October 05, Periodic_Trends_Presentation student notes.notebook. Periodic Trends. Periodic Trends: Effective Nuclear Charge

Size: px
Start display at page:

Download "October 05, Periodic_Trends_Presentation student notes.notebook. Periodic Trends. Periodic Trends: Effective Nuclear Charge"

Transcription

1 Periodic Trends: tomic Radius Ionization nergy lectronegativity Metallic haracter Ionic Radius Periodic Trends Five main trends in the periodic table will be discussed: The sizes of atoms Ionization energy lectronegativity Metallic character The sizes of ions These five periodic trends are affected by these main factors: ffective nuclear charge oulomb's Law Shielding from inner electrons ffective Nuclear harge In a many electron atom, electrons are both attracted to the nucleus and repelled by other electrons. The nuclear charge that an electron experiences depends on both factors. For example, here's sodium. ffective Nuclear harge The effective nuclear charge, Z eff, is found this way: Z eff = Z S Where Z is the atomic number and S is a screening constant, usually about equal to the number of inner electrons. In this example, the outer electron of sodium is attracted towards the nucleus by an effective charge (Z eff) of 1 proton. Moving across the periodic table increases Z eff, and therefore increasing the force of attraction between the electrons and the nucleus. ffective Nuclear harge For any given atom, the electrons closest to the nucleus experience the greatest effective nuclear charge (they have the least shielding). The electrons farthest from the nucleus experience the least effective nuclear charge (they are shielded the most). s you move across the periodic table (from left to right), the effective nuclear charge felt by the outermost electron increases. tomic Radius In general, as you move from left to right across the periodic table the atoms have a smaller radius s you move down from row to row, the radius increases Helium has the smallest radius Francium has the largest radius 1

2 Summary of tomic Radius Trends tomic radius decreases going left to right across a period. cross a period, effective nuclear charge increases. So the force of attraction between the nucleus and outer electron(s) gets stronger. Outer electrons are pulled in more strongly, so radius gets smaller. Size of orbitals stays approximately the same (across a given period) Summary of tomic Radius Trends tomic radius increases going down a group. The size of orbitals increases significantly. Outer electrons are located farther from the nucleus in each successive period. 1 The effective nuclear charge acting on an electron is larger than the actual nuclear charge. True False The "r" in oulomb's law increases so the force of attraction between nucleus and outer electrons weakenss lectron electron repulsion increases with greater atomic number. 2 selenium atom has 34 electrons. lectrons in the subshell experience the lowest effective nuclear charge. 3 In which orbital does an electron in an arsenic (s) atom experience the greatest shielding? 2p 1s 4p 3p 3p 3d 3s 4p 1s 5p 2

3 4 In which orbital does an electron in a calcium atom experience the greatest effective nuclear charge? 5 tomic radius generally increases as we move. 1s 2s 2p 3s down a group and from right to left across a period up a group and from left to right across a period down a group and from left to right across a period 3p up a group and from right to left across a period down a group; the period position has no effect 6 Which one of the following atoms has the smallest radius? Ions When a neutral atom gains or loses electrons, it becomes an ion. ny atom losing electrons becomes a positive ion: O F S l Na Na + + e (neutral (sodium (electron) sodium) ion) ny atom gaining electrons becomes a negative ion: F + e F (neutral (electron) (fluorine fluorine) ion) Ions ations are positive and are formed by elements on the left side of the periodic chart. nions are negative and are formed by elements on the right side of the periodic chart. toms tend towards having complete outer shells of electrons (remember stability). full outer shell has: Ions 2 electrons in the s subshell and 6 electrons in the p subshell Thus, atoms tend towards having a total of: 8 Valance lectrons This is the Noble Gas electron configuration. 3

4 Valence lectrons The outer most electrons in an atom are called valence electrons. Number of valence electrons in neutral atoms: Which ion below has a noble gas electron configuration? Li 2+ e N 2 Ionization nergy The ionization energy is the amount of energy required to remove an electron from the ground state of a gaseous atom or ion. The first ionization energy is that energy required to remove first electron. a a + + e The second ionization energy is that energy required to remove second electron, etc. a + a 2+ + e Trends in First Ionization nergies s one goes down a column, less energy is required to remove the first electron. For atoms in the same group, Z eff is essentially the same, but the valence electrons are farther from the nucleus, "r" increases, so it is easier to remove the outermost electron Trends in First Ionization nergies Trends in First Ionization nergies Generally, as one goes across a row, it gets harder to remove an electron. However, there are two apparent discontinuities in this trend. s you go from left to right, Z eff increases, making it harder to remove an electron 4

5 Trends in First Ionization nergies Trends in First Ionization nergies The first is between Groups 2 and 3. In this case the electron is removed from a p 1 orbital rather than an s orbital. The electron removed is farther from nucleus, there is a small amount of repulsion by the s electrons, and the atom gains stability by having a full s subshell. The second is between Groups 15 and 16. The electron removed comes from doubly occupied p orbital. Repulsion from the other electron in the orbital aids in its removal. The atom gains stability by having a half full p orbital Summary of Trends in Ionization nergy Summary of Trends in Ionization nergy Ionization nergy decreases going down a group Ionization nergy increases left to right across a period The size of orbitals increases significantly y adding one proton and one electron you are increasing q 1 and q 2 in oulomb's Law Therefore, the force of attraction between the nucleus and outermost electrons is strengthened Thus, it takes more energy to remove the outermost electron The distance between the nucleus and outer electrons increases So the force of attraction between the nucleus and outer electron is less lso, there is more shielding by inner electrons as you go down a group nd more electron electron repulsion with increasing number of electrons Ionization nergy It requires more energy to remove each successive electron. ie: second ionization energy is greater than first, third ionization energy is greater than second, etc. 8 Which noble gas has the lowest first ionization energy? Give the atomic number. When all valence electrons have been removed, the ionization energy takes a huge jump. 5

6 9 Of the following atoms, which has the largest first ionization energy? 10 Of the following elements, which has the largest first ionization energy? r Na O l Se P I l r 11 Of the elements below, has the largest first ionization energy. Li K Rb Na H lectronegativity Recall that atoms gain stability when they have a full orbitals. Fluorine has 7 valence electrons. Neon has 8 valence electrons. n atom of fluorine would be much more stable if it gained an electron, and became the fluoride ion (with the same electron configuration as neon). Fluorine atoms "like" to acquire electrons lectronegativity lectronegativities lectronegativity is a measure of the ability of atoms in a molecule to attract electrons to themselves. On the periodic chart, electronegativity increases as you go from left to right across a row. from the bottom to the top of a column. 6

7 lectronegativities 12 The ability of an atom in a molecule to attract electrons is best quantified by the. In general we will not be concerned with the electronegativites of transition metals. paramagnetism diamagnetism electronegativity electron change to mass ratio first ionization potential 13 lectronegativity from left to right within a period and from top to bottom within a group. decreases, increases increases, increases increases, decreases stays the same, increases increases, stays the same 14 Of the atoms below, is the most electronegative. r O l N F 15 Of the atoms below, is the most electronegative. 16 Of the atoms below, is the least electronegative. Si l Rb a S Rb F Si l a 7

8 17 Which of the elements below has the largest electronegativity? Metallic haracter The metallic character of an element is a measure of how loosely it holds onto its outer electrons. Si Mg P S Na For a metal to conduct electricity or heat, it needs to have electrons that are free to move through it, not tightly bound to a particular atom. So the metallic character of an element is inversely related to its electronegativity. On the periodic chart, metallic character increases as you go from right to left across a row. from the top to the bottom of a column. Metallic haracter Metals, Nonmetals, and Metalloids ll atoms can be classified as metals, nonmetals or metalloids (also called semi metals) There are 7 semi metals: oron, Silicon, Germanium, rsenic, ntimony, Tellurium, and statine (85) 18 Of the elements below, is the most metallic. 19 Of the elements below, is the most metallic. sodium barium magnesium calcium cesium Na Mg l K r 8

9 Ionic size depends upon: ations are always smaller than their parent atom. The nuclear charge. The number of electrons. The orbitals in which electrons reside ut... ations are always smaller than their parent atom. nions are always larger than their parent atoms Neutral Lithium Li Lithium ation Li + + Free electron e nions are always larger than their parent atoms Ionic size depends upon: The nuclear charge. The number of electrons. Neutral Fluorine F + Free electron e Fluorine nion F The orbitals in which electrons reside. ations (pink) are smaller than their parent atoms (gray). The outermost electron is removed and repulsions between electrons are reduced. The more electrons removed, the smaller the cation becomes nions (blue) are larger than their parent atoms (gray). lectrons are added and repulsions between electrons are increased. The more electrons added, the larger the anion becomes 9

10 Ions increase in size as you go down a group. This is due to increasing value of n (adding energy levels). In an isoelectronic series, ions have the same number of electrons. Ionic size decreases with an increasing nuclear charge. The following ions are isoelectronic with Neon. Z is the nuclear charge (atomic number) neon Z = 8 Z = 9 Z = 10 Z = 11 Z = 12 Z = is isoelectronic with argon and is isoelectronic with neon. l, F l, l + F+, F Ne, Kr+ Ne, r + 21 Which of the following is an isoelectronic series? 5, Sr 4, s 3, Te 2 F, l, r, I S, l, r, K Si 2, P 2, S 2, l 2 O 2, F, Ne, Na + 22 Which of the following has the largest radius? r Kr r Sr 2+ Rb + 10

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table Effective nuclear charge: < effective nuclear charge is the attraction felt by the valence electrons from the nucleus < increases across a period : increases across because

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity Periodic Table Trends Atomic Radius Ionic Radius Ionization Energy Electronegativity 1. Atomic Radius Atomic Radius - distance from nucleus to outermost atom Measured by dividing the distance between 2

More information

Shapes of the orbitals

Shapes of the orbitals Electrons Review and Periodic Table Trends Unit 7 Electrons Shapes of the orbitals Electron Configuration Electrons spin in opposite direction Background Electrons can jump between shells (Bohr s model

More information

AP Chemistry. Periodic Table. Slide 1 / 113 Slide 2 / 113. Slide 3 / 113. Slide 4 / 113. Slide 5 / 113. Slide 6 / 113. The Atom.

AP Chemistry. Periodic Table. Slide 1 / 113 Slide 2 / 113. Slide 3 / 113. Slide 4 / 113. Slide 5 / 113. Slide 6 / 113. The Atom. Slide 1 / 113 Slide 2 / 113 P hemistry The tom 2015-08-25 www.njctl.org Slide 3 / 113 Slide 4 / 113 Table of ontents: The tom (Pt. ) lick on the topic to go to that section Periodic Table Periodic Trends

More information

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table!

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! Development of the Periodic Table! Main Idea: The periodic table evolved over time as scientists discovered more useful ways

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table A trend is a predictable change in a particular direction. Example: There is a trend in the alkali metals to increase in reactivity as you move down a group. Atomic Radius

More information

Atomic Radius. Half of the distance between two bonding atoms nuclei

Atomic Radius. Half of the distance between two bonding atoms nuclei Periodic Trends Atomic Radius Half of the distance between two bonding atoms nuclei Increases Atomic Radius Trend Increases Atomic Radius Across a Period Atomic radius generally decreases in size as you

More information

8.6,8.7 Periodic Properties of the Elements

8.6,8.7 Periodic Properties of the Elements Pre -AP Chemistry 8.6,8.7 Periodic Properties of the Elements READ p. 305 315, 294-296 Practice Problems Pg 315 -Exercise 8.9 Pg 318-321 #36, 55, 64, 66, 67, 69, 72, 80 Periodic Trends are predictable

More information

Chemistry. The Periodic Table.

Chemistry. The Periodic Table. 1 Chemistry The Periodic Table 2015 11 16 www.njctl.org 2 Table of Contents: The Periodic Table Click on the topic to go to that section Periodic Table Periodic Table & Electron Configurations Effective

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

CHAPTER NOTES CHAPTER 14. Chemical Periodicity

CHAPTER NOTES CHAPTER 14. Chemical Periodicity Goals : To gain an understanding of : 1. Electron configurations 2. Periodicity. CHAPTER NOTES CHAPTER 14 Chemical Periodicity The periodic law states that when the elements are arranged according to increasing

More information

2011 CHEM 120: CHEMICAL REACTIVITY

2011 CHEM 120: CHEMICAL REACTIVITY 2011 CHEM 120: CHEMICAL REACTIVITY INORGANIC CHEMISTRY SECTION Lecturer: Dr. M.D. Bala Textbook by Petrucci, Harwood, Herring and Madura 15 Lectures (4/10-29/10) 3 Tutorials 1 Quiz 1 Take-home test https://chemintra.ukzn.ac.za/

More information

- Chapter 7 - Periodic Properties of the Elements

- Chapter 7 - Periodic Properties of the Elements - Chapter 7 - Periodic Properties of the Elements Summary 7.1 Development of the periodic table 7.2 Effective nuclear charge 7.3 Size of atoms and ions 7.4 Ionization energy 7.5 Electron affinities 7.6

More information

2. Why do all elements want to obtain a noble gas electron configuration?

2. Why do all elements want to obtain a noble gas electron configuration? AP Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Electron Configuration Metal, Nonmetal or Semi-metal Metalloid)? Group 1, Period 1 Group 11,

More information

Hydrogen (H) Nonmetal (none)

Hydrogen (H) Nonmetal (none) Honors Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Metal, Nonmetal or Group/Family Name Semi-metal (Metalloid)? Group 1, Period 1 Hydrogen

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements Chapter 7 Periodic Properties of the Elements I) Development of the P.T. Generally, the electronic structure of atoms correlates w. the prop. of the elements - reflected by the arrangement of the elements

More information

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check.

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check. Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.6 Trends in Periodic Properties Learning Goal Use the electron configurations of elements to explain the trends in periodic properties.

More information

PERIODIC PROPERTIES OF THE ELEMENTS

PERIODIC PROPERTIES OF THE ELEMENTS PERIODIC PROPERTIES OF THE ELEMENTS DEVELOPMENT OF PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. DEVELOPMENT OF PERIODIC TABLE

More information

Periodic Trends (Section 5.3)

Periodic Trends (Section 5.3) Periodic Trends (Section 5.3) Periodic Trends (Section 5.3) 1. Atomic Radius: Periodic Trends (Section 5.3) 1. Atomic Radius: The distance from the nucleus to the outermost electrons. (See Figure 3.2,

More information

Part I Assignment: Electron Configurations and the Periodic Table

Part I Assignment: Electron Configurations and the Periodic Table Chapter 11 The Periodic Table Part I Assignment: Electron Configurations and the Periodic Table Use your periodic table and your new knowledge of how it works with electron configurations to write complete

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom):

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom): Trends of the Periodic Table Chemical Bonding TRENDS OF THE PERIODIC TABLE CHEM ISTRY 11 3 factors are usually discussed when explaining trends nuclear charge n value (outer most filled shell) Inter-electron

More information

Electron Configuration and Chemical Periodicity

Electron Configuration and Chemical Periodicity Electron Configuration and Chemical Periodicity The Periodic Table Periodic law (Mendeleev, Meyer, 1870) periodic reoccurrence of similar physical and chemical properties of the elements arranged by increasing

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

The Periodic Table & Formation of Ions

The Periodic Table & Formation of Ions The Periodic Table & Formation of Ions Development of the Periodic Table Mendeleev: Considered to be the father of the periodic table Arranged elements by increasing atomic mass Placed elements with similar

More information

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles. Chemistry: Form TR5-8A REVIEW Name Date Period Test Review # 5 Subatomic particles. Type of Particle Location Mass Relative Mass Charge Proton Center 1.67 10-27 kg 1 +1 Electron Outside 9.11 10-31 kg 0-1

More information

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP Shielding & Atomic Radius, Ions & Ionic Radius Chemistry AP Periodic Table Periodic Table Elements in same column have similar properties Column # (IA-VIIIA) gives # valence electrons All elements in column

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 3.1: What is the basic theme of organisation in the periodic table? Answer 1.1: The basic theme of organisation of elements in the periodic table is to classify the elements in periods and

More information

The Shell Model (II)

The Shell Model (II) 22 ChemActivity 5 The Shell Model (II) Model 1: Valence Electrons, Inner-Shell Electrons, and Core Charge. The electrons in the outermost shell of an atom are referred to as valence electrons. Electrons

More information

Chapter 7. Periodic Properties. of the Elements

Chapter 7. Periodic Properties. of the Elements Chapter 7 7.1 Development of Table in the same group generally have similar chemical properties. Physical are not identical, however. Development of Table Dmitri Mendeleev and Lothar Meyer independently

More information

Periodic Trends. Name: Class: Date: ID: A. Matching

Periodic Trends. Name: Class: Date: ID: A. Matching Name: Class: Date: Periodic Trends Matching Match each item with the correct statement below. a. electronegativity f. periodic law b. ionization energy g. atomic mass c. atomic radius h. period d. metal

More information

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Chemical symbols Know names and symbols of elements #1 30, plus Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Coulomb s Law F = attractive/repulsive force Q 1, Q 2 = charges

More information

Periodic Relationships Among the Elements

Periodic Relationships Among the Elements Periodic Relationships Among the Elements Chapter 8 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. When the Elements Were Discovered 2 ns 1 Ground State Electron

More information

Why is it called a periodic table?

Why is it called a periodic table? The Periodic Table Why is it called a periodic table? The properties of the elements in the table repeat in a "periodic" way (specific pattern). Periodic law: There is a periodic repetition of chemical

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

Unit 5. The Periodic Table

Unit 5. The Periodic Table Unit 5 The Periodic Table I. Development of Periodic Table Periodic law: when elements are arranged in order of increasing atomic number, their physical and chemical properties show a periodic pattern.

More information

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that?

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that? Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements 1 63 Periodic Trends > Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends 2 63 Periodic Trends > CHEMISTRY & YOU How are trends in the weather similar

More information

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small.

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small. 63 Periodic Trends > 63 Periodic Trends > CHEMISTRY & YOU Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends How are trends in the weather similar to

More information

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements PowerPoint to accompany Chapter 6 Periodic Properties of the Elements Development of the Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical,

More information

DEVELOPMENT OF THE PERIODIC TABLE

DEVELOPMENT OF THE PERIODIC TABLE DEVELOPMENT OF THE PERIODIC TABLE Prior to the 1700s, relatively few element were known, and consisted mostly of metals used for coinage, jewelry and weapons. From early 1700s to mid-1800s, chemists discovered

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

Li or Na Li or Be Ar or Kr Al or Si

Li or Na Li or Be Ar or Kr Al or Si Pre- AP Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius/Size 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Effective Nuclear Charge (Z eff) Ø Net positive

More information

The Periodic Table. Chemistry. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163. The Periodic Table

The Periodic Table. Chemistry. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163. The Periodic Table Slide 1 / 163 Slide 2 / 163 hemistry The Periodic Table 2015-11-16 www.njctl.org Slide 3 / 163 Slide 4 / 163 Table of ontents: The Periodic Table lick on the topic to go to that section Periodic Table

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Z eff, and how Z eff depends on nuclear charge and electron configuration. Predict the

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

7. What is the likeliest oxidation number of an element located in Period 3 and Group 16? a. +2 b. +3 c. -3 d The amount of energy required to

7. What is the likeliest oxidation number of an element located in Period 3 and Group 16? a. +2 b. +3 c. -3 d The amount of energy required to 1. Which of the following is the most important factor in determining the properties of an element? a. Atomic mass b. Atomic radius c. Periodic table position d. Electron configuration 2. Similar properties

More information

Unit 2 Part 2: Periodic Trends

Unit 2 Part 2: Periodic Trends Unit 2 Part 2: Periodic Trends Outline Classification of elements using properties Representative elements, transition elements Metals, nonmetals and metalloids Classification of elements using electron

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Electronic Structure and Bonding Review

Electronic Structure and Bonding Review Name: Band: Date: Electronic Structure and Bonding Review 1. For electrons: a. What is the relative charge? b. What is the relative mass? c. What is the symbol? d. Where are they located in the modern

More information

Periodic Variations in Element Properties

Periodic Variations in Element Properties OpenStax-CNX module: m51042 1 Periodic Variations in Element Properties OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end

More information

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom.

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom. Periodic Trends Study and learn the definitions listed below. Then use the definitions and the periodic table provided to help you answer the questions in the activity. By the end of the activity you should

More information

MODULE-21 TRENDS IN THE MODERN PERIODIC TABLE

MODULE-21 TRENDS IN THE MODERN PERIODIC TABLE MODULE-21 TRENDS IN THE MODERN PERIODIC TABLE Valency is defined as the number of electrons an atom requires to lose, gain, or share in order to complete its valence shell to attain the stable noble gas

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

Periodic Properties of the Elements

Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements DEVELOPMENT OF THE PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. Brown, LeMay,

More information

Chemical Periodicity. Periodic Table

Chemical Periodicity. Periodic Table Chemical Periodicity Periodic Table Classification of the Elements OBJECTIVES: Explain why you can infer the properties of an element based on those of other elements in the periodic table. Classification

More information

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how

More information

Chapter 3 Atoms and Ionic Bonds

Chapter 3 Atoms and Ionic Bonds Chapter 3 Atoms and Ionic Bonds LEARNING OBJECTIVES SUMMARIES 1. Periodic trends: Know how each of the following are affected by the size of the valence shell (n), the nuclear charge (# of protons), and

More information

Development of Periodic Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how elements should be grouped.

Development of Periodic Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how elements should be grouped. Chapter 7 Periodic Properties of the Elements Development of Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical, however. Development of

More information

1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity PERIODIC TRENDS

1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity PERIODIC TRENDS PERIODIC TRENDS Nov 11 9:05 PM Periodic trends that change in a predictable way: 1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity Nov 11 8:20 PM 1 Atomic Radius

More information

Chemistry 11. Unit 8 Atoms and the Periodic Table Part IV Chemical Bonding

Chemistry 11. Unit 8 Atoms and the Periodic Table Part IV Chemical Bonding 1 Chemistry 11 Unit 8 Atoms and the Periodic Table Part IV Chemical Bonding 2 1. Trends in periodic table In the previous section we have studied the periodic table and some trends dictated by it. In particular,

More information

The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006.

The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006. The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006. The first ionization energy (IE 1 ) is the minimum energy required to remove

More information

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key Supplemental Activities Module: Atomic Theory Section: Periodic Properties and Trends - Key Periodic Table and Reactivity Activity 1 1. Consider lithium metal. a. Why don t we find lithium metal in its

More information

Development of Periodic Table

Development of Periodic Table Development of Table in the same group generally have similar chemical properties. are not identical, however. Development of Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information

Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table

Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table Focus Questions for the unit... How has the modern view of the atom changed over time? How does a chemist use symbols and notation to communicate

More information

Chapter 4. Periodic Trends of the Elements. Chemistry: Atoms First Second Edition Julia Burdge & Jason Overby

Chapter 4. Periodic Trends of the Elements. Chemistry: Atoms First Second Edition Julia Burdge & Jason Overby Chemistry: Atoms First Second Edition Julia Burdge & Jason Overby Chapter 4 Periodic Trends of the Elements M. Stacey Thomson Pasco-Hernando State College Copyright (c) The McGraw-Hill Companies, Inc.

More information

The Periodic Table and Periodic Trends

The Periodic Table and Periodic Trends The Periodic Table and Periodic Trends The properties of the elements exhibit trends and these trends can be predicted with the help of the periodic table. They can also be explained and understood by

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

number. Z eff = Z S S is called the screening constant which represents the portion of the nuclear EXTRA NOTES

number. Z eff = Z S S is called the screening constant which represents the portion of the nuclear EXTRA NOTES EXTRA NOTES 1. Development of the Periodic Table The periodic table is the most significant tool that chemists use for organising and recalling chemical facts. Elements in the same column contain the same

More information

CHEM N-3 November 2014

CHEM N-3 November 2014 CHEM1101 2014-N-3 November 2014 Electron affinity is the enthalpy change for the reaction A(g) + e A (g). The graph below shows the trend in electron affinities for a sequence of elements in the third

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

Explaining Periodic Trends

Explaining Periodic Trends Explaining Periodic Trends! Many observable trends in the chemical and physical properties of elements are observable in the periodic table.! On trends you may be familiar with is reactivity, which is

More information

ELECTRON CONFIGURATION AND THE PERIODIC TABLE

ELECTRON CONFIGURATION AND THE PERIODIC TABLE ELECTRON CONFIGURATION AND THE PERIODIC TABLE The electrons in an atom fill from the lowest to the highest orbitals. The knowledge of the location of the orbitals on the periodic table can greatly help

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

CHAPTER 6. Table & Periodic Law. John Newlands

CHAPTER 6. Table & Periodic Law. John Newlands CHAPTER 6 Table & Periodic Law 6.1 Developing a Periodic Table The periodic table was developed to show the properties of an element by simply looking at it's location. In 1860, chemists agreed on a way

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Periodic Trends. The trends we will study all have to do with the valence electrons in one way or another. Two key ideas:

Periodic Trends. The trends we will study all have to do with the valence electrons in one way or another. Two key ideas: Periodic Trends The trends we will study all have to do with the valence electrons in one way or another. Two key ideas: Nuclear Charge = the number of protons in the nucleus. This is the positive charge

More information

Periodic Trends. Slide 1 / 102. Slide 2 / 102. Slide 3 / 102. Slide 4 / 102. Slide 6 / 102. Slide 5 / 102. AP Chemistry.

Periodic Trends. Slide 1 / 102. Slide 2 / 102. Slide 3 / 102. Slide 4 / 102. Slide 6 / 102. Slide 5 / 102. AP Chemistry. Slide 1 / 10 Slide / 10 New Jersey enter for Teaching and Learning Progressive Science Initiative P hemistry This material is made freely available at www.njctl.org and is intended for the non-commercial

More information

CHAPTER 2 MANY-ELECTRON ATOMS AND THE PERIODIC TABLE

CHAPTER 2 MANY-ELECTRON ATOMS AND THE PERIODIC TABLE CHAPTER MANY-ELECTRON ATOMS AND THE PERIODIC TABLE.1 (a) is incorrect because the magnetic quantum number ml can have only whole number values. (c) is incorrect because the maximum value of the angular

More information

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME:

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME: Particle Theory of Matter Matter is anything that has and takes up. All matter is made up of very small. Each pure substance has its of particle, from the particles of other pure substances. Particles

More information

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s Electronic Structure of Atoms and the Periodic table Chapter 6 & 7, Part 3 October 26 th, 2004 Homework session Wednesday 3:00 5:00 Electron Spin Quantum # m s Each electron is assigned a spinning motion

More information

For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size. Na Na + F F - Ne < < < <

For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size. Na Na + F F - Ne < < < < Chapter 6 Organizing the Elements THE PERIODIC TABLE AND PERIODIC LAW Periodic Table Summary Sheet For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size Na Na +

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information