Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages

Size: px
Start display at page:

Download "Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages"

Transcription

1 Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages Erin Shammel Baker, Jennifer Gidden, Glenn Bartholomew, Guillermo Bazan, and Michael T. Bowers (UCSB) James Scrivens and Anthony Jackson (ICI) William Simonsick (DuPont)

2 Introduction Understand the structures of reaction products that can not be determined using methods such as NMR and FTMS Characterize structures with ion mobility eperiments and molecular mechanics Help synthetic chemists understand the abundance of the reaction products and impurities

3 MALDI-TOF hν Source TOF Detector TOF Quadrupole Drift Cell Glass l = 20 cm p = ~1.5 torr He

4 m/z MALDI-TOF hν TOF Mode TOF Detector TOF Drift Cell Quadrupole Source Mass Spectrum

5 MALDI-TOF hν Ion Mobility Mode TOF Drift Cell Quadrupole Detector Source Arrival Time Distributions Single Conformer Multiple Conformers

6 Ethylene Oide/ Propylene Oide (EO / PO) Copolymers Erin Baker, Jennifer Gidden, and Michael Bowers (UCSB) James Scrivens and Anthony Jackson (ICI) Industrial important class of surfactants Used in detergents, foams, lubricants, and drug delivery PO has a hydrophobic character EO has a more hydrophilic character Vary the amount and sequence of EO and PO to get desired characteristics EO PO C 13 H 27 O ( CH 2 CH 2 O ) ( CH 2 CH O ) y H CH 3

7 Block vs Random EO / PO Copolymer Mass Spectra 4-mer 16-mer Na + Block 4-mer 20-mer Na + Random m/z

8 Block Na + EOPO5 ATDs at 300 K Arrival Time (µs) EO0 PO5 σ = 169 Å 2 EO3 PO5 σ = 190 Å 2 EO5 PO5 σ = 206 Å 2 EO7 PO5 σ = 224 Å 2 EO11 PO5 σ = 252 Å 2

9 Na + EOPO5 Theoretical Structures C 13 H 27 O-EO0-PO5 H σ Theory = 171 Å 2 C 13 H 27 O-EO7-PO5-H σ Theory = 223 Å 2 C 13 H 27 O-EO11-PO5-H σ Theory = 253 Å 2 = Oygen from C 13 H 27 = EO Oygen = PO Oygen = Oygen Coordinating to Na +

10 Block Na + EO / PO Collision Cross-Sections (Å 2 ) Copolymer Eperiment (Na + ) Theory (Na + ) EO = 5 PO = EO = 5 PO = EO = 5 PO = EO = 0 PO = EO = 3 PO = EO = 5 PO = EO = 7 PO = EO =11 PO =

11 Block vs Random Na + EO / PO Eperimental Cross-Sections (Å 2 ) Copolymer Block (Na + ) Random (Na + ) EO = 5 PO = EO = 5 PO = EO = 5 PO = EO = 0 PO = EO = 3 PO = EO = 5 PO = EO = 7 PO = EO =11 PO =

12 Na + EO5PO5 Theoretical Structures (Sequence Dependent) C 13 H 27 O-EO5-PO5-H (block) σ Theory = 205 Å 2 C 13 H 27 O-PO5-EO5-H (block) σ Theory = 205 Å 2 C 13 H 27 O-EO5-PO5-H (alternating) σ Theory = 205 Å 2 = Oygen from C 13 H 27 = EO Oygen = PO Oygen = Oygen Coordinating to Na +

13 EO / PO Copolymers Summary 1. Ion mobility determined that the the conformations of the block and random copolymers are similar 2. The difference in the physical properties of random versus block must be a result of other factors EO PO C 13 H 27 O ( CH 2 CH 2 O ) ( CH 2 CH O ) y H CH 3

14 Glycidyl Methacrylate/Butyl Methacrylate (GMA / BMA) Copolymers Erin Baker and Michael Bowers (UCSB) William Simonsick (DuPont) Polymers used in paint which produces high performance coatings GMA and BMA have the same nominal mass but differ in the eact mass by Da (CH 4 vs O) CH 3 C H 2 CH 3 O O C H 2 O O O GMA BMA

15 GMA / BMA Copolymers H H H O CH 3 O R n O CH 2 O R H 3 C H 3 C H 3 C N O CH 3 O R n O CH 2 O R H-end Polymer Vaso-end Polymer O R =

16 GMA / BMA Copolymers Mass Spectrum Na + H-Trimer Na + H-Tetramer Na + V-Trimer Na + H-Pentamer Na + V-Tetramer Na + V-Pentamer Na + H-Heamer Na + V-Heamer Na + H-Heptamer m/z 1050

17 Na + GMA / BMA Trimer ATDs at 300 K H-end Trimer σ = 138 Å 2 σ = 146 Å 2 σ = 152 Å 2 σ = 130 Å 2 Vaso-end Trimer σ = 164 Å 2 σ = 171 Å 2 σ = 175 Å 2 σ = 184 Å 2 Arrival Time (µs) Arrival Time (µs)

18 GMA / BMA Collision Cross-Sections and Theoretical Structures H-end Trimer Sequence Collision Cross-Sections (Å 2 ) Theory (Na + ) Eperiment (Na + ) % Abundance from ATD H-GGG % H-GBG % H-BGG 142 H-GGB H-BBG % H-GMA-GMA-GMA σ Theory = 133 Å 2 H-BGB H-GBB % H-BBB 159 0% H-BMA-BMA-BMA σ Theory = 159 Å 2

19 GMA / BMA Collision Cross-Sections and Theoretical Structures Vaso-end Trimer Collision Cross-Sections (Å 2 ) Sequence Theory (Na + ) V-GGG 161 Eperiment (Na + ) 164 % Abundance from ATD 27% V-BGG 163 V-GBG % V-GGB % V-GMA-GMA-GMA σ Theory = 161 Å 2 V-BBG 178 V-BGB % V-GBB 186 V-BBB 191 0% V-BMA-BMA-BMA σ Theory = 191 Å 2

20 GMA / BMA Copolymers Summary 1. The overall oligomeric distributions for the hydrogen and vaso end groups can be determined (Mass Spectrum) 2. The abundance and sequence for the GMA and BMA side chains can be identified (Ion Mobility) CH 3 C H 2 CH 3 O O C H 2 O O O GMA BMA

21 para-cyclophanes Erin Baker, Glenn Bartholomew, Guillermo Bazan, and Michael Bowers (UCSB) Allows 2 organic substituents (chromophores) to be in close proimity for optoelectronic application Displays better transport properties and lower operating voltages because of the alignment

22 para-cyclophanes (pcp) A B?

23 para-cyclophanes (pcp) H H H H Molecule A Molecule B

24 pcp Mass Spectrum Na + pcp m/z

25 300 K Na + pcp ATDs σ EXPT = 137 Å K Arrival Time (µs)

26 Na + pcp ATD Theoretical Structures Na + B Na + A Arrival Time (µs) σ EXPT = 137 Å 2 Molecule A σ Theory = 144 Å 2 % Error = 5.1% Molecule B σ Theory = 139 Å 2 % Error = 1.5%

27 Diheyl para-benzamine para-cyclophanes para-nitrobenzene in Trans Form (DpCpN) N A B NO 2

28 H + DpCpN ATD at 300 K 300 K σ = 233 Å 2 σ = 273 Å 2 Arrival Time (µs)

29 DpCpN Collision Cross-Sections Molecule A Cross-Sections (Å 2 ) Molecule B Cross-Section (Å 2 ) Pi Bond Arrangement Theory (H + ) Eperiment (H + ) Pi Bond Arrangement Theory (H + ) Eperiment (H + ) Cis-Cis-Cis Cis-Trans-Cis 233, , 273 Cis-Cis-Trans Cis-Cis-Cis Cis-Trans-Cis Cis-Cis-Trans Cis-Trans-Trans 283 Cis-Trans-Trans 281 Trans-Trans-Cis 291 Trans-Trans-Cis 288 Trans-Cis-Cis 293 Trans-Cis-Cis 289 Trans-Cis-Trans 295 Trans-Cis-Trans 292 Trans-Trans-Trans 299 Trans-Trans-Trans 295

30 H + DpCpN ATD and Theoretical Structures Folded Open Arrival Time (µs) Folded Cis-Trans-Cis σ Theory = 233 Å 2 Open Cis-Trans-Cis σ Theory = 277 Å 2

31 H + DpCpN Temperature Dependent ATDs Arrival Time (µs) 110 K 300 K 470 K

32 Arrival Time (µs) H + DpCpN Temperature Dependent ATDs 110 K σ = 6 Å 2 σ = 15 Å K 470 K

33 H + DpCpN Folded Theoretical Structures 1.9 Å 4.9 Å F1 Folded Cis-Trans-Cis σ Theory = 233 Å 2 F2 Folded Cis-Trans-Cis σ Theory = 239 Å 2 σ = 6 Å 2

34 H + DpCpN Open Theoretical Structures O1 Open Cis-Trans-Cis σ Theory = 262 Å 2 σ = 15 Å 2 O2 Open Cis-Trans-Cis σ Theory = 277 Å 2

35 H + DpCpN ATDs 110 K F1 F2 O1 O2 Arrival Time (µs) F1 F2 O1 O2

36 H + DpCpN ATDs Arrival Time (µs) 110 K 300 K 470 K

37 para-cyclophanes Summary 1. The σ bond connectivity between para-cyclophane units can be analyzed (Can not be determined from NMR) 2. Cis/Trans distributions for each vinyl linkages can be determined

38 Conclusion Ion Mobility is a ecellent tool for determining the conformations of reaction products which are too comple for other analysis methods. - Geometric isomers can be quantified - Cis/Trans linkages can be determined - Polymer sequences and distributions can be obtained

39 Acknowledgements Dr. Jennifer Gidden Dr. Paul Kemper Prof. Michael T. Bowers Bowers Group Dr. Glenn Bartholomew Dr. William Simonsick Prof. Guillermo Bazan Dr. James Scrivens Dr. Anthony Jackson

40 Eperimental Setup gate (1-10 µs) Ion Source Mass Spectrometer Drift Cell Mass Analyzer Detector Arrival Time Distributions MALDI Time-of-Flight l = 20 cm V = 8-16 V/cm p = ~1.5 torr He Quadrupole single conformer multiple conformers EXPT: ATDs mobilities (K) l v = = C d = t K E d Ω THEORY: molecular mechanics structures (AMBER) collision cross-sections (Ω) collision cross-sections (Ω)

41 Eperiment versus Theory ATDs Mobilities (K) Collision Cross-Sections Molecular Mechanics/Dynamics Structures Collision Cross-Sections AMBER

42 DpCpN Mass Spectrum H + DpCpN m/z

43 Cis-Trans-Cis Theoretical Structures Open 270 Cross Section (Å 2 ) Folded Relative Energy (kcal/mol)

Structure and Modeling of Polyhedral Oligomeric Silsesquioxane (POSS) Systems

Structure and Modeling of Polyhedral Oligomeric Silsesquioxane (POSS) Systems Structure and Modeling of Polyhedral ligomeric lsesquioxane (PSS) Systems by Stanley Anderson (Westmont College) Michael Bowers (UCSB) Erin Shammel Baker, Jennifer Gidden (UCSB) Shawn Phillips, Tim Haddad,

More information

Gas-Phase DNA Helix Conformations

Gas-Phase DNA Helix Conformations Gas-Phase DNA Helix Conformations Erin Shammel Baker, Jennifer Gidden, Alessandra Ferzoco, Thomas Wyttenbach and Michael Bowers utline Experimental Method Theoretical Method Instrumentation DNA Background

More information

Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS)

Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS) International Journal of Mass Spectrometry 222 (2003) 63 73 Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS) Jennifer Gidden, Paul R.

More information

Microstructural and conformational studies of polyether copolymers

Microstructural and conformational studies of polyether copolymers International Journal of Mass Spectrometry 238 (2004) 287 297 Microstructural and conformational studies of polyether copolymers Anthony T. Jackson a,, James H. Scrivens a, Jonathan P. Williams b,1, Erin

More information

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers http://bowers.chem.ucsb.edu/ ydration of ucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers ASMS 2006 Why study hydration? Is a certain property of a molecule (e.g. conformation) inherent

More information

FOCUS: ION THERMOCHEMISTRY

FOCUS: ION THERMOCHEMISTRY Gas-Phase Conformations of Cationized Poly(styrene) Oligomers FOCUS: ION THERMOCHEMISTRY Jennifer Gidden and Michael T. Bowers Department of Chemistry and Biochemistry, University of California, Santa

More information

{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen.

{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen. Probability with the 3-Kids Procedure Statistics Procedures and Events Definition A procedure is something that produces an outcome. When a procedure produces an outcome, it s called a trial or a run of

More information

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA Use of High Speed/High Resolution Size-Based Chromatographic Separation of Surfactants and Oligomeric Materials with Single Quadrupole Mass Spectrometry Michael O Leary, Jennifer Gough, Tanya Tollifson

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

Olumide Adebolu. Chromatographic Fidelity and Matrix /Analyte Solubility in Complex Polymer Systems using HPLC-MALD/I TOF MS

Olumide Adebolu. Chromatographic Fidelity and Matrix /Analyte Solubility in Complex Polymer Systems using HPLC-MALD/I TOF MS Chromatographic Fidelity and Matrix /Analyte Solubility in Complex Polymer Systems using HPLC-MALD/I TOF MS Olumide Adebolu CHEM 395 March 1 st, 2007 Instructor : Prof J.Rusling Overview 2 Introduction

More information

- Supporting Information -

- Supporting Information - Protomers of Benzocaine: Solvent and Permittivity Dependence Stephan Warnke, Jongcheol Seo, Jasper Boschmans, Frank Sobott, James H. Scrivens, Christian Bleiholder,,? Michael T. Bowers, Sandy Gewinner,

More information

Accurate Mass Analysis of Hydraulic Fracturing Waters

Accurate Mass Analysis of Hydraulic Fracturing Waters Application Note Environmental Accurate Mass Analysis of Hydraulic Fracturing Waters Using the Kendrick mass defect with the Agilent LC/Q-TOF MS Authors E. Michael Thurman and Imma Ferrer Department of

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

The vibrational spectroscopy of polymers

The vibrational spectroscopy of polymers D. I. BOWER Reader in Polymer Spectroscopy Interdisciplinary Research Centre in Polymer Science & Technology Department of Physics, University of Leeds W.F. MADDAMS Senior Visiting Fellow Department of

More information

Analysis of Multiply Charged Poly(ethylene oxide-co-propylene oxide) Using Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry

Analysis of Multiply Charged Poly(ethylene oxide-co-propylene oxide) Using Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry ANALYTICAL SCIENCES FEBRUARY 209, VOL. 35 69 209 The Japan Society for Analytical Chemistry Analysis of Multiply Charged Poly(ethylene oxide-co-propylene oxide) Using Electrospray Ionization Ion Mobility

More information

Mass Spectrometry. A truly interdisciplinary and versatile analytical method

Mass Spectrometry. A truly interdisciplinary and versatile analytical method Mass Spectrometry A truly interdisciplinary and versatile analytical method MS is used for the characterization of molecules ranging from small inorganic and organic molecules to polymers and proteins.

More information

Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2004 Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation Christian Bleiholder, Nicholas F. Dupuis, Thomas

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

Gel Permeation Chromatography Coupled to Fourier Transform Mass Spectrometry for Polymer Characterization

Gel Permeation Chromatography Coupled to Fourier Transform Mass Spectrometry for Polymer Characterization Anal. Chem. 1999, 71, 4793-4799 Accelerated Articles Gel Permeation Chromatography Coupled to Fourier Transform Mass Spectrometry for Polymer Characterization David J. Aaserud,, Laszlo Prokai, and William

More information

AFOSR 875 North Randolph Street Suite 325, Room 3112

AFOSR 875 North Randolph Street Suite 325, Room 3112 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.247 Amyloid!-Protein Oligomerization and the Importance of Tetramers and Dodecamers in the Aetiology of Alzheimer s Disease Summer L. Bernstein, Nicholas F.

More information

13.1 The Basics of Probability Theory

13.1 The Basics of Probability Theory 13.1 The Basics of Probability Theory An experiment is a controlled operation that yields a set of results. The possible results of an experiment are called its outcomes. The set of outcomes are the sample

More information

AQA Chemistry A-Level : Atomic Structure

AQA Chemistry A-Level : Atomic Structure AQA Chemistry A-Level 3.1.1: Atomic Structure Detailed Notes 3.1.1.1 - Fundamental Particles The model for atomic structure has evolved over time as knowledge and scientific understanding changes. Plum

More information

Exp 08: Organic Molecules

Exp 08: Organic Molecules Exp 08: Organic Molecules 109.5 109.5 Exp 08: Organic Molecules Part A: Representing Organic Molecules Part E: Functional Groups Formula to Model Explore different ways to draw and sketch, to represent

More information

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box ) Metallic Bond The outer electrons are weakly bound. They roam freely in the space between the atoms and thus are able to conduct electricity. They can be approximated by free electrons in a constant,

More information

[ instrument specifications ]

[ instrument specifications ] Designed for leading researchers working at the limits of conventional mass spectrometry capabilities who need to further characterize and define their samples the Waters SYNAPT High Definition MS (HDMS

More information

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes Section 21.1 Introduction to Hydrocarbons Section 1 Objectives: Explain the terms organic compound and organic chemistry. Section 21.2 Alkanes Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 8 Measuring Molecular Weight Membrane Osmometry Alfredo Vapor Phase Osmometry Linda Viscometry GW Gel Permeation Chromatography Size exclusion Chromatography Light Scattering

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G Bk b $ 6 G Y 7 B B B B - BB -BY- B Bk B Qk Q k Q k B g (- -- k Bk G Bk k q B - - - - - $ gb q g bg g g b b q )( 6 B 7 B B k 6 g k 6 B b Y k b - b b k b b b g ( \ bg Y b b k b /% /% b k b b g Y Y k

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

LC-MS Based Metabolomics

LC-MS Based Metabolomics LC-MS Based Metabolomics Analysing the METABOLOME 1. Metabolite Extraction 2. Metabolite detection (with or without separation) 3. Data analysis Metabolite Detection GC-MS: Naturally volatile or made volatile

More information

Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces**

Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces** Electronic Supplementary Information for Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces** Li-Li Tan, Yumo Zhang, Bao

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Chapter 3 Alkanes and Cycloalkanes Two types Saturated hydrocarbons Unsaturated hydrocarbons 3.1 Alkanes Also referred as aliphatic hydrocarbons General formula: CnH2n+2 (straight chain) and CnH2n (cyclic)

More information

Zwitterionic i-motif structures are preserved in DNA negatively charged ions. produced by electrospray mass spectrometry

Zwitterionic i-motif structures are preserved in DNA negatively charged ions. produced by electrospray mass spectrometry S1 Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry Frederic Rosu 1*, Valérie Gabelica 1, Laure Joly 1, Gilles Grégoire 2, Edwin De

More information

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them) 1 Chapter 15: Conjugation and Reactions of Dienes I. Introduction to Conjugation There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more

More information

Carbon and Molecular Diversity - 1

Carbon and Molecular Diversity - 1 Carbon and Molecular Diversity - 1 Although water is the most abundant compound of living organisms, and the "medium" for the existence of life, most of the molecules from which living organisms are composed

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson Welcome!! - 50750 Organic Chemistry for Chemical Engineers Professor: Grant Willson Teaching Assistants: Ji yeon Kim, Jai Hyun Koh, Paul Meyer, Qingjun Zhu http://willson.cm.utexas.edu January 19,2016

More information

Supplemental Information. Point-of-Use Detection of Amphetamine-Type. Stimulants with Host-Molecule-Functionalized. Organic Transistors

Supplemental Information. Point-of-Use Detection of Amphetamine-Type. Stimulants with Host-Molecule-Functionalized. Organic Transistors Chem, Volume 3 Supplemental Information Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors Yoonjung Jang, Moonjeong Jang, Hyoeun Kim, Sang Jin Lee,

More information

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry Supporting Information for: Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid Chromatography-Tandem Mass Spectrometry Ramin Vismeh a,b, Fachuang Lu c,d, Shishir

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 5 Step Growth Chain Growth Paul Flory Clears Things Up Polymer Structure is distinct from polymerization process Addition Polymerization H H Condensation Polymerization

More information

Producing data Toward statistical inference. Section 3.3

Producing data Toward statistical inference. Section 3.3 Producing data Toward statistical inference Section 3.3 Toward statistical inference Idea: Use sampling to understand statistical inference Statistical inference is when a conclusion about a population

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS Application Note Authors E. Michael Thurman and Imma Ferrer Center for Environmental

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

eg ethylene (IUPAC: ethene), C 2

eg ethylene (IUPAC: ethene), C 2 Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40.

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Reading: Chapter Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Alkenes: Structure, Nomenclature, Stability, and an Introduction to Reactivity Alkenes are unsaturated

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS

CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS 1) HYDROCARBONS: a. Saturated Hydrocarbons: Construct a model for propane, C 3 H 8, using black

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons.

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons. Organic and Biochemical Molecules 1. Compounds composed of carbon and hydrogen are called hydrocarbons. 2. A compound is said to be saturated if it contains only singly bonded carbons. Such hydrocarbons

More information

Electronic Structure and Geometry Relaxation at Excited State

Electronic Structure and Geometry Relaxation at Excited State Electronic Structure and Geometry Relaxation at Excited State Speaker: Chun I Wang ( 王俊壹 ) 2016.07.14 Structure-Performance Relationship Processing schemes Solvent quality Thermal annealing Blend composition

More information

Department of Chemistry, Indian Institute of Technology, Kharagpur , India

Department of Chemistry, Indian Institute of Technology, Kharagpur , India One-dimensional Coordination Polymers of Bis-(3-pyridylacrylamido)ethane: Influence of Anions and Metal Ions on Their Solid State [2+2] Photochemical Polymerization and Dimerization Reactions Mousumi Garai

More information

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS Marian Twohig, Michael D. Jones, Dominic Moore, Peter Lee, and Robert Plumb Waters Corporation, Milford, MA, USA APPLICATION

More information

Review: Atoms and Orbitals. Electrons = and charged; held

Review: Atoms and Orbitals. Electrons = and charged; held hapter 1 Review: Atoms and Orbitals 1.1 Molecules are composed of Atoms be broken into smaller, stable units (except by physicists Elements are : Pb Au Atom = Nucleus + Electrons: Nucleus =,, charged core

More information

Observations of noncovalently bound complexes

Observations of noncovalently bound complexes ARTICLES High-Order Structure and Dissociation of Gaseous Peptide Aggregates that are Hidden in Mass Spectra Anne E. Counterman, Stephen J. Valentine, Catherine A. Srebalus, Sheila C. Henderson, Cherokee

More information

Solutions and Non-Covalent Binding Forces

Solutions and Non-Covalent Binding Forces Chapter 3 Solutions and Non-Covalent Binding Forces 3.1 Solvent and solution properties Molecules stick together using the following forces: dipole-dipole, dipole-induced dipole, hydrogen bond, van der

More information

SUPPORTING INFORMATION. Self-healable and Ultra-hydrophobic Polyurethane-POSS Hybrids by Diels-Alder. Click Reaction; A New Class of Coating Material

SUPPORTING INFORMATION. Self-healable and Ultra-hydrophobic Polyurethane-POSS Hybrids by Diels-Alder. Click Reaction; A New Class of Coating Material SUPPORTING INFORMATION Self-healable and Ultra-hydrophobic Polyurethane-POSS Hybrids by Diels-Alder Click Reaction; A New Class of Coating Material Prasanta Kumar Behera, Prantik Mondal, Nikhil K. Singha*

More information

The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration

The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration Thomas Wyttenbach, Denfeng Liu, Perdita Barran, Michael T. Bowers University of California, Santa Barbara Vicki

More information

Fereshteh Zandkarimi, Samanthi Wickramasekara, Jeff Morre, Jan F. Stevens and Claudia S. Maier

Fereshteh Zandkarimi, Samanthi Wickramasekara, Jeff Morre, Jan F. Stevens and Claudia S. Maier Chapter 2 Electrospray Ionization Traveling Wave Ion Mobility Spectrometry Mass Spectrometry for the Analysis of Plant Phenolics: An Approach for Separation of Regioisomers Fereshteh Zandkarimi, Samanthi

More information

Mass spectrometry prosess

Mass spectrometry prosess 1 Mass spectrometry prosess Ionization = ion source Ion acceleration and separation = Analyzer Data collection = Detector 2 Data analysis? 1 3 Analytical information CONCEPTS : nominal mass, atomic weight,

More information

Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate

Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate Michael D. Jones, Xiang Jin Song, Robert S. Plumb, Peter J. Lee, and

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

GC-APCI IMS of Diesel

GC-APCI IMS of Diesel GC-APCI IM of Diesel Application Note Energy and Chemicals Authors heher Bano Mohsin, David Wong, and F. Robert Ley Agilent Technologies, Inc. Abstract This Application Note describes the use of ion mobility

More information

Key Concept. Properties. February 23, S6.4_3 Sampling Distributions and Estimators

Key Concept. Properties. February 23, S6.4_3 Sampling Distributions and Estimators MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Types of Covalent Bonds

Types of Covalent Bonds Types of Covalent Bonds There are two types of covalent bonds (sigma bonds and pi-bonds) depending on which atomic orbitals overlap and how they overlap to form a bond. A sigma bond (σ-bond) is formed

More information

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR] CHEM 6371/4511 Name: The exam consists of interpretation of spectral data for compounds A-C. The analysis of each structure is worth 33.33 points. Compound A (a) How many carbon atoms are in the molecular

More information

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability ACMS 20340 Statistics for Life Sciences Chapter 9: Introducing Probability Why Consider Probability? We re doing statistics here. Why should we bother with probability? As we will see, probability plays

More information

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+. Mass spectrometry is the study of systems causing the formation of gaseous ions, with or without fragmentation, which are then characteried by their mass to charge ratios (m/) and relative abundances.

More information

Application of Surface Analysis for Root Cause Failure Analysis

Application of Surface Analysis for Root Cause Failure Analysis Application of Surface Analysis for Root Cause Failure Analysis David A. Cole Evans Analytical Group East Windsor, NJ Specialists in Materials Characterization Outline Introduction X-Ray Photoelectron

More information

Ring-opening polymerization of ε-caprolactone by lithium piperazinyl-aminephenolate complexes: Synthesis, characterization and kinetic studies

Ring-opening polymerization of ε-caprolactone by lithium piperazinyl-aminephenolate complexes: Synthesis, characterization and kinetic studies Supporting Information for: Ring-opening polymerization of ε-caprolactone by lithium piperazinyl-aminephenolate complexes: Synthesis, characterization and kinetic studies Nduka Ikpo, a Christian Hoffmann,

More information

Chemistry Revision Sheet Academic Year Second Term

Chemistry Revision Sheet Academic Year Second Term Chemistry Revision Sheet Academic Year 2016-2017 Second Term Grade 10 Name: Date: Section: Q1: In the space provided, write the letter of the term or phrase that best completes each statement or best answers

More information

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson Welcome!! - 50120 Organic Chemistry for Chemical Engineers Professor: Grant Willson Teaching Assistants: Paul Meyer, Qingjun Zhu, Josh Saunders http://willson.cm.utexas.edu January 22,2019 Bureaucracy:

More information

The carbon-carbon double bond is the distinguishing feature of alkenes.

The carbon-carbon double bond is the distinguishing feature of alkenes. Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts CEMISTRY 341 Final Exam Tuesday, December 16, 1997 Name NAID Problem 1 15 pts Problem 9 8 pts Problem 2 5 pts Problem 10 21 pts Problem 3 26 pts Problem 11 15 pts Problem 4 10 pts Problem 12 6 pts Problem

More information

UCF - ORGANIC CHEMISTRY 2 - PROF. GERASIMOVA UCF PROF. GERASIMOVA EXAM REVIEW 1.

UCF - ORGANIC CHEMISTRY 2 - PROF. GERASIMOVA UCF PROF. GERASIMOVA EXAM REVIEW 1. UCF PROF. GERASIMOVA EXAM REVIEW 1 www.clutchprep.com 1 PRACTICE: Determine the index of hydrogen deficiency (degrees of unsaturation) for the following molecule. Antipsychotic - Haloperidol = C 21 H 23

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

Protein Structure Basics

Protein Structure Basics Protein Structure Basics Presented by Alison Fraser, Christine Lee, Pradhuman Jhala, Corban Rivera Importance of Proteins Muscle structure depends on protein-protein interactions Transport across membranes

More information

Chapter 13 Alkenes and Alkynes Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette

Chapter 13 Alkenes and Alkynes Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette Chapter 13 Alkenes and Alkynes Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization.

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization. Organic Chemistry Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Organic Chemistry material. This assignment is worth 35 points with the

More information

1. Root of name depends on longest chain of C containing the double bond; ends in "ene"

1. Root of name depends on longest chain of C containing the double bond; ends in ene Alkenes (β-carotene, an antioxidant pigment) n 2n (acyclic) n 2n-2 (cyclic) R R R R Key features sp 2 -hybridized carbons, 120 o bond angles σ + π bonding between = planar geometry around = "unsaturated"

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

Presenter: She Zhang

Presenter: She Zhang Presenter: She Zhang Introduction Dr. David Baker Introduction Why design proteins de novo? It is not clear how non-covalent interactions favor one specific native structure over many other non-native

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01 Questions Patrick: An Introduction to Medicinal Chemistry 5e 01) Which of the following molecules is a phospholipid? a. i b. ii c. iii d. iv 02) Which of the following statements is false regarding the

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 26, 2016 Midterm Exam III Where: WEL 1.316!! When: Wed., May 4 th, 7:00 9:00 PM What: Covers lectures through 4/28 Review Session: Mon & Tues. 5-6 PM Monday PAI

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Chapter 25 Organic and Biological Chemistry

Chapter 25 Organic and Biological Chemistry Chapter 25 Organic and Biological Chemistry Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without this property, large biomolecules such as proteins,

More information

Detection of surfactants-metal ion complexes by electrospray mass spectrometry

Detection of surfactants-metal ion complexes by electrospray mass spectrometry 2011 International Conference on Biotechnology and Environment Management IPCBEE vol.18 (2011) (2011)IACSIT Press, Singapoore Detection of surfactants-metal ion complexes by electrospray mass spectrometry

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information