 3e N + 2 e Mol. /3 Cu. 5 (neutral) Cu I + 2e Cu 2 I 2 + 2I 1e Mol. I I 2 + 2e 2I 2e Mol./2 KI 214 I 3 + 6H + + 6e I + 3 6e Mol. /6 Reductants As As 3+ 2As e 4e Mol./4 Fe. (NH 4 ) Fe 2+ Fe 3+ +e 1e Mol. FeC Fe 2+ + C Fe C 2 + 3e 3e Mol./3 Fe Fe 2+ Fe 3+ + e 1e Mol. C C C 2 + 2e 2e Mol./2 Na S e 1e Mol.

7 General Information INDICATRS The reagent used to locate the exact completion stage i.e., end point of the reaction by showing change in its colour is called an indicator. n adding even the smallest excess of the titrant, beyond what is necessary for exact completion of the reaction, the indicator changes colour. The following are certain types of indicators which will be deal when considering different divisions of volumetric analysis. (a) External indicator: It is placed outside on a reference porcelain plate, e.g., K 3 Fe(CN) 6 dilute solution in the titration of ferrous sulphate or ferrous ammonium sulphate against K 2 Cr 2 7. (b) Self indicator: When colour of one of the titrants acts as indicator, e.g., pink colour of permanganate ion in the titration of oxalic acid or ferrous ions against KMn. (c) Internal indicator: It is added to solution taken in the conical flask. The most common internal indicators are: (i) Phenolphthalein (ii) Methyl orange (iii) Starch solution (iv) Methyl red (v) N-phenyl anthranilic acid Table 1.3. Common Acid-base Indicators No. Indicator pk ln ph Range In Acid Soln. Colour In Alkaline Soln. 1. Methyl orange Red Yellow 2. Methyl red Red Yellow 3. Litmus Red Blue 4. Phenol red Yellow Red 5. Phenolphthalein Colourless Red 1.7 IDINE TITRATIN The redox-titration using iodine directly or indirectly as an oxidising agent are called Iodine titrations. These are of two types: 1. Iodimetric titrations: Iodimetric titrations are defined as those iodine titrations in which a standard iodine solution is used as an oxidant and iodine is directly titrated with a reducing agent. Iodimetric procedures are used for determination of reducing agents like thiosulphates, sulphites, arsenites etc by titrating them against standard solution of iodine run in from a burette. xidationreduction reactions are: Na 2 + I 2 Na 2 S NaI

8 8 Practical Physical Chemistry 2. Iodometric titrations: Iodometric titrations are defined as those iodine titrations in which some oxidising agent liberates iodine from an iodide and then liberated iodine is titrated against standard solution of a reducing agent added from a burette. In such titrations a neutral or an acidic solution of oxidising agent is employed. The amount of iodine liberated from an iodide (i.e. KI) is equivalent to the quantity of the oxidising agent present. Such as 2 Cu + 4KI Cu 2 I 2 + 2K 2 + I 2 Liberated iodine in the above reaction is titrated against standard sodium thiosulphate. (i) Equivalent weight of reducing agents: 2Na 2 + I 2 Na 2 S NaI Sodium thiosulphate (hypo): 2Na 2 + I 2 Na 2 S NaI 2Na 2 2I 2 m.w Parts of thiosulphate reacting with 127 parts by of iodine 2 mw Equivalent weight of Na 2 m.w Equivalent weight of Na 2.5 m.w (ii) Equivalent weight of oxidising agents: Copper sulphate, Cu.5 2Cu + 4KI 2CuI + I 2 + K 2 2 Cu. 5 I 2 2 m.w Equivalent weight of hydrated copper sulphate m.w (iii) Indicator and end point detection: Iodine produces with starch solution an intensely blue iodo complex. In all iodine titrations freshly prepared 1% starch solution acts as an indicator. In iodimetric titrations, this starch solution is added to the solution of reducing-agent taken in the conical flask and then oxidising agent is added from the burette. The end point is indicated by the appearance of blue colour. In the iodometric titrations the iodide (e.g. KI) solution and the oxidising agent are taken into a conical flask. The standard solution of reducing agent, e.g., sodium thiosulphate is run from burette. When the yellowish brown colour is faint, the starch is added. It produces a deep blue complex. Now the thiosulphate solution is added drop by drop with proper shaking. The end point will be indicated when blue colour just disappears.

9 General Information 9 Table 1.4. Data on the Specific Gravity, Percentage Composition, Normality etc. of Some Concentrated Reagents Reagent Specific gravity Percentage by weights Approximate normality Weight of anhydrous reagent (gm) in c.c N 1.80 HCl N HN N NH 4 H N Glacial CH 3 CH N 1.80 Table 1.5. Concentration of Aqueous Solution of Common Acids and Ammonia Reagents Molarity of Concentrated solution Normality of concentrated solution Vol. required to make 1dm 3 0.1N (approx. cm 2 ) Hydrochloric acid Nitric acid Sulphuric acid Phosphoric acid Acetic acid Ammonia qqq

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

Mearns Castle High School. Advanced Higher Chemistry. Stoichiometry

Mearns Castle High School. Advanced Higher Chemistry. Stoichiometry Mearns Castle High School Advanced Higher Chemistry Stoichiometry Stoichiometry This section of Unit 2 relies on the ability to write formulae and balanced equations correctly. Any reaction in which the

More information

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

Unit 3 Chemistry - Volumetric Analysis

Unit 3 Chemistry - Volumetric Analysis Unit 3 Chemistry Volumetric Analysis Volumetric analysis is a quantitative chemical analysis used to determine the unknown concentration of one reactant [the analyte] by measuring the volume of another

More information

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER Structure 8.1 Introduction Objectives 8. Principle 8.3 Requirements 8.4 Solutions Provided 8.5 Procedure 8.6 Observations

More information

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6 UNIT-6 TITRIMETRIC ANALYSIS YOU are already aware that a substance is analysed to establish its qualitative and quantitative chemical composition. Thus, chemical analysis can be categorised as qualitative

More information

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator.

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. EXPERIMENT AIM Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. Approximately M/40 HCl solution is provided. Prepare your

More information

Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate

Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate Procedures Weigh about 1.0-1.5 g of anhydrous sodium carbonate powder accurately in a watch glass. Transfer the solid totally into a 250

More information

Syllabus : CONCEPTS. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 CS 1

Syllabus : CONCEPTS. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 CS 1 Einstein Classes, Unit No. 0, 0, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, CS S T I C H I E T RY Syllabus : C CNCEPTS In this chapter

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Paper 3 Practical Test Candidates answer on the Question

More information

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq)

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq) CHAPTER 7 ACIDS AND BASES Arrhenius Theory An acid is a chemical compound that produces hydrogen ions, H + or hydroxonium ions H3O + when dissolve in water. A base defined as a chemical substance that

More information

STIOCHIOMETRY Single answer type questions: 21. SO -2

STIOCHIOMETRY Single answer type questions: 21. SO -2 STIOCHIOMETRY Single answer type questions: 1. SO - + S - + I (Calculated amount) X + I -1. Then X in this reaction is a) SO - b) IO -1 c) SO - d) IO -1. A certain quantity of Ammonium chloride is boiled

More information

for free kcse past papers visit:

for free kcse past papers visit: Name: Index no..... School:.... Candidate s sign... Date: Class.. 233/3 CHEMISTRY KCSE MOCKS 2017 TIME: 2 ¼ HOURS INSTRUCTIONS TO CANDIDATES: Answer all the questions in the spaces provided in the question

More information

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55 Suggested answers to in-text activities and unit-end exercises In-text activities Discussion (page 117) Some possible ways for minimizing possible sources of error in the experiment: Add a slight excess

More information

EXPERIMENT 8 A SIMPLE TITRATION

EXPERIMENT 8 A SIMPLE TITRATION EXPERIMENT 8 A SIMPLE TITRATION Structure 8.1 Introduction Objectives 8.2 Titration Types of Indicators Types of Titrations Standard Solution 8.3 Titrimetric Experiment: Determination of the strength of

More information

Volumetric Analysis Acids & Bases HL

Volumetric Analysis Acids & Bases HL Name: Volumetric Analysis 1. Concentrations of Solutions 3. Volumetric Analysis Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity),

More information

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6163-CHEMISTRY LABORATORY - I E NG

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6163-CHEMISTRY LABORATORY - I E NG Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. All Branches : I Year / I Semester GE6163-CHEMISTRY LABORATORY - I E NG ANNA UNIVERSITY: CHENNAI SYLLABUS R 2013 GE6163 - CHEMISTRY

More information

CHEMISTRY PAPER 2 (PRACTICAL)

CHEMISTRY PAPER 2 (PRACTICAL) CHEMISTRY PAPER 2 (PRACTICAL) Question 1 [8] You are provided with two solutions as follows: C-10 is a solution prepared by dissolving 185 gms of potassium manganate (VII) KMnO 4 per litre. C-11 is a solution

More information

GE 6163 CHEMISTRY LAB MANUAL

GE 6163 CHEMISTRY LAB MANUAL VALLIAMMAI ENGINEERING COLLEGE S.R.M NAGAR, KATTANKULATHUR 603 203 Department of Chemistry (2015-2016) GE 6163 CHEMISTRY LAB MANUAL Step I : Standardization of sodium thiosulphate Titration I (Standard

More information

BE 2 ND SEMESTER PREACTICAL

BE 2 ND SEMESTER PREACTICAL BE 2 ND SEMESTER PREACTICAL QUANTITATIVE INORGANIC ANALYSIS Syllabus 1. Estimation of Fe 2+ by standard KMnO4 2. Estimation of Fe 3+ by standard K2Cr2O7 3. Estimation of Cu 2+ by iodometric method Experiment

More information

Write an overall equation for the first stage in the rusting of iron.

Write an overall equation for the first stage in the rusting of iron. 1. (a) Define the term standard electrode potential............. (b) When a metal is placed in a solution of its ions, the electrical potential set up between the metal and the solution cannot be measured

More information

Set 4 Marking Scheme: Acid Bases & Salts 2010

Set 4 Marking Scheme: Acid Bases & Salts 2010 Set 4 Marking Scheme: Acid Bases & Salts 00 ACID AND BASES PAPER : STRUCTURE (a) Neutralisation KOH + H SO 4 K SO 4 + H O Correct formulae of reactants and products Balanced equation i. H +, OH -, K +

More information

(a) (i) Explain what is meant by the terms transition element, complex ion and ligand,

(a) (i) Explain what is meant by the terms transition element, complex ion and ligand, 1. This question looks at the chemistry of transition elements. (a) Explain what is meant by the terms transition element, complex ion and ligand, Discuss, with examples, equations and observations, the

More information

Section Four Structured questions

Section Four Structured questions Section Four Structured questions 1 For each of the following experiments, state ONE observable change and write a chemical equation for the reaction involved. a) Magnesium strip is added to dilute hydrochloric

More information

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g STOICHIOMETRY II Stoichiometry in chemical equations means the quantitative relation between the amounts of reactants consumed and product formed in chemical reactions as expressed by the balanced chemical

More information

SOME BASIC CONCEPTS IN CHEMISTRY

SOME BASIC CONCEPTS IN CHEMISTRY CS 1 Syllabus : SOME BASIC COCEPTS I CHEMISTRY Matter and its nature, Dalton s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurement in Chemistry, precision

More information

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

For the element X in the ionic compound MX, explain the meaning of the term oxidation state. 1. (a) By referring to electrons, explain the meaning of the term oxidising agent.... For the element X in the ionic compound MX, explain the meaning of the term oxidation state.... (c) Complete the table

More information

LC-Learn. Leaving Cert Chemistry Notes Higher Level Volumetric Analysis

LC-Learn. Leaving Cert Chemistry Notes Higher Level Volumetric Analysis Lving Cert Chemistry Notes Higher Level Volumetric Analysis Powered By: Volumetric Analysis Essential Theory A standard solution is a solution whose concentration is accurately known. A primary standard

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS UNIT 5 ACIDS, BASES AND SALTS PART 2 TITRATIONS, INDICATORS AND THE PH SCALE Contents 1. The ph scale 2. Indicators 3. Acid-Base Titrations Key words: acidic, alkaline, neutral, ph, indicator, litmus,

More information

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions: Unit-8 Equilibrium Rate of reaction: Consider the following chemical reactions: 1. The solution of sodium chloride and silver nitrate when mixed, there is an instantaneous formation of a precipitate of

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Hydrated nickel(ii) salts are green in colour. Give the electron configuration of a nickel(ii) ion and hence state why the ion is coloured.

Hydrated nickel(ii) salts are green in colour. Give the electron configuration of a nickel(ii) ion and hence state why the ion is coloured. 1. This question is about nickel compounds. (a) Hydrated nickel(ii) salts are green in colour. Give the electron configuration of a nickel(ii) ion and hence state why the ion is coloured.......... (b)

More information

Techniques for Volumetric Analysis

Techniques for Volumetric Analysis Techniques for Volumetric Analysis Volumetric analysis involves measuring the volumes of two solutions that react together. The basic principles are as follows. The solution to be analysed contains an

More information

1. This question is about Group 7 of the Periodic Table - the halogens. The standard electrode potentials for these elements are given below.

1. This question is about Group 7 of the Periodic Table - the halogens. The standard electrode potentials for these elements are given below. 1. This question is about Group 7 of the Periodic Table - the halogens. The standard electrode potentials for these elements are given below. Electrode reaction E /V 1 F 2 2 + e F +2.87 1 Cl 2 2 + e Cl

More information

EXPT. 4 DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID

EXPT. 4 DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID EXPT. DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID Structure.1 Introduction Objectives.2 Principle.3 Requirements. Solutions Provided.5 Procedure.6 Observations and Calculations.7 Result.1 INTRODUCTION

More information

Mole Concept 5.319% = = g sample =

Mole Concept 5.319% = = g sample = Mole - a counting system Avogadro s number = 6.0 10 3 Mole Concept Chemical calculation involving mass: Empirical formula: The simplest formula that shows the relative numbers of the different kinds of

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/31 Paper 3 Advanced Practical Skills 1 May/June 2014 2 hours Candidates answer on the

More information

KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018

KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018 1 Name:... Index No:. Candidate s signature Date KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018 233/3 CHEMISTRY PAPER 3 (Practical) JULY 2018 2¼ Hours INSTRUCTIONS: Write your name and index

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *7382672438* CHEMISTRY 9701/33 Advanced Practical Skills October/November

More information

EDTA forms a colourless complex with free metal ions. Metal ion (Ca 2+ or Mg 2+ ) + EDTA

EDTA forms a colourless complex with free metal ions. Metal ion (Ca 2+ or Mg 2+ ) + EDTA Expt. No. : 01 Date : ESTIMATION OF HARDNESS OF WATER BY EDTA METHOD AIM: To determine the hardness of given water sample by EDTA method. APPARATUS: Burette, Pipette, Conical Flask, Beakers, Wash Bottle

More information

Chapter 9. Volumetric Analysis

Chapter 9. Volumetric Analysis Chapter 9 Volumetric Analysis The terms volumetric analysis, titrimetry and titration are used interchangeably to describe a procedure which analyses chemicals in solution by accurate volume measurement.

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Centre Number Candidate Number Name UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Paper 3 Practical

More information

9.1 Qualitative Analysis

9.1 Qualitative Analysis Chemistry Form 4 Page 44 Ms. R. Buttigieg Test for positive Ions (Cations) 9.1 Qualitative Analysis 1) Flame Tests Nichrome wire is dipped in concentrated hydrochloric acid, then in the salt being tested.

More information

Volumetric Analysis: Redox

Volumetric Analysis: Redox Name: Volumetric Analysis Objectives 3. Volumetric Analysis carry out a potassium manganate(vii)/ammonium iron(ii) sulfate titration determine the amount of iron in an iron tablet carry out an iodine/thiosulfate

More information

Lab Manual. of Engineering Chemistry

Lab Manual. of Engineering Chemistry Lab Manual of Engineering Chemistry 1 1 Determination of Total Hardness of Water by Complexometric Titration with EDTA I Water Analysis 2 Determination of Chloride ion in a given Water sample by Argentometric

More information

( 1 ) Concept of acid / base

( 1 ) Concept of acid / base Section 6.2 Ionic Equilibrium Unit 628 ( 1 ) Concept of acid / base The best definition of acids and bases is that proposed by T.M. Lowry and also, independently by J.N. Bronsted in 1923. BronstedLowry

More information

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4)

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4) Objective NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4) The aim of this experiment is to carry out titration of antacid tablets and to determine acetic acid content of vinegar. a) Titration

More information

Classes at: - Topic: Mole Concept, Volumetric & Redox Titration

Classes at: - Topic: Mole Concept, Volumetric & Redox Titration 01) To prepare a solution that is 0.0 KCl starting with 100 ml of 0.0 KCl (a) Add 0.7 g KCl (b) Add 0 ml of water Add 0.10 mole KCl (d) Evaporate 10 ml water 0) 10.78 g of H PO in 0 ml solution is 0.0

More information

Preparation of a Coordination Compound. Step 1 Copy the balanced equation for the preparation of FeC 2 O 4.. 3H2 O from FeC 2 O 4. Mass of watch glass

Preparation of a Coordination Compound. Step 1 Copy the balanced equation for the preparation of FeC 2 O 4.. 3H2 O from FeC 2 O 4. Mass of watch glass Student Name Lab Partner Demonstrator Lab Section DATA SHEET Marking scheme Prelab exercise Lab performance Sig figs, units Calculations Crystals Preparation of a Coordination Compound Step 1 Copy the

More information

Topic: Chemical Kinetics SO HCI 2 + 2I

Topic: Chemical Kinetics SO HCI 2 + 2I PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - Meq. Approach SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market,

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CHEMISTRY 0620/05 Paper 5 Practical Test Candidates answer on the Question

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level XtremePapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *7736236717* CHEMISTRY 9701/36 Advanced Practical Skills

More information

Titration curves, labelled E, F, G and H, for combinations of different aqueous solutions of acids and bases are shown below.

Titration curves, labelled E, F, G and H, for combinations of different aqueous solutions of acids and bases are shown below. Titration curves, labelled E, F, G and H, for combinations of different aqueous solutions of acids and bases are shown below. All solutions have concentrations of 0. mol dm 3. (a) In this part of the question,

More information

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure.

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. NAME SCHOOL INDEX NUMBER DATE NITROGEN AND ITS COMPOUNDS 1. 1990 Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. (2 marks) marks)... (ii) Temperature

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNVERSTY OF CAMBRDGE NTERNATONAL EXAMNATONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *7779336909* CHEMSTRY 9701/35 Advanced Practical Skills May/June 2011 2 hours Candidates

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #10 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Solutions I. MCQ - Choose Appropriate Alternative 1. Molarity is the number of moles of a solute dissolved

More information

Synthesis and Analysis of a Coordination Compound

Synthesis and Analysis of a Coordination Compound Synthesis and Analysis of a Coordination Compound In addition to forming salts with anions, transition metal cations can also associate with neutral molecules (and ions) through a process called ligation.

More information

Chapter 19 Acids and Bases

Chapter 19 Acids and Bases Chapter 19 Acids and Bases p.1/11 19.1 Introducing Acids and Alkalis Acids and bases are common stuff in everyday life. Domestic Acids and Alkalis Common domestic acids Many foods and drinks contain acids.

More information

REDOX REACTION & EQUIVALENT CONCEPT

REDOX REACTION & EQUIVALENT CONCEPT REDX REACTIN & EQUIVALENT CNCEPT XIDATIN & REDUCTIN : Let us do a comparative study of oxidation and Reduction ; xi d a ti o n R e d u c t i o n (1) Addition of oxygen (i) Removal of oxygen e.g. Mg + Mg

More information

Form 4 Chapter 7: Acid and Bases

Form 4 Chapter 7: Acid and Bases Form 4 Chapter 7: Acid and Bases The ph Scale Properties Acids Alkalis Physical. Substances that ionized in water to produce hydrogen ions.. Sour taste.. Turn blue litmus paper red. 4. Give a ph value

More information

Volumetric Analysis: Acids & Bases OL

Volumetric Analysis: Acids & Bases OL Name: Volumetric Analysis 1. Concentrations of Solutions Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity), g/l and also in % (v/v)

More information

Volumetric analysis involving acids and alkalis

Volumetric analysis involving acids and alkalis Chapter 19 Volumetric analysis involving acids and alkalis 19.1 Standard solutions 19.2 Acid-alkali titrations 19.3 Calculations on volumetric analysis 19.4 Writing a laboratory report on volumetric analysis

More information

Concentration of Solutions

Concentration of Solutions Concentration of Solutions 1 of 27 Boardworks Ltd 2016 Concentration of Solutions 2 of 27 Boardworks Ltd 2016 Measuring concentrations 3 of 27 Boardworks Ltd 2016 It is not enough to say that one concentration

More information

Exercise 6: Determination of Hardness of Water

Exercise 6: Determination of Hardness of Water Fundamentals of Analytical Chemistry, CHC014011L Exercise 6: Determination of Hardness of Water Introduction: Hardness in water is generally caused by the presence of dissolved calcium and magnesium carbonates

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0014911874* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/33 Advanced Practical Skills 1 May/June 2012

More information

Solutions-1 PART-1: Introduction, Methods of expressing concentration 1. Solution Homogeneous mixture of two or more substances whose composition vary within certain limits is known as Solution or a True

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *0594498264* CHEMISTRY 5070/42 Paper 4 Alternative to Practical October/November 2016 1 hour Candidates answer on the Question Paper. No Additional

More information

ICSE Chemistry Model Paper-9

ICSE Chemistry Model Paper-9 ICSE Chemistry Model Paper-9 Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading the

More information

First week Experiment No.1 / /2013. Spectrophotometry. 1. Determination of copper via ammine complex formation using standard series method

First week Experiment No.1 / /2013. Spectrophotometry. 1. Determination of copper via ammine complex formation using standard series method First week Experiment No.1 / /2013 Spectrophotometry 1. Determination of copper via ammine complex formation using standard series method Principal In the standard series method the teat and standard solution

More information

ACIDS, BASES AND SALTS

ACIDS, BASES AND SALTS ACIDS, BASES AND SALTS Important Points in Chapter: 1. Acids turn blue litmus to red and bases turn red litmus to blue. 2. Acids are formed when metallic oxides are dissolved in water. 3. Bases are formed

More information

Chemistry Calculations CHEMISTRY A L C U T I O N S. 1. Methods. These sheets belong to. KHS Oct 2013 page 1. N5 - Book 1

Chemistry Calculations CHEMISTRY A L C U T I O N S. 1. Methods. These sheets belong to. KHS Oct 2013 page 1. N5 - Book 1 CHEMISTRY A L C U LA T I N S C 1. Methods These sheets belong to KHS ct 2013 page 1 This is the first of hopefully two booklets written to teach the calculations for National 5 Chemistry as taught in Scotland.

More information

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 1 Crystals of sodium sulphate-10-water, Na 2 SO 4.10H 2 O, are prepared by titration. burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 (a)

More information

Directed by Ph. Sadeel Shanshal

Directed by Ph. Sadeel Shanshal University of Mosul College of Pharmacy Practical Laboratory Dept. of Pharmaceutical Chemistry Head of dept. Dr. ؤىوىست Nohad Al.Omari Directed by Ph. Sadeel Shanshal 0 Syllabus : No. Lab. Title Hours

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *9763634822* CHEMISTRY 9701/36 Paper 3 Advanced Practical Skills 2 October/November 2014 2 hours Candidates

More information

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done with neutralisation reactions, but

More information

Classes at: - Confidence building Problems

Classes at: - Confidence building Problems PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Confidence

More information

(08) WMP/Jun10/CHEM5

(08) WMP/Jun10/CHEM5 Transition Metals 8 3 Transition metal ions can act as homogeneous catalysts in redox reactions. For example, iron(ii) ions catalyse the reaction between peroxodisulfate (S 2 O 8 2 ) ions and iodide ions.

More information

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes.

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes. Edexcel GCSE Chemistry Topic 3: Chemical changes Acids Notes 3.1 Rec that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide ions Acids produce H + ions in

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

MAHESH TUTORIALS I.C.S.E.

MAHESH TUTORIALS I.C.S.E. MAHESH TUTORIALS I.C.S.E. GRADE - X (2017-2018) Exam No. : MT/ICSE/SEMI PRELIM - II - SET -A 020 Periodic Table, Chemical bonding, Acid, Bases and Salts, Practical Work, Mole Concept, Electrolysis Chemistry

More information

Acids and Bases. Topic. Unit 14 Acids and alkalis. Unit 15 Molarity, ph scale and strengths of acids and alkalis. Unit 16 Salts and neutralization

Acids and Bases. Topic. Unit 14 Acids and alkalis. Unit 15 Molarity, ph scale and strengths of acids and alkalis. Unit 16 Salts and neutralization Topic 4 Acids Bases Unit 14 Acids alkalis Unit 15 Molarity, ph scale strengths of acids alkalis Unit 16 Salts neutralization Unit 17 Concentration of s volumetric analysis Key C o ncepts Molarity, ph scale

More information

*8733689660* www.onlineexamhelp.com Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/35 Paper 3 Advanced Practical Skills 1 October/November

More information

chemrevise.org 22/08/2013 Titrations N Goalby Chemrevise.org Titrations

chemrevise.org 22/08/2013 Titrations N Goalby Chemrevise.org Titrations Titrations N Goalby Chemrevise.org Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done

More information

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality.

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality. CHAPTER 4 REACTIONS IN AQUEOUS SOLUTION CONCENTRATION Solute Solvent Concentration Units mass NaCl / unit volume of solution g L -1 (M, molarity) concentration in moles per litre of solution c NaCl c B

More information

JEE MAIN 2018 Sample Question Paper

JEE MAIN 2018 Sample Question Paper SET 1 Roll No. JEE MAIN 2018 Sample Question Paper CHEMISTRY (Theory) General Instructions (i) This test consists of 30 question. (ii) Each question is allotted 4 marks for correct response. (iii) Candidates

More information

NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST ¼ HOURS

NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST ¼ HOURS NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST 2018 2 ¼ HOURS INSTRUCTIONS TO CANDIDATES. (a) Write your name and index number in the spaces provided above.

More information

1 Three redox systems, C, D and E are shown in Table 6.1. C Ag(NH 3. ) 2 + (aq) + e Ag(s) + 2NH 3. (aq) D Ag + (aq) + e Ag(s)

1 Three redox systems, C, D and E are shown in Table 6.1. C Ag(NH 3. ) 2 + (aq) + e Ag(s) + 2NH 3. (aq) D Ag + (aq) + e Ag(s) 1 Three redox systems, C, D and E are shown in Table 6.1. C Ag(NH 3 ) 2 + (aq) + e Ag(s) + 2NH 3 (aq) D Ag + (aq) + e Ag(s) E Ag(CN) 2 (aq) + e Ag(s) + 2CN (aq) Table 6.1 The two cells below were set up

More information

She carries out two experiments.

She carries out two experiments. 1 A student investigates the reaction of aqueous sodium hydroxide with two different aqueous solutions of hydrochloric acid, solution X and solution Y. She carries out two experiments. Experiment 1 Using

More information

MC 17 C SECTION - I (40 marks) Compulsory : Attempt all questions from this section.

MC 17 C SECTION - I (40 marks) Compulsory : Attempt all questions from this section. Question 1 (a) SECTION - I (40 marks) Compulsory : Attempt all questions from this section Select from the list given below (A to G), only one in each case which matches with the description given below:

More information

Name: Class: Redox revision questions. 50 minutes. Time: Marks: 50. Comments: Page 1 of 17

Name: Class: Redox revision questions. 50 minutes. Time: Marks: 50. Comments: Page 1 of 17 Name: Class: Redox revision questions Time: 50 minutes Marks: 50 Comments: Page of 7 Aqueous C 2 O ions react with MnO ions in acidic solution according to the equation 5 C 2 O + 2MnO + 6H + 2Mn 2+ + 0CO

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER MR D HR UV AS HE R ICSE BOA RD PAP ER 200 6 1 ICSE-2006 Section 1 (40 Marks) (Attempt all questions from this section) Question 1 (a) Select from the list given below (A to F), the o0ne substance in each

More information

Zinc electrode. 1M zinc sulphate solution

Zinc electrode. 1M zinc sulphate solution 16. Redox Equilibria Electrochemical cells Electron flow A cell has two half cells. The two half cells have to be connected with a salt bridge. Simple half cells will consist of a metal (acts an electrode)

More information

BARINGO KOIBATEX DISTRICTS EDUCATIONAL IMPROVEMENT EXAM 2009 Kenya Certificate of Secondary Education (K.C.S.E)

BARINGO KOIBATEX DISTRICTS EDUCATIONAL IMPROVEMENT EXAM 2009 Kenya Certificate of Secondary Education (K.C.S.E) NAME... INDEX NO. 233/3 CHEMISTRY PAPER 2 PRACTICAL JULY/AUGUST 2009 2 ¼ HOURS 233/2 Chemistry Practical Paper 3 July/August 2009 2 ¼ Hours BARINGO KOIBATEX DISTRICTS EDUCATIONAL IMPROVEMENT EXAM 2009

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *4827396477* CHEMISTRY 9701/35 Advanced Practical Skills October/November

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2008 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids

More information

ACID BASE TITRATION Aim: Determination of Alkalinity of water

ACID BASE TITRATION Aim: Determination of Alkalinity of water Name: Section: Class Roll No: University Roll No: Stream: D.O.E: D.O.S: ACID BASE TITRATION Aim: Determination of Alkalinity of water Theory: The alkalinity of water is due to presence of hydroxide ion

More information

FACTFILE: GCSE CHEMISTRY: UNIT 2.6

FACTFILE: GCSE CHEMISTRY: UNIT 2.6 FACTFILE: GCSE CHEMISTRY: UNIT Quantitative Chemistry Learning outcomes Students should be able to:.1 calculate the concentration of a solution in mol/dm 3 given the mass of solute and volume of solution;.2

More information