Molecular Orbitals in Inorganic Chemistry

Size: px
Start display at page:

Download "Molecular Orbitals in Inorganic Chemistry"

Transcription

1 Resources Molecular rbitals in Inorganic Chemistr Dr. P. unt Rm 67 (Chemistr) Web notes AND slides link to panopto when it becomes available model answers to in class activit questions model answers to self-stud problems / eam prep optional background support for beginners questions answered section (from student queries) files for visualising Ms optional material to for eperts links to interesting people and web-sites links to relevant research papers on Ms Recommended Tet Kieran Mollo, Group Theor for Chemists, arwood Publishing, Chichester. onl specific sections!! Reading PTINAL background material, supports lectures adds more details and eplanation some elective reading is advisable if ou are interested in a wider perspective and more comple problems see me! Resources Resources Find m web page tpe unt theoretical chemistr into search engine top hit should be m website Use Socrative student login!! join click on teaching under Year Two find Molecular rbitals in Inorganic Chemistr goto Lecture click on slides as presented in the lecture WZ9KBWC wait for me to start the test qui complete the qui!! we share the results qui will appear on our device our website is a god send when ou miss out one little part or need something clarified I reall like that model answers to the tutorial problems are online. This was ver helpful because I could look through them mself 4 L_Slides_07.ke - November 07

2 Lecture utline introduction wh stud M theor what this course is about revision: smmetr smmetr operations, elements and operators point groups and flow chart character tables what is a character table? using a character table multiple smmetr operations degenerate smmetr labels improper rotations equivalent smmetr operations Wh Stud M Theor? Supersedes VSEPR theor valence shell electron pair repulsion theor VSEPR predicts diamagnetic (paired electrons) the eperimental evidence is that is paramagnetic (unpaired electrons) Fig. Δoct larger [ Ti()6]+ smaller [TiF6]- das Supersedes Crstal Field Theor das are split b the field of the ligands negative ligands should produce a larger Δoct Fig. but eperimentall it is found that F- ligands have a smaller Δoct than Required for odd bonding situations Wh Stud M Theor? Learning how M theor can be used to understand and predict the bonding, structure and reactivit of molecules All relating back to other chemistr courses Main group chemistr, rganometallic and Coordination chemistr, Crstal and Molecular Architecture, Theoretical Methods, Quantum Mechanics, Electronic Properties of Solids Labs and workshops Nobel prie in 998 C6 Fig. see F ig our. 4 in notes development of multiscale models for comple chemical sstems see Fig. 6 in our notes ACS rganometallic Chemistr Award dile Eisenstein computational chemistr labs our final ear research project for the development of modern computational methods Walter Kohn John Pople Martin Karplus Michael Levitt Arieh Warshel C orbital smmetr interpretation of chemical reactions Kenichi Fukui Roald offmann Nobel prie in 0 C The Course Learning how to interpret M diagrams B structure of ethane is well known, diborane B6 was assumed to be similar! while a nd ear undergraduate,. Christopher Longuet-iggins proposed the structure of diborane together with his tutor R. Bell Nobel prie in 98 B 6 Learning how to construct M diagrams B6 5 Learning how to describe and use smmetr specialises in the use of quantum theoretical methods for the stud of cataltic mechanisms Fig. 5 dile Eisenstein, reproduced with permission 7 8 L_Slides_07.ke - November 07

3 Smmetr Were have ou met smmetr alread? equivalent or C atoms in NMR chiralit labelling of atomic orbitals s and p orbitals octahedral transition metal complees isomerisation: cis/trans fac/mer staggered/eclipsed chair/boat Where understanding smmetr is crucial M diagrams => photoelectron spectrum determines form of M and LUM => reactivit stereo-electronic effects => organic mechanisms smmetr breaking => Jahn-Teller distortions determines allowed vibrations => IR and Raman spectrum determines electronic interactions => dipole moment, UV-vis spectrum Eamples Cv D h Td Point Group Use the flow chart from last ear available in our eam Determined b the number and tpe of smmetr operations 9 Smmetr perations Phsical act of performing a motion eample phsical rotation of water around C ais if nuclei are labeled specific atoms move a and b echange places ( rotates in place) Initial and final states are identical with respect to nuclei smmetr element ou should be able to draw neat diagrams showing smmetr operations (a) smmetr smmetr operation operator => action a b b (b) operation a Fig. 7 Smmetr elements 0 Smmetr Elements objects about which smmetr operations occur rotation ais reflection plane inversion point Include aial information alwas put an ais definition on our diagram correctl orientate the aial sstem -ais is aligned along the highest n-ais watch out for diatomics! -ais is along the bond (wh?) Important! L L see Figure 8 in our notes for revision of different smmetr elements smmetr element => ais M C 4 () L C 4 L L L M L L rotation smmetr operation => action Fig. 8 L_Slides_07.ke - November 07

4 Smmetr perators Same Notation! Smmetr operator mathematical representation of the action operator acts on the wavefunction or molecule (hence brackets) Advanced (not required) operator is a matri ie C rotation matri ψ operator acts on wavefunction = ψ Smmetr operation the act of performing a motion Smmetr elements objects about with smmetr operations occur Smmetr operator mathematical representation of the action operation rotate b 80º Fig. 7 element Chemical Bonding course Math courses Spectroscop and Characterisation course Quantum mechanics operator acts on molecule Fig. 9 operator ψ = ψ Fig. 8 Fig. 9 Eample: 4 In-Class Activit Smmetr elements for : identit E C rotation ais reflection plane σv() reflection plane σv() Flow chart for identifing the point group is the molecule linear? N are there two or more Cn N>? N is there a Cn? YES are there nc perpendicular to Cn? N is there a σh? N is there a σv? YES point group: v () () () Fig. 0 socrative qui! The question was part of an eam and related to a M diagram for What is the point group of this molecule? The -ais should align The principle ais is WZ9KBWC what is wrong with this answer! Fig. 5 6 L_Slides_07.ke - November 07

5 In-Class Activit In-Class Activit What is wrong with this answer to part of the 006 eam? wrong point group wrong principle ais What is the point group of this molecule? point group: D h The -ais should align along the bond with the principle ais of the molecule The principle ais is principle ais is highest C ais, C ais Problems? see Revision notes Additional material on m web-site The question Given this molecule of cis-4 clearl indicate all of the smmetr elements on a diagram. (4 marks) what is wrong with this answer! Fig. 7 8 In-Class Activit What is wrong with this answer? Character Tables ke part of this course is learning how to use character tables determine smmetr of Ms other uses not covered in this course... but covered net ear in Find our Character Tables bring to EVERY lecture v character table /4 what is wrong? does not include an ais definition does not include aial information in element names what is correct? all of the smmetr elements identified and drawn on the molecule molecule is correctl orientated diagram is tid and clear Spectroscop & Characterisation character table handout includes character tables of all main smmetr groups a cop of these character tables will be available to ou in the eam v A A B B E () '() h= Fig. 9 0 L_Slides_07.ke - November 07

6 Character Table Components Using Character Tables smmetr labels v A A B B smmetr operations E () '() h=4 number of smmetr operations smmetr of cartesian aes best wa to understand character table is to use it eample: lowest energ M of water s atomic orbital on each of the and atoms has Cv smmetr so use Cv character table start b constructing a representation table: smmetr operations as in character table Fig. 4 irreducible representation s and - s are characters unknown representation v E () '() Fig. 5 Using Character Tables Using Character Tables Determine how the orbital transforms under each smmetr operation of the group orbital is unchanged => character= a sign change => character= - smbol representing a character Determine how the orbital transforms under each smmetr operation of the group orbital is unchanged => character= a sign change => character= - () () () E No change under E χ = No change under χ = v E () '() Fig. 6 v E () '() Fig. 6 4 L_Slides_07.ke - November 07

7 Using Character Tables Using Character Tables Determine how the orbital transforms under each smmetr operation of the group orbital is unchanged => character= a sign change => character= - () () () Determine how the orbital transforms under each smmetr operation of the group orbital is unchanged => character= a sign change => character= - () () () () No change under χ = () No change under χ = v E () '() Fig. 6 v E () '() Fig Using Character Tables In-Class Activit same set of characters as the irreducible representation a v E () '() the second highest energ M for water out of phase s atomic orbitals on the hdrogen atoms and a p atomic orbital on the ogen atom our turn: Fig. 8 Important! Use small letters when referring to the smmetr labels of Ms A -> a v A A B B E () '() h=4 Fig. 7 v E () '() () () () 7 8 L_Slides_07.ke - November 07

8 In-Class Activit D h Character Table () () χ = χ = v E () '() - - σ C v D h E S A ' A ' E' (T, T ) () () χ = this orbital has b smmetr () () Find the D h character table in our set of Character Tables A " A " E" T Fig. 9 () 9 0 D h Character Table Multiple perations Show b eample Use simple molecule or + Planar equilateral triangle common orbital fragment B, N, ER, ML etc Model for heavier elements such as Au highest active orbital is 6s orbital + is interesting! Most abundant ion in universe Important for interstellar chemistr Use spectroscop to detect new interstellar species, also provide information on interstellar chemical and phsical conditions Links on the web-site Smmetr operations of Dh E identit C rotations C rotations σh reflection S improper rotations σv reflections number of operations h=total number of operations =+++++= D h E S A ' A ' - - E' A " A " E" (T, T ) T Fig. 9 Fig. 0 L_Slides_07.ke - November 07

9 Rotations Rotations in General = E Fig. Each rotation of order n has n rotations for eample C 4 C 4 C 4 final rotation returns to starting geometr =E onl keep unique operations if alread counted in a smmetr element to the left on the character table, or under a rotation of lower n it is not counted again C 4 4 each set of rotations forms a group rotation groups mathematical entities whole area of mathematics devoted to groups 4 Rotations Multiple perations three separate C aes each contributes one C rotation find one C ais and use C to find the rest each element is distinct: = E Fig. C and C appear in the character table of Dh it doesn t matter if these are the SAME or DIFFERENT smmetr elements the table onl cares about operations E S one element operations three elements operations Fig. 5 6 L_Slides_07.ke - November 07

10 Smmetr Labels Smmetr Labels A and B singe representations atoms/orbitals map onto each other D h E S A ' A ' - - E' A " A " E" (T, T ) T Fig. 9 A and B singe representations atoms/orbitals map onto each other E doubl degenerate don t confuse with E operation! orbitals as a group map onto each other character = under E operation T tripl degenerate tetrahedral point groups (Td) character = under E operation D h E S A ' A ' - - E' A " A " E" (T, T ) T Fig Smmetr Labels A and B singe representations atoms/orbitals map onto each other E doubl degenerate don t confuse with E operation! orbitals as a group map onto each other character = under E operation T tripl degenerate tetrahedral point groups (Td) character = under E operation das e g doubl degenerate t g tripl degenerate You have alread seen e and t smmetr labels! D h E S A ' A ' E' A " A " E" (T, T ) T Fig. 9 Degenerate Representations degenerate representations touched on in our maths course eample: (p,p) have e smmetr in Dh B Fig L_Slides_07.ke - November 07

11 Degenerate Representations Degenerate Representations degenerate representations eample: (p,p) have e smmetr in Dh character refers to BT components how to work out the character? take point on tip of each orbital write the position in coordinates as form matri b combing the coordinates point on tip p p Fig. p p 0 0 = 0 0 degenerate representations eample: (p,p) have e smmetr in Dh character refers to BT components how to work out the character? take point on tip of each orbital write the position in coordinates as form matri b combing the coordinates perform the operation p p p after operation p E E 0 0 = Fig. 4 4 Degenerate Representations Degenerate Representations degenerate representations eample: (p,p) have e smmetr in Dh character refers to BT components how to work out the character? take point on tip of each orbital write the position in coordinates as form matri b combing the coordinates perform the operation the character is the TRACE of this matri trace=sum of diagonal terms for this eample (E) trace=+= character is p E 0 p Fig. p p E 0 0 = 0 0 the character for the σv operation under Dh 0 PTINAL: More details about degenerate representations on m web-site D h E S A ' A ' E' A " A " E" Fig. 4 (T, T ) T 4 44 L_Slides_07.ke - November 07

12 In-Class Activit In-Class Activit find character for the C operation under Dh find character for the C operation under Dh 0 Fig. 5 C 0 C D h E S A ' trace=sum of diagonal terms trace=+-=0 character is 0 A ' E' A " (T, T ) Model answer on the web-site A " E" T 45 Improper Rotations 46 Equivalent perations rotation rotation followed b reflection in mirror plane perpendicular to the ais of rotation phase changes are important use pas to visualise Important! R take a point off the mirror plane and ais (black circle above) sometimes it requires two full rotations to return to starting state S reflection Fig. 6 S E S 6 = E onl keep unique operations count smmetr element to the left on the character table does not appl to rotations count lowest n for Cn operations first for eample count C over C 4 final rotation in a group =E man improper rotations will have alread been counted watch out for odd Sn n=odd S n n E L_Slides_07.ke - November 07

13 Improper Rotations Ke Points diagram showing S E = Be able to define smmetr element, operation and operator S S Be able to draw clear diagrams showing the smmetr elements of a molecule and the action of a smmetr operation Be able to define all the components of a character table Be able to use character tables to find the smmetr label of Ms S Be able to identif when operations in the header row are due to multiple smmetr elements or multiple smmetr operations S = S E Fig. 7 Be able to identif degenerate irreducible representations Be able to determine the characters of degenerate IRs Be able to perform and illustrate Sn operations PTINAL: Supporting information about improper rotations on m web-site Be able to identif and show when operations are not unique Finall See m web-site notes AND slides link to panopto when it becomes available optional background support for beginners optional material to take ou a little further links to interesting people and web-sites links to relevant research papers on Ms model answers!! 5 L_Slides_07.ke - November 07

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular Orbitals in Inorganic Chemistry Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistry) http://www.ch.ic.ac.uk/hunt/ Resources Web notes AND slides link to panopto when it becomes available model

More information

Spectroscopy and Characterisation. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Spectroscopy and Characterisation. Dr. P. Hunt Rm 167 (Chemistry) web-site: Spectroscop and Characterisation Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistr) web-site: http://www.ch.ic.ac.uk/hunt Resources Web copies course notes download slides model answers links to good web-sites

More information

Molecular Orbitals in Inorganic Chemistry

Molecular Orbitals in Inorganic Chemistry Outline Molecular Orbitals in Inorganic hemistr Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (hemistr) http://www.ch.ic.ac.uk/hunt/ choosing fragments orbital smmetr (again!) bonding and antibonding character

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular Orbitals in Inorganic Chemistr Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistr) http://www.ch.ic.ac.uk/hunt/ Outline choosing fragments orbital smmetr (again!) bonding and antibonding character

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular rbitals in Inorganic Chemistry Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistry) http://www.ch.ic.ac.uk/hunt/ Lecture 2 utline L2 build a M diagram to show you the process quick revision stage

More information

x find all of the symmetry operations/elements: o character table headings: E, 2C φ σ v, i, S φ C 2 φ

x find all of the symmetry operations/elements: o character table headings: E, 2C φ σ v, i, S φ C 2 φ Construct and annotate a valence molecular orbital diagram for the linear molecule Mg 2. Assume the 3pAOs lie deeper in energ than the Mg 3sAO and that the Mg and orbitals interact onl slightl. Mg is a

More information

Fragment Orbitals for Transition Metal Complexes

Fragment Orbitals for Transition Metal Complexes Fragment Orbitals for Transition Metal Complees Introduction so far we have concentrated on the MO diagrams for main group elements, and the first 4 lectures will link into our Main Group chemistr course

More information

Figure 1 Correlation diagram for BeH 2

Figure 1 Correlation diagram for BeH 2 Self-Stud Problems / Eam Preparation revise our computational chemistr workshop from last ear: http://www.huntresearchgroup.org.uk/teaching/ear1_lab_start.html o make sure ou have checked that the molecule

More information

chapter 1 Chemical structure and bonding

chapter 1 Chemical structure and bonding Sa Ph m ar ple m c ac on eu te tic nt al co P r p es rig s ht chapter 1 Chemical structure and bonding Overview After learning the material presented in this chapter ou should: understand how an atom is

More information

Chem 400. Inorganic Chemistry. Exam 1. Σ of of of of of of of of 10. Name (please print)

Chem 400. Inorganic Chemistry. Exam 1. Σ of of of of of of of of 10. Name (please print) Chem 400 Inorganic Chemistr Eam 1 1 of 10 2 of 10 3 of 30 4 of 10 5 of 10 6 of 20 7 of 10 Σ of 100 % Name (please print) 1. Sketch out the molecular orbital energ level diagram for B 3 appling the LGO

More information

Symmetry Adapted Orbitals

Symmetry Adapted Orbitals Symmetry Adapted Orbitals z B x y e a Figure Symmetry adapted fragment orbitals for 3 L= ML 3 M C is isolobal with P 3 P Figure 2 Isolobal relationship Introduction so far the fragments used in forming

More information

Chem 400. Inorganic Chemistry. Practice Exam 1. 1 of 5. 2 of 5. 3 of of of of of of of of 10.

Chem 400. Inorganic Chemistry. Practice Exam 1. 1 of 5. 2 of 5. 3 of of of of of of of of 10. Chem 400 Inorganic Chemistr Practice Eam 1 1 of 5 2 of 5 3 of 10 4 of 10 5 of 10 6 of 10 7 of 10 8 of 10 9 of 10 10 of 10 11 of 10 Σ of 100 Name KEY (please print) 1. a. Predict the structure of 4 using

More information

Symmetry and Group Theory

Symmetry and Group Theory 4 Smmetr and Group Theor 4 Smmetr and Group Theor 4 Smmetr and Group Theor 4 Smmetr and Group Theor Smmetr Operation and Smmetr Elements Smmetr Operation: A well-defined, non-translational moement of an

More information

Chapter 3 Introduction to Molecular Symmetry

Chapter 3 Introduction to Molecular Symmetry CHEM 511 Chapter 3 page 1 of 12 Chapter 3 Introduction to Molecular Symmetry This chapter will deal with the symmetry characteristics of individual molecules, i.e., how molecules can be rotated or imaged

More information

Figure 1 Setting the charge in HF 2 -.

Figure 1 Setting the charge in HF 2 -. Self-Stud Problems / Eam Preparation compute the orbitals for (linear) -, draw and annotate a MO diagram consistent with the MOs ou observe o if ou have problems setting up the calculation, select Be and

More information

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force Phsics 360 Notes on Griffths - pluses and minuses No tetbook is perfect, and Griffithsisnoeception. Themajorplusisthat it is prett readable. For minuses, see below. Much of what G sas about the del operator

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

lectures Handout 1 - Bonding Dr Jonathan Burton

lectures Handout 1 - Bonding Dr Jonathan Burton Introduction to rganic hemistr jonathan.burton@chem.o.ac.uk 1 Introduction to rganic hemistr 2018 7 lectures andout 1 - Bonding Dr Jonathan Burton http://burton.chem.o.ac.uk/teaching.html rganic hemistr

More information

Linear Equation Theory - 2

Linear Equation Theory - 2 Algebra Module A46 Linear Equation Theor - Copright This publication The Northern Alberta Institute of Technolog 00. All Rights Reserved. LAST REVISED June., 009 Linear Equation Theor - Statement of Prerequisite

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

C 2 '' σ v ' C 2 ' "side on" "in-plane" 2S determine how the MO transforms under each symmetry operation, Figure 3.

C 2 '' σ v ' C 2 ' side on in-plane 2S determine how the MO transforms under each symmetry operation, Figure 3. Lecture Model nswers to Problems Self-study Problems / Exam Preparation determine the point group of o use VESPR (from st year) to determine that is planar, then use the flow chart. is the molecule linear?

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2 Applied Spectroscop Ala-Arg-Pro-Tr-Asn-Phe-Cpa-Leu-NH 2 Cpa Ala Pro Guillermo Mona What is Spectroscop? Without going into latin or greek, spectroscop is the stud of the interactions between light and

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

3D Schrödinger Eq. Today: Continue with hydrogen. Multi-electron atoms

3D Schrödinger Eq. Today: Continue with hydrogen. Multi-electron atoms 3D Schrödinger Eq. Toda: Continue with hdrogen. Multi-electron atoms HWK 13 available online. Please fill out the online participation surve. Worth 10points on HWK 13. Final Eam is Monda Dec. 15 10:30A-1P

More information

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property.

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property. Rev 8-8-3 Name Date TI-8 GC 3 Using GC to Graph Parabolae that are Not Functions of Objectives: Recall the square root propert Practice solving a quadratic equation f Graph the two parts of a hizontal

More information

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 orces Part 1 Introduction his is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet of reasons.

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular Orbitals in Inorganic Chemistry Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry http://www.ch.ic.ac.uk/hunt/ Outline LCAO theory orbital size matters where to put the FO energy levels the

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 Forces Part 1 Phsics 211 Lab Introduction This is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet

More information

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 23 How does this wave-particle dualit require us to alter our thinking about the electron? In our everda lives, we re accustomed to a deterministic world.

More information

5. Perform the indicated operation and simplify each of the following expressions:

5. Perform the indicated operation and simplify each of the following expressions: Precalculus Worksheet.5 1. What is - 1? Just because we refer to solutions as imaginar does not mean that the solutions are meaningless. Fields such as quantum mechanics and electromagnetism depend on

More information

A Tutorial on Euler Angles and Quaternions

A Tutorial on Euler Angles and Quaternions A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weimann Institute of Science http://www.weimann.ac.il/sci-tea/benari/ Version.0.1 c 01 17 b Moti Ben-Ari. This work

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction at the end of last lecture you determined the symmetry and activity of the vibrational modes of ammonia Γ vib 3 ) = A 1 IR, pol) + EIR,depol) the vibrational

More information

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling Colors of Co(III) solutions Electronic-Vibrational Coupling Vibronic Coupling Because they have g g character, the d-d transitions of complees of the transition metals are forbidden (LaPorte forbidden).

More information

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds Molecular Orbitals Chapter 9 Orbitals and Covalent Bond The overlap of atomic orbitals from separate atoms makes molecular orbitals Each molecular orbital has room for two electrons Two types of MO Sigma

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Precalculus Prerequisite Packet Paint Branch High School Math Department. Concepts To Be Assessed on the Precalculus Course Pre-assessment.

Precalculus Prerequisite Packet Paint Branch High School Math Department. Concepts To Be Assessed on the Precalculus Course Pre-assessment. Updated /01 The problems in this packet are designed to help ou review topics from previous math courses that are important to our success in Precalculus. It is important that ou take time during summer

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 12 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 12 Group Theory For Crystals ECEN 5005 Crstals, Nanocrstals and Device Applications Class 1 Group Theor For Crstals Hierarch of Smmetr Irreducible Representations of oint Groups Transformation roperties of Functions Luminescence Hierarch

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2 Linear Programming Man real world problems require the optimization of some function subject to a collection of constraints. Note: Think of optimizing as maimizing or minimizing for MATH1010. For eample,

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site: Advanced Spectroscopy Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry) web-site: http://www.ch.ic.ac.uk/hunt Maths! Coordinate transformations rotations! example 18.1 p501 whole chapter on Matrices

More information

MATH GRADE 8 UNIT 4 LINEAR RELATIONSHIPS EXERCISES

MATH GRADE 8 UNIT 4 LINEAR RELATIONSHIPS EXERCISES MATH GRADE 8 UNIT LINEAR RELATIONSHIPS Copright 01 Pearson Education, Inc., or its affiliate(s). All Rights Reserved. Printed in the United States of America. This publication is protected b copright,

More information

17/11/2010. Lewis structures

17/11/2010. Lewis structures Reading assignment: 8.5-8.8 As you read ask yourself: How can I use Lewis structures to account for bonding in covalent molecules? What are the differences between single, double and triple bonds in terms

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Directions Within The Unit Cell NCSU

Directions Within The Unit Cell NCSU Smmetr In Crstalline Materials SiO 2 1) Draw the unit cell, and label the internal rotational/ mirror/inversion smmetries. C 2 2) Show all positions of the molecule generated b smmetr (out to 4 unit cells).

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Lecture 4 Model Answers to Problems

Lecture 4 Model Answers to Problems Self-Study Problems / Exam Preparation Construct and annotate a valence MO diagram for H 2 CN -. Use your diagram to explain why the neutral radical is more stable than the anion. (this is an old exam

More information

E nuc rep = Z AZ B r AB m =0.499 hartree =13.60 ev. E nuc rep (H 2 )= m/a m =0.714 hartree =19.43 ev.

E nuc rep = Z AZ B r AB m =0.499 hartree =13.60 ev. E nuc rep (H 2 )= m/a m =0.714 hartree =19.43 ev. Chemistr 31 Phsical Chemistr Homework Assignment # 7 1. Sketch qualitative contour maps of the following molecular orbitals for a diatomic molecule AB. Identif each as a bonding or an anti-bonding molecular

More information

5 Linear Graphs and Equations

5 Linear Graphs and Equations Linear Graphs and Equations. Coordinates Firstl, we recap the concept of (, ) coordinates, illustrated in the following eamples. Eample On a set of coordinate aes, plot the points A (, ), B (0, ), C (,

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013 Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 23 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T7 GRAPHING LINEAR EQUATIONS REVIEW - 1 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) TWO VARIABLE EQUATIONS = an equation containing two different variables. ) COEFFICIENT = the number in front

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which?

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which? walters@buffalo.edu CSE 480/580 Lecture 2 Slide 3-D Transformations 3-D space Two conventions for coordinate sstems Left-Hand vs Right-Hand (Thumb is the ais, inde is the ais) Which is which? Most graphics

More information

Bonding and Molecular Structure - PART 1 - VSEPR

Bonding and Molecular Structure - PART 1 - VSEPR Bonding and Molecular Structure - PART 1 - VSEPR Objectives: 1. Understand and become proficient at using VSEPR to predict the geometries of simple molecules and ions. 2. Become proficient at predicting

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc...

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... Lewis Structure Lab For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... I can t assume you have had all these, so

More information

And similarly in the other directions, so the overall result is expressed compactly as,

And similarly in the other directions, so the overall result is expressed compactly as, SQEP Tutorial Session 5: T7S0 Relates to Knowledge & Skills.5,.8 Last Update: //3 Force on an element of area; Definition of principal stresses and strains; Definition of Tresca and Mises equivalent stresses;

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Algebra II Notes Unit Five: Quadratic Functions. Syllabus Objectives: 5.1 The student will graph quadratic functions with and without technology.

Algebra II Notes Unit Five: Quadratic Functions. Syllabus Objectives: 5.1 The student will graph quadratic functions with and without technology. Sllabus Objectives:.1 The student will graph quadratic functions with and without technolog. Quadratic Function: a function that can be written in the form are real numbers Parabola: the U-shaped graph

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anone who can contemplate quantum mechanics without getting di hasn t understood it. --Niels Bohr Lecture 7, p Phsics Colloquium TODAY! Quantum Optomechanics Prof. Markus Aspelmeer, U. Vienna Massive mechanical

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time:

CH 101Fall 2018 Discussion #12 Chapter 8, Mahaffy, 2e sections Your name: TF s name: Discussion Day/Time: CH 11Fall 218 Discussion #12 Chapter 8, Mahaff, 2e sections 8.3-8.7 Your name: TF s name: Discussion Da/Time: Things ou should know when ou leave Discussion toda for one-electron atoms: ΔE matter=e n-e

More information

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview Chapter 9: Chemical Bonding I: Lewis Theory Dr. Chris Kozak Memorial University of ewfoundland, Canada Lewis Theory: An verview Valence e - play a fundamental role in chemical bonding. e - transfer leads

More information

Higher. Integration 1

Higher. Integration 1 Higher Mathematics Contents Indefinite Integrals RC Preparing to Integrate RC Differential Equations A Definite Integrals RC 7 Geometric Interpretation of A 8 Areas between Curves A 7 Integrating along

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information