Chapter-5. Fixed Bed studies. and A.niger as adsorbents. With each of the adsorbent, effect of change in bed height, MB

Size: px
Start display at page:

Download "Chapter-5. Fixed Bed studies. and A.niger as adsorbents. With each of the adsorbent, effect of change in bed height, MB"

Transcription

1 Chapter-5 Fixed Bed studies 5. Introduction Fixed bed experiments were carried out for removal of MB dye using PTMF, PTMFAC,ASD and A.niger as adsorbents. With each of the adsorbent, effect of change in bed height, MB concentration and dye solution flow rate were investigated. The performance of fixed bed in the form of breakthrough curves were obtained and tested using different kinetic models like Thomas, Adam-Bohart, Yoon-Nelson and Bed depth Service time(bdst). Adsorption capacity (mg/g) was found from the models. The constants obtained from the models can be utilized for designing the industrial scale fixed bed. The best fit model which fitted the experimental condition were determined by the computed R 2 value. The experiments of three different bed height, cm (.352 g), 5 cm(.899 g ), 2 cm( g) respectively were operated at influent MB concentration of 5 mg/l and flow rate of 5.7mL/ min at ph of 6.Also, experiments with three different MB concentration (5, and 5 mg/l) were performed at 2 cm bed height, 5.7 ml/ min flow rate and ph of Column Studies Adsorption of methylene blue is presented in the form of breakthrough curves (i.e. C t /C o Vs t) 5.2. The effect of initial concentration on breakthrough curve From the Fig-5.2 it is found that the breakthrough time decreased with increasing influent MB concentration. At lower influent MB concentrations, breakthrough were dispersed and breakthrough occurred slower. As influent concentration increased, sharper breakthrough were

2 obtained. This result demonstrated that the change of concentration gradient effected the saturation rate and breakthrough time. (Han et al.,27). This can be explained by the fact that more adsorption site are being covered with increase in MB concentration. The larger the influent concentration, the steeper the slope of the breakthrough curve and the smaller the breakthrough time. These results established that change of concentration gradient effected the saturation rate and breakthrough time or in other words, the diffusion process was concentration dependent. As the influent concentration increased, MB loading rate also increased, causing the driving force for mass transfer to increase, which resulted in decrease of adsorption zone length. Similar trend was observed in the case of Congo red dye onto rice husk. (Han et al., 27) Fig-5. Breakthrough curves for MB biosorption onto A.niger biomass at different initial concentrations (bed height = 2 cm, flow rate = 5.7mL/min, ph=6)

3 5.2.. Evaluation of breakthrough curve for different concentration using linearized Thomas model Thomas model was applied to the experimental data with respect to influent concentration of MB. A linear regression analysis was used on each set of data to determine the Thomas model parameters of q and K Th. The determined coefficients and the R 2 were also obtained using linear regression analysis according Eq. (2.34 ). The results are listed in Table- 5.. Fig-5.2 Linearized form of Thomas model for MB biosorption onto A.niger at different initial concentrations (bed height = 2 cm, flow rate = 5.7mL/min, ph=6) Table-5. Thomas model parameters at different initial MB concentrations using linear regression (bed height =2cm, flow rate = 5.7mL/min, ph=6) Sl.no Initial dye q o (mg/g) K Th R 2 concentration (mg/l) ( ml/ mg.min)

4 From Table-5. the following conclusion can be drawn, ) q o increased and K Th decreased with initial concentration of MB. The reason for increase in q o is that, the driving force for biosorption is the concentration difference between the dye on the biosorbent and the dye in the solution. Thus the high driving force due to the higher MB concentration resulted in better column performance.(han et al.,29) Whereas the K Th decreased due to due to the fact that the rate of mass transfer in the column turned slowly for higher concentration of MB, which was result in lengthening the contact time between solute and adsorbent. Similar trend was observed in the case of MB dye uptake by modified wheat straw (Zhang et al.,2). 2) R 2 values are greater than.978, indicating that for Thomas model, experimental and predicted data were very close. 3) From Fig-5.2, value of slope of the straight line decreased with increasing MB concentration The effect of different bed height on the curve breakthrough curve Thomas model was applied to the experimental data with respect to different bed height. A linear regression analysis was used on each set of data to determine the Thomas model parameters of q and K Th. The determined coefficients and the R 2 were also obtained using linear regression analysis according Eq. (2. 34). The results were listed in Table- 5.2.

5 Fig-5.3 Breakthrough curves for MB biosorption onto A.niger at different bed height(c =5 mg/ L, flow rate = 5.7mL/min, ph=6) From the Fig-5.3, it was seen that as bed height increased, MB had more time to contact with A.niger that resulted in higher removal efficiency of MB. So the higher bed column resulted in a decrease in the solute concentration in the effluent at the same operational time. The slope of the breakthrough curve decreased with increasing bed height, which resulted in broadened mass transfer zone. Higher uptake was observed at the highest bed height due to an increase in the surface area of the biosorbent, which provided more binding sites for the sorption( Vijayaraghavan et al.,24; Han et al.,29). when the bed height was reduced, axial dispersion phenomena predominated in the mass transfer and reduced the diffusion of the solute, and

6 therefore the solute had not enough time to diffuse into the whole of the adsorbent mass(i.a.w.tan et al.,28) Evaluation of breakthrough curve for different bed height using linearized Thomas model Fig-5.4 Linearised form of Thomas model for methylene blue biosorption onto A.niger biomass at different bed height(concentration= 5 mg/l, flow rate = 5.7mL/min, ph=6) Table-5.2 Thomas model parameters at different bed height of A.niger using linear regression (C = 5 mg/l, flow rate = 5.7mL/min, ph=6) Sl.no Bed height q o (mg/g) K Th R 2 (cm) ( ml/ mg.min)

7 5.2.3 Estimation of breakthrough curves using non-linear regression analysis In order to describe the fixed-bed column behavior and to scale it up for industrial applications, four models, Thomas, Adams Bohart, Yoon Nelson and BDST were used to fit the experimental data in the column. Although linear least-square regressive analysis is often used to obtain the model parameters ( Han et al., 26), non-linear regressive analysis is also adopted to determine the relative parameters (Kumar & Sivanesan, 27) for change in initial concentration and bed height Thomas model The column data were fitted to the Thomas model to determine the Thomas rate constant (K Th ) and maximum solid-phase concentration (q ). The determined coefficients and relative constants were obtained using non-linear regression analysis according to Eq. (2.33) for varying inlet MB concentration and bed height and the results are listed in Table-5.3. Table-5.3 Thomas model parameters at different conditions using non-linear regression analysis for biosorption of MB onto A.niger (Flow rate=5.7ml/min, ph-6) Co(mg/L) Z(cm) K Th (ml/min.mg) q o (mg/g) R 2 SS From Table-5.3 the following inference can be drawn As the influent concentration increased the value of K Th decreased and q o values increased. Similar trend was observed as the bed height was increased. These observations were analogous to the findings given in section and

8 ) The values of SS (less than.35) and R 2 greater than.98, suggests that the data fits very well to the Thomas model. 2) The breakthrough curve simulated by the Thomas model, as presented in Fig-5.5, 5.6, and 5.7 coincided well with the experimental data. Fig-5.5 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Thomas model for biosorption of MB onto A.niger Fig-5.6 Comparison of the experimental and predicted breakthrough curves obtained at mg/l according to the Thomas model for biosorption of MB onto A.niger

9 Fig-5.7 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Thomas model for biosorption of MB onto A.niger Adam- Bohart model The Adams Bohart adsorption model was applied to experimental data for the description of the breakthrough curve. This approach was focused on the estimation of characteristic parameters, such as maximum adsorption capacity (N ) and kinetic constant (K AB ) from Adams Bohart model. After applying Eq. (2.37) to the experimental data and plotting breakthrough curves as shown in Fig-5.8, 5.9 and 5., the parameters were obtained and is listed in Table-5.3. It was seen from the tabulated values that as initial concentration was increased K AB values decreased and N values increased. The R 2 values were in the range of 2-.9, indicating that Adam Bohart model was not fitting to the data points very well. After applying Eq. (2.37 ) to the experimental data, the parameters were obtained for relative concentration region up to i.e up to 2% breakthrough curve for 5 mg/l and.3 i.e up to 3% breakthrough curve for and 5 mg/l respectively as shown in Fig -5., 5.2 and 5.4. It is clear from the Table-5.4 that

10 there is good agreement between experimental and predicted values(r 2 >.97), suggesting that Adam-Bohart model will be valid for limited range of condition used. Fig- 5.8 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Adam- Bohart model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height = 2cm) Fig-5.9 Comparison of the experimental and predicted breakthrough curves obtained at mg/ L according to the Adam- Bohart model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2cm)

11 Ct/C Fig-5. Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/ L according to the Adam- Bohart model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2cm) Experimental predicted(2%) t,min Fig-5. Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/ L according to the Adam- Bohart model at 2% concentration for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2cm)

12 Ct/C Ct/C Experimental Predicted(3%) t, min Fig-5.2 Comparison of the experimental and predicted breakthrough curves obtained at mg/l according to the Adam- Bohart model at 3% concentration for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2cm) Experimental predicted(3%) t, min Fig-5.3 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Adam- Bohart model at 3% concentration for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2cm)

13 Table-5.4 Adam-Bohart model parameters at different conditions using non-linear regression analysis for biosorption of MB onto A.niger.( Flow rate = 5.7min/mL, bed height = 2cm) C o (mg/l) K AB (L/min.mg) N o (mg/l) R 2 SS ( 567) 744 (96.2) 252 (.993).7 (.262) (.563) (.54) (454.94) (63.84) (.9952).975 (.9734) (.4727).77 (.) (in brackets are values of various parameters at C t /C o = (for 5 mg/l ) &.3 (for,5 mg/l) Yoon Nelson Model A simple theoretical model developed by Yoon Nelson was applied to investigate the breakthrough behavior of MB on A.niger. So the values of K YN (a rate constant) and τ (the time required for 5% MB breakthrough) could be obtained using non-linear regressive analysis from Eq.(2.38). The values of K YN and τ are listed in Table-5.5. From Table-5.5, the rate constant K YN increased and the 5% breakthrough time τ decreased with increasing both flow rate and MB inlet concentration. Fig- 5.4 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Yoon-Nelson model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2 cm)

14 Fig-5.5 Comparison of the experimental and predicted breakthrough curves obtained at mg/l according to the Yoon-Nelson model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2 cm) Fig-5.6 Comparison of the experimental and predicted breakthrough curves obtained at 5 mg/l according to the Yoon-Nelson model for biosorption of MB onto A.niger ( Flow rate=5.7min/ml, bed height =2 cm)

15 Table-5.5 Yoon Nelson model parameters at different conditions using non-linear regression analysis for biosorption of MB onto A.niger.( Flow rate=5.7min/ml, bed height =2 cm) Co(mg/L) Z(cm) K YN (min - ) τ (min) SS τ exp (min) The data in Table-5.5 also indicated that values τ from the calculation were significantly different compared to experimental results. Fig-5.4 to 5.6, is the comparison of the experimental curve and predicted curve according to Yoon Nelson model. The experimental breakthrough curves are not close to those predicted by the Yoon Nelson model. The values of SS are larger according to Table-5.5. So it was referred that the Yoon Nelson model cannot be used to predict the experimental data The Bed depth/service time analysis (BDST) model The BDST model is based on physically measuring the capacity of the bed at different breakthrough values. This simplified design model ignores the intraparticle mass transfer resistance and external film resistance such that the adsorbate is adsorbed onto the adsorbent surface directly. With these assumptions, the BDST model works well and provides useful modeling equations for the changes of the system parameters (Han et al., 27).A modified form of the equation that expresses the service time at breakthrough, t, as a fixed function of operation parameters is the BDST model (Goel et al.,25). ( ) (5.)

16 Where, K a is rate constant in BDST model (L mg - min - ), A plot of time, t vs. bed depth, Z, should yield a straight line where N o and K, are the adsorption capacity and rate constant, respectively, which can be evaluated. Fig-5.7 Iso removal lines for, and breakthrough for different bed height for biosorption of MB onto A.niger. (C o =5 mg/l, flow rate = 5.7mL/min ) Table-5.6 The calculated constants of BDST model for biosorption of MB onto A.niger (Co =5ppm, flow rate = 5.7mL/min ) C t /C o K a (L mg - min - ) N o (mg/l) R The lines of t Z at values of C t /C,, are shown in Fig-5.8, respectively. The related constants of BDST according to the slopes and intercepts of the lines along with uncertainties of the relative parameters are also listed in Table 5.6. The adsorption capacity of the bed per unit

17 bed volume, N, was calculated from the slope of BDST plot, assuming initial concentration, C, and linear velocity, v, as constant during the column operation. The rate constant, K a, calculated from the intercept of BDST plot, characterizes the rate of solute transfer from the fluid phase to the solid phase (Padmesh et al., 25). With the values of C t /C increasing, the values of N increased while K a decreased. The BDST model parameters can be helpful to scale up the process for other flow rates without further experimental run. 5.3 Fixed bed studies- PTMF The experiments of three different bed height 5cm, 8cm, cm respectively were operated at influent MB concentration of 5 mg/l and flow rate of 7.5 ml/ min at ph of 6. Also, experiments with three different MB concentration (5,,5 mg/l) were performed at 8 cm bed height, 7.5 ml/ min flow rate and ph of 6.The effect of flow rate (4.6, 7.5 and ml/min) experiments were studied at 8cm bed height, mg/l and ph of Effect of different bed depth on breakthrough curve Fig-5.8 Breakthrough curves for methylene blue adsorption onto PTMF at different bed height ( C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6)

18 From the Fig-5.8, it was seen that as bed height increased, MB had more time to contact with PTMF that resulted in higher removal efficiency of MB. So the higher bed column resulted in a decrease in the solute concentration in the effluent at the same time. The slope of the breakthrough curve decreased with increasing bed height, which resulted in broadened mass transfer zone. Higher uptake was observed at the highest bed height due to an increase in the surface area of the biosorbent, which provided more binding sites for the adsorption. The rice husk employed for MB dye removal also showed the similar trend.( Han et al.,29) The effect of initial MB concentration on breakthrough curve Fig-5.9 Breakthrough curves for methylene blue adsorption onto PTMF at different initial concentrations ( bed height= 8cm, flow rate = 7.5 ml/min, ph=6) From the Fig-5.9, it is illustrated that breakthrough time decreased with increasing influent MB concentration. A decrease in inlet concentration gave an extended breakthrough curve, indicating a higher volume of solution could be treated.. As influent dye concentration increased, sharper breakthrough curves were obtained. The driving force for adsorption is the concentration

19 difference between the solute on the adsorbent and the solute in the solution. As high concentration differences provides a higher driving force, which favors the adsorption process. Further, at high initial dye concentrations, a sharper breakthrough curve indicated shortened mass transfer zone and higher adsorption rates. Therefore, when quick dye uptake is desired, which is often the case, operating with high initial dye concentrations appears to be favorable. The change of concentration gradient affected the saturation rate and breakthrough time or in other words, the diffusion process was concentration dependent. Similar findings were obtained for MB uptake by Peanut husk (J.Song et al.,2), phenoix tree leaf powder (Han et al., 29) Effect of flow rate on Breakthrough curve Fig-5.2 Breakthrough curves for methylene blue adsorption onto PTMF at different flow rate (initial concentrations = mg/l, bed height= 8cm, ph=6) From Fig-5.2, breakthrough generally occurred faster with higher flow rate. Breakthrough time reaching saturation was increased significantly with decrease in flow rate. At low flow rate of

20 influent, MB had more time to be in contact with the adsorbent, which resulted in greater removal of MB molecules in the column. Although MB adsorption was a fast process, diffusion effects were lower due to the insufficient residence time of dyes in the column at higher flow rates. Hence lower flow rates were desirable for the effective removal of MB in column mode. Similar trend was observed for MB removal using modified wheat straw( Zhang et al.,2) 5.4 Estimation of breakthrough curves In order to describe the fixed-bed column behavior and to scale it up for industrial applications, three models, Thomas, Adams Bohart and Yoon Nelson were used to fit the experimental data in the column. Although linear least-square regressive analysis is often used to obtain the model parameters, non-linear regressive analysis is adopted to determine the relative parameters Thomas model Thomas model was applied to the experimental data with respect to different bed height. A non-linear regression analysis was used on each set of data to determine the Thomas model parameters of q and K Th. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.33 ). The results were listed in Table- 5.7.

21 C/Co C/Co Effect of bed Height.2 Experimental Predicted Time( min) Fig-5.2 Thomas model parameters at bed height, 5 cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time(min) Fig-5.22 Thomas model parameters at bed height, 8 cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6)

22 C/Co.2 Exp Pred time(min) Fig-5.23 Thomas model parameters at bed height, cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6) Table-5.7 Thomas model parameters at different bed height using non-linear regression for adsorption of MB onto PTMF ( C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6) Sl.no Bed Height(cm) q o (mg/g) K Th ( ml/ mg.min) R 2 SS As shown in Table-5.7, when bed height increased, the value of q o increased while the value of K Th decreased. The increase in q o can be explained due to an increase in the surface area of the biosorbent, which provided more binding sites for the adsorption. The K Th decreased with increasing bed height indicating the reduced reaction rate which was ascribed to longer contact time for higher bed depth. From Fig-5.2,5.22 and 5.23, it was observed that experimental values were in agreement with predicted values. This fact was confirmed by high R 2 values in Table These results were in agreement with those referred to the literatures ( Han et al.,29)

23 C/Co C/Co Effect of initial MB concentration.2 Exp Pred Time,t(min) Fig-5.24 Thomas model parameters at initial concentration of mg/l using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5mL/min, ph=6).2 Exp Pred Time(min) Fig-5.25 Thomas model parameters at initial concentration of 5 mg/l using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5mL/min, ph=6)

24 C/Co Table-5.8 Thomas model parameters at different initial concentrations using non-linear regression for adsorption of MB onto PTMF.(bed height =8cm, flow rate = 7.5mL/min, ph=6) Sl.no Concentration (mg/l) q o (mg/g) K Th ( ml/ mg.min) R 2 SS When the MB concentration was increased from 5mg/L to 5 mg/l (Table-5.8), the q e increased and K Th decreased due to the fact that the rate of mass transfer in the column turned slowly for higher concentration of MB, which was result in lengthening the contact time between solute and adsorbent and improved adsorption capacity. From Fig-5.22, 5.24 and 5.25, it was observed that experimental values are in agreement with predicted values. This fact was confirmed by high R 2 values in Table The results are in agreement with the works reported previously on various fixed-bed adsorption systems (Ahmed & Hameed,2, Chen et al.,22) Effect of Flow rate Exp Pred Time(min) Fig-5.26 Thomas model parameters at flow rate of 4.8 ml/min using non-linear regression for adsorption of MB onto PTMF (C o = mg/l bed height= 8cm, ph=6)

25 C/Co.2 Exp Pred Time(min) Fig-5.27 Thomas model parameters at flow rate of ml/min using non-linear regression (C o = mg/ L, bed height= 8cm, ph=6) Table-5.9 Thomas model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMF (C o = mg/l, bed height= 8cm, ph=6) Sl.no Flow rate(ml/min) q o (mg/g) K Th ( ml/ mg.min) R 2 SS From Table-5.9, when the flow rate increased the MB removal efficiency decreased. This was attributed to the fact that short contact time between solute and adsorbent would reduce the adsorption efficiency. The K Th increased with the increase in flow rate due to faster mass transfer at higher flow rate. From Fig-5.24, 5.26 and 5.27, it was observed that experimental and predicted breakthrough values were overlapping. This fact was confirmed by high R 2 values in Table- 5.9.Similar findings were obtained by researchers (Song et al.,2, Han et al.,29)

26 C/Co Yoon Nelson Model Yoon-Nelson model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine the Yoon-Nelson model parameters of τ and K YN. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.38). The results are listed in Table- 5.,5. and Effect of bed height.2 Experimental Predicted Time,t(min) Fig-5.28 Yoon-Nelson model parameters at bed height of 5 cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6)

27 C/Co C/Co.2 Exp Pred Time,t (min) Fig-5.29 Yoon-Nelson model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMF (C o = 5mg/L, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time, t(min) Fig-5.3 Yoon-Nelson model parameters at bed height of cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6) Table-5. Yoon-Nelson model parameters at different bed height using non-linear regression for adsorption of MB onto PTMF(C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6) Sl.no Bed Height(cm) τ (min) K YN (/min) R 2 SS

28 C/Co C/Co Effect of initial MB concentration.2 Exp Pred Time, t (min) Fig-5.3 Yoon-Nelson model parameters at initial concentration of mg/l using non-linear regression. for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5mL/min, ph=6).2 Exp Pred Time,t (min) Fig-5.32 Yoon-Nelson model parameters at initial concentration of 5 mg/l using non-linear regression for adsorption of MB onto PTMF (bed height =8cm, flow rate = 7.5mL/min, ph=6) Table-5. : Yoon-Nelson model parameters at different initial concentrations using non-linear for adsorption of MB onto PTMF regression. (bed height =8cm, flow rate = 7.5mL/min, ph=6) Sl.no Concentration(mg/L) τ (min) K YN (/min) R 2 SS

29 C/Co C/Co Effect of flow rate Exp Pred Time,t (min) Fig-5.33 Yoon-Nelson model parameters at flow rate of 4.6 ml/min using non-linear regression for adsorption of MB onto PTMF (C o = mg/l, bed height= 8cm, ph=6).2 Exp Pred Time, t(min) Fig Yoon-Nelson model parameters at flow rate of ml/min using non-linear regression for adsorption of MB onto PTMF (C o = mg/l, bed height= 8cm, ph=6) Table-5.2: Yoon-Nelson model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMF (C o = mg/l, bed height= 8cm, ph=6) Sl.no Flow rate (ml/min) τ (min) K YN (/min) R 2 SS

30 C/Co From Table-5.2, as the flow rate increased the K YN increased while τ decreased. This was due to the fact that higher flow rate would result in the insufficiency of the adsorption and adsorption equilibrium early. The time required for 5% breakthrough increased with increase in bed height for PTMF adsorbent but was found to decrease with increase in MB concentration. A similar observation was made during sorption study using treated chitosan (Auta & Hameed, 24). However the same trend was also observed when the initial MB concentration (Table-5. ) which seemed quite abnormal because higher MB concentration would prolong the rate of mass transfer in column which usually extended the contact time between solute and adsorbent in column. Therefore Yoon-Nelson model was not the proper one also Adam-Bohart Model Adam-Bohart model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine the Adam-Bohart model parameters of N o and K AB. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.37). The results are listed in Table- 5.22,5.23 and Effect of bed height.2 Exp Pred Time(min) Fig-5.35 Adam-Bohart model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6)

31 C/Co Table-5.3 : Adam-Bohart model parameters at different bed height using non-linear regression for adsorption of MB onto PTMF (C o = 5 mg/l, flow rate = 7.5 ml/min, ph=6) Sl.no Bed Height(cm) K AB (ml/min.mg) No (g/l) R 2 SS Effect of initial concentration of dye.2 Exp Pred Time(min) Fig-5.36 Adam-Bohart model parameters at initial concentration of mg/l using non-linear regression for adsorption of MB onto PTMF (bed height=8 cm, flow rate = 7.5 ml/min, ph=6) Table -5.4: Adam-Bohart model parameters at different initial concentration using non-linear regression for adsorption of MB onto PTMF (flow rate = 7.5 ml/min, bed height= 8cm, ph=6) Sl.no Concentration(mg/L) K AB (ml/min.mg) No (g/l) R 2 SS Effect of flow rate Table-5.5 Adam-Bohart model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMF (C o = mg/l, bed height= 8cm, ph=6) Sl.no Flow rate (ml/min) K AB (ml/min.mg) No (g/l) R 2 SS

32 Adams Bohart model was only applicable to describe the experimental data at the initial part of the breakthrough curves but the variation in bed height, initial concentration of MB and flow rate did not provide any good agreement even in the initial portion of the breakthrough curve. The fitted results by Adams Bohart model were also shown in Table-5.3,5.4 and 5.5 (selected plots shown). The determination coefficients R 2 showed unsatisfactory fitness. Besides, the fitted kinetic constant K AB and adsorption capacity N were irrelevant to bed height, flow rate and initial solution concentration. They were inconsistent with the assumption of this model, which required that K AB should be proportional to the residual capacity of PTMF and the concentration of MB. Consequently, Adams Bohart model was not a proper one to describe the adsorption behaviors of PTMF in column. Similar trend was reported for modified wheat straw (Zhang et al.,2). 5.5 Fixed bed studies PTMFAC The experiments of three different bed height 5cm, 8cm, cm respectively were operated at influent MB concentration of 5 mg/l and flow rate of 7.5 ml/ min at ph of 6.Also, experiments with three different MB concentration (5,,5 mg/l) were performed at 8 cm bed height, 7.5 ml/ min flow rate and ph of 6.The effect of flow rate (4.6, 7.5 and ml/min) experiments were studied at 8cm bed height, mg/l and ph of 6.

33 5.5. Effect of different bed depth on breakthrough curve Fig-5.37 Breakthrough curves for methylene blue adsorption onto PTMFAC at different bed height (initial concentrations= 5 mg/l, flow rate = 7.5 ml/min, ph=6) From the Fig-5.37, it was seen that as bed height increased, MB had more time to contact with PTMFAC that resulted in higher removal efficiency of MB. So the higher bed column resulted in a decrease in the solute concentration in the effluent at the same time. The slope of the breakthrough curve decreased with increasing bed height, which resulted in broadened mass transfer zone. Higher uptake was observed at the highest bed height due to an increase in the surface area of the adsorbent, which provided more binding sites for the adsorption. At lower adsorbent bed height, axial dispersion phenomenon predominated and reduced the diffusion of MB adsorbate (Foo & Hameed,22).Also, increase in PTMFAC bed height 5 to cm indicated a dramatic increase of adsorption uptake and in the volume of MB solution to be treated.

34 5.5.2 The effect of initial MB concentration on breakthrough curve Fig-5.38 Breakthrough curves for methylene blue adsorption onto PTMFAC at different initial concentrations ( bed height= 8cm, flow rate = 7.5 ml/min, ph=6) From the Fig-5.38, an inverse relationship between the initial dye concentrations and the breakthrough time and volume of treated solution was observed (Foo & Hameed,22) i.e., breakthrough time decreased with increasing influent MB concentration. At lower influent MB concentrations, breakthrough were dispersed, slower and delayed, since the lower concentration gradient causes reduced transport of dye. As influent dye concentration increased, sharper breakthrough curves were obtained. The driving force for adsorption is the concentration difference between the solute on the adsorbent and the solute in the solution because high concentration differences provides a higher driving force, which favors the adsorption process.. Further, at high initial dye concentrations, a sharper breakthrough curve indicated shortened mass transfer zone and higher adsorption rates. Therefore, when quick dye uptake is desired, which is often the case, operating with high initial dye concentrations appears to be favorable.

35 Similar findings were reported in the case of MB adsorption by activated carbon prepared from oil palm shell ( I.A.W Tan et al.,28) Effect of flow rate on breakthrough curve Breakthrough generally occurred faster with higher flow rate as seen from Fig This behavior is primarily associated with the insufficient residence time for the MB solution within the bed and the diffusion limitations of MB into the pores of PTMFAC at higher feed flow rates ( Foo & Hameed, 22). Moreover, the higher turbulence at higher feed flow rates could lead to a weaker interaction and intraparticle mass transfer between the MB molecules and PTMFAC for the adsorption to be taken place. At low flow rate of influent, MB had more time to be in contact with the adsorbent, which resulted in greater removal of MB molecules in the column. Fig Breakthrough curves for methylene blue adsorption onto PTMFAC at different flow rate (initial concentrations = mg/l, bed height= 8cm, ph=6)

36 5.6 Estimation of breakthrough curves In order to describe the fixed-bed column behavior and to scale it up for industrial applications, three models, Thomas, Adams Bohart and Yoon Nelson were used to fit the experimental data in the column. Although linear least-square regressive analysis is often used to obtain the model parameters, non-linear regressive analysis is adopted to determine the relative parameters Thomas model Thomas model was applied to the experimental data with respect to different bed height. A non-linear regression analysis was used on each set of data to determine the Thomas model parameters of q and K Th. The determined coefficients and the R 2 were also obtained using nonlinear regression analysis according Eq. (2.33). The results are listed in Table- 5.6,5.7 and Effect of bed height Table-5.6 Thomas model parameters at different bed height using non-linear regression for adsorption of MB onto PTMFAC.(Co=5 mg/l, flow rate = 7.5mL/min, ph=6) Sl.no Bed Height (cm) q o (mg/g) K Th ( ml/ mg.min) R 2 SS Effect of initial concentration Table 5-7: Thomas model parameters at different initial concentrations using non-linear regression for adsorption of MB onto PTMFAC.(bed height =8cm, flow rate = 7.5mL/min, ph=6) Sl.no Concentration (mg/l) q o (mg/g) K Th ( ml/ mg.min) R 2 SS

37 C/Co C/Co Effect of flow rate Table-5.8 Thomas model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMFAC (concentration= mg/l, bed height= 8cm, ph=6) Sl.no Flow rate (ml/min) q o (mg/g) K Th ( ml/ mg.min) R 2 SS Exp Pred Time(min) Fig-5.4 Thomas model parameters at bed height of 5cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time(min) Fig-5.4 Thomas model parameters at bed height of 8cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6)

38 C/Co C/Co Exp Pred Time(min) Fig-5.42 Thomas model parameters at bed height of cm of PTMFAC using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time(min) Fig-5.43 Thomas model parameters at initial concentration of mg/l using non-linear regression for adsorption of MB onto PTMFAC.(bed height =8cm, flow rate = 7.5mL/min, ph=6)

39 C/Co Exp Pred Time(min) Fig-5.44 Thomson model parameters at flow rate of 4.8 ml/min using non-linear regression for adsorption of MB onto PTMFAC (concentration= ppm, bed height= 8cm, ph=6) As shown in Table-5.5, when bed height increased, the value of q o increased while the value of K Th decreased. The increase in q o can be explained due to an increase in the surface area of the biosorbent, which provided more binding sites for the adsorption. The K Th decreased with increasing bed height indicating the reduced reaction rate which was ascribed to longer contact time for higher bed depth. When the MB concentration was increased from 5mg/L to 5 mg/l (Table-5.6), the q o increased and K Th decreased due to the fact that the rate of mass transfer in the column turned slowly for higher concentration of MB, which was result in lengthening the contact time between solute and adsorbent and improved adsorption capacity From Table-5.7, when the flow rate increased the MB removal efficiency decreased. This was attributed to the fact that short contact time between solute and adsorbent would reduce the adsorption efficiency. The K Th increased with the increase in flow rate due to faster mass transfer at higher flow rate. Similar finding were reported by many researchers (Han et al.,29,ahmad and Hameed, 2)

40 5.6.2 Yoon-Nelson Model Yoon-Nelson model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine the Yoon-Nelson model parameters of τ and K YN. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.38). The results are listed in Table- 5.9,5.2 and Effect of bed height Table-5.9 Yoon-Nelson model parameters at different bed height using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6) Sl.no Bed Height(cm) τ (min) K YN (/min) R 2 SS Effect of initial concentration Table-5.2 Yoon-Nelson model parameters at different initial concentrations using non-linear regression for adsorption of MB onto PTMFAC.(bed height =8cm, flow rate = 7.5mL/min, ph=6) Sl.no Concentration(mg/L) τ (min) K YN (/min) R 2 SS Effect of flow rate Table-5.2 Yoon-Nelson model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMFAC (concentration= mg/l, bed height= 8cm, ph=6) Sl.no Flow rate (ml/min) τ (min) K YN (/min) R 2 SS

41 C/Co C/Co.2 Exp Pred Time, t (min) Fig-5.45 Yoon-Nelson model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time,t(min) Fig-5.46 Yoon-Nelson model parameters at initial concentration of mg/l using non-linear regression for adsorption of MB onto PTMFAC (bed height= 8cm, flow rate = 7.5 ml/min, ph=6)

42 C/Co Exp Pred Time, t (min) Fig-5.47 Yoon-Nelson model parameters at flow rate of 4.8 ml/ min using non-linear regression for adsorption of MB onto PTMFAC (concentration= mg/l, bed height= 8cm, ph=6) From Table-5.2, as the flow rate increased the K YN increased while τ decreased. This was due to the fact that higher flow rate would result in the insufficiency of the adsorption and adsorption equilibrium early. However the same trend was also observed when the initial MB concentration (Table-5.2) which seemed quite abnormal because higher MB concentration would prolong the rate of mass transfer in column which usually extended the contact time between solute and adsorbent in column. Therefore Yoon-Nelson model was not the proper model for this study(zhang et al.,2) Adam-Bohart Model Adam-Bohart model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine the Adam-Bohart model parameters of N o and K AB. The determined

43 coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.37). The results are listed in Table- 5.22,5.23 and Effect of bed height Table-5.22 Adam-Bohart model parameters at different bed height using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 mg/l, flow rate = 7.5 ml/min, ph=6) Sl.no Bed Height(cm) K AB (ml/min.mg) No R 2 SS Effect of initial concentration Table-5.23 Adam-Bohart model parameters at different initial concentration using non-linear regression for adsorption of MB onto PTMFAC (flow rate = 7.5 ml/min, bed height= 8cm, ph=6) Sl.no Concentration(mg/L) K AB (ml/min.mg) No R 2 SS Effect of flow rate Table-5.24 Adam-Bohart model parameters at different flow rate using non-linear regression for adsorption of MB onto PTMFAC (concentration= mg/l, bed height= 8cm, ph=6) Sl.no Flow rate (ml/min) K AB (ml/min.mg) No R 2 SS

44 C/Co C/Co.2 Exp Pred Time(min) Fig-5.48 Adam-Bohart model parameters at bed height of 8 cm using non-linear regression for adsorption of MB onto PTMFAC (concentration= 5 ppm, flow rate = 7.5 ml/min, ph=6).2 Exp Pred Time(min) Fig-5.49 Adam-Bohart model parameters at initial concentration of mg/l using non-linear regression for adsorption of MB onto PTMFAC (concentration= ppm, bed height= 8cm, ph=6) Adams Bohart model was only applicable to describe the experimental data at the initial part of the breakthrough curves but the variation in bed height, initial concentration of MB and flow rate did not provide any good agreement even in the initial portion of the breakthrough curve as shown in Fig-5.48 and The fitted results by Adams Bohart model were also shown in

45 Table-5.22, 5.23 and The determination coefficients R 2 showed unsatisfactory fitness. Besides, the fitted kinetic constant K AB and adsorption capacity N were irrelevant to bed height, flow rate and initial solution concentration. They were inconsistent with the assumption of this model, which required that K AB should be proportional to the residual capacity of PTMF and the concentration of MB. Consequently, Adams Bohart model was not a proper one to describe the adsorption behaviors of PTMF in column also. Similar trend was observed by authors (Zhang et al.,2, Auta & Hameed,24). 5.7 Fixed bed studies- ASD The experiments of three different bed height 4cm, 6cm, 8 cm respectively were operated at influent MB concentration of mg/l and flow rate of.5 ml/ min at ph of 7.Also, experiments with three different MB concentration (5,75, mg/l) were performed at 6 cm bed height, 8.5 ml/ min flow rate and ph of 7.The effect of flow rate (6.5, 8.5 and.5 ml/min) experiments were studied at 6cm bed height, mg/l and ph of Breakthrough curves Effect of bed height on breakthrough curves Fig-5.5 (a) gave the breakthrough curve at different bed depth at the same influent concentration (C = mg/l) and flow rate (F =.5 ml/min), respectively. From Fig-5.5(a), as the bed height increases, MB had more time to contact with ASD that resulted in higher removal efficiency of MB ions in column. So the higher bed column results in a decrease in the

46 solute concentration in the effluent at the same time. The slope of breakthrough curve decreased with increasing bed height, which resulted in a broadened mass transfer zone. High uptake was observed at the highest bed height of 8cm due to an increase in the surface area of biosorbent, which provided more binding sites for the sorption (Han et al.,27) Effect of flow rate on breakthrough curve The breakthrough curves were shown in Fig.5.5 (b). It was shown that breakthrough generally occurred faster with higher flow rate. Breakthrough time reaching saturation was increased significantly with a decreased in the flow rate. When at a low rate of influent, MB had more time to contact with ASD that resulted in higher removal of MB ions in column. The variation in the slope of the breakthrough curve and adsorption capacity may be explained on the basis of mass transfer fundamentals. The reason is that at higher flow rate the rate of mass transfer gets increases, i.e. the amount of dye adsorbed onto unit bed height (mass transfer zone) gets increased with increasing flow rate leading to faster saturation at higher flow rate (Han et al.,27; Markovska & Meshko,2) Effect of influent MB concentration on breakthrough curve The effect of influent MB concentration on the shape of the breakthrough curves was shown in Fig-5.5 (c). From Fig-5.5(c), in the interval of 2 min, the value of C t /C reached.5,.3 and.96 when influent concentration was 5, 75 and mg/l, respectively. It is illustrated that the breakthrough time decreased with increasing influent MB concentration. At lower influent MB concentrations, breakthrough curves were dispersed and breakthrough occurred slower.

47 Ct/Co Ct/Co.2. a).2.. Z = 4 cm Z = 6 cm Z = 8 cm ml/min 8.5 ml/min.5 ml/min t (min) t (min) b) ppm 75 ppm ppm c) Fig-5.5 a) Effect of Bed Height, b) Effect of flow rate, c) Effect of influent MB concentration on breakthrough curve for ASD.

48 5.7.2 Modified dose response model: Yan et al. proposed a modified dose response model, which minimizes the error that results from use of the Thomas model, especially with lower and higher breakthrough curve times. The nonlinear Modified dose-response model is represented as (Vijayaraghavan & Yun, 28) ( ) (5.2) Where as Where, ɑ is Modified dose-response model constant ( ) (5.3) 5.8 Chi square test (χ 2 ) It is basically the sum of the sum of the squares of the differences between the experimental data and theoretically predicted data from models. ( ) ( 5.4 ) 5.9 Evaluation of Breakthrough curves Experimental data obtained from column studies were fitted to the three models Thomas,Yoon- Nelson and Modified dose-response. The parameters and values of and according to nonlinear regressive analysis were listed in Tables-5.24, respectively. All model parameters were evaluated using a non-linear regression with Microsoft Excel solver Add-in.

49 Ct/Co Ct/Co Ct/Co.2. expt Thomas model modified doseresponse model t (min) Fig-5.5 Comparison of fitted curves and experimental data. for adsorption of MB onto ASD (C = mg/l, F = 6.5 ml/min, Z = 6 cm ).2 Expt Thomas model modified doseresponse model t (min) Fig Comparison of fitted curves and experimental data for adsorption of MB onto ASD (C = mg/l, F = 8.5 ml/min, Z = 6 cm).2. Expt Thomas model modified doseresponse model t (min) Fig Comparison of fitted curves and experimental data for adsorption of MB onto ASD( C = mg/l, F =.5 ml/min, Z = 6 cm)

50 5.9. Thomas model Thomas model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine the Thomas model parameters of q o and K Th. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.33). The results are listed in Table- 5.25,5.26 and Effect of bed height Table-5.25 Thomas model parameters at different bed height using non-linear regression for adsorption of MB onto ASD ( C o = mg/l, flow rate =.5 ml/min, ph=7) Sl.no Bed Height(cm) q o (mg/g) K Th ( ml/ mg.min) R 2 χ Effect of initial concentration Table-5.26 Thomas model parameters at different MB concentration using non-linear regression for adsorption of MB onto ASD ( bed height= 6 cm, flow rate =8.5mL/min, ph=7) Sl.no Concentration(mg/L) q o (mg/g) K Th ( ml/ mg.min) R 2 χ Effect of flow rate Table-5.27 Thomas model parameters at different flow rate using non-linear regression for adsorption of MB onto ASD ( C o = mg/l, bed height =6 cm, ph=7) Sl.no Flow rate(ml/min) q o (mg/g) K Th ( ml/ mg.min) R 2 χ Yoon Nelson model Yoon-Nelson model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set

51 of data to determine the Yoon-Nelson model parameters of τ and K YN. The determined coefficients and the R 2 were also obtained using non- linear regression analysis according Eq. (2.38). The results are listed in Table- 5.28,5.29 and Effect of bed height Table Yoon-Nelson model parameters at different bed height using non-linear regression for adsorption of MB onto ASD (C o = mg/l, flow rate =.5 ml/min, ph=7) Sl.no Bed Height(cm) q o (mg/g) τ (min) K YN (/min) R 2 χ Effect of initial concentration Table Yoon-Nelson model parameters at different concentration using non-linear regression for adsorption of MB onto ASD (bed height = 6 cm, flow rate = 8.5 ml/min, ph=7) Sl.no Concentration (mg/l) q o (mg/g) τ (min) K YN (/min) R 2 χ Effect of flow rate Table- 5.3 Yoon-Nelson model parameters at different bed height using non-linear regression for adsorption of MB onto ASD (C o = mg/l, bed height = 6 cm, ph=7) Sl.no Flow rate(ml/ min) q o (mg/g) τ (min) K YN (/min) R 2 χ Modified dose-response model Modified dose-response model was applied to the experimental data with respect to different bed height, initial concentration of MB and flow rate. A non-linear regression analysis was used on each set of data to determine model parameters of a and b. The determined coefficients and

Successive Extraction of As(V), Cu(II) and P(V) Ions from Water. Using Surface Modified Ghee Residue Protein

Successive Extraction of As(V), Cu(II) and P(V) Ions from Water. Using Surface Modified Ghee Residue Protein Successive Extraction of As(V), Cu(II) and P(V) Ions from Water Using Surface Modified Ghee Residue Protein Linlin Hao a,b, Masoom Kartik Desai b, Peng Wang a, Suresh Valiyaveettil b* a State Key Laboratory

More information

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Dinesh Kumar a, Sambi S. S. a, Sharma S. K. a, Kumar, V. b a University School of Chemical Technology, GGS IPU, Delhi - 110006,

More information

Design of fixed bed adsorption columns

Design of fixed bed adsorption columns Design of fixed bed adsorption columns Fixed bed is a widely used method for adsorption of solutes from liquid or gases. Granular particles are packed inside the fixed-bed. The fluid to be treated is passed

More information

Fixed-bed Column Study for Cu (II) Removal from Aqueous Solutions using Rice Husk based Activated Carbon

Fixed-bed Column Study for Cu (II) Removal from Aqueous Solutions using Rice Husk based Activated Carbon International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 01 186 Fixed-bed Column Study for Cu (II) Removal from Aqueous Solutions using Rice Husk based Activated Carbon Nasehir Khan E M

More information

Simulation of indigo carmine dye adsorption on polymer doped sawdust in fixed-bed systems

Simulation of indigo carmine dye adsorption on polymer doped sawdust in fixed-bed systems Desalination and Water Treatment www.deswater.com 27 (211) 285 293 March 1944-3994/1944-3986 211 Desalination Publications. All rights reserved doi: 1/54/dwt.211.231 Simulation of indigo carmine dye adsorption

More information

AN ADSORPTION ISOTHERM MODEL FOR ADSORPTION PERFORMANCE OF SILVER-LOADED ACTIVATED CARBON

AN ADSORPTION ISOTHERM MODEL FOR ADSORPTION PERFORMANCE OF SILVER-LOADED ACTIVATED CARBON THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1645-1649 1645 AN ADSORPTION ISOTHERM MODEL FOR ADSORPTION PERFORMANCE OF SILVER-LOADED ACTIVATED CARBON by a, Xue-Feng YAN b, Xue-Rong FAN a*, Qiang WANG

More information

ADSORPTIVE REMOVAL OF METHYLENE BLUE DYE USING A PACKED BED COLUMN PREPARED FROM NOVEL ADSORBENT

ADSORPTIVE REMOVAL OF METHYLENE BLUE DYE USING A PACKED BED COLUMN PREPARED FROM NOVEL ADSORBENT ADSORPTIVE REMOVAL OF METHYLENE BLUE DYE USING A PACKED BED COLUMN PREPARED FROM NOVEL ADSORBENT Tamilselvi S 1 *, Asaithambi M 2 1,2 Department of Chemistry, Erode Arts and Science College, Erode, TN,(

More information

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass A publication of 151 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 213 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-23-5; ISSN 1974-9791 The Italian

More information

Continuous fixed bed adsorption studies of Rhodamine-B dye using polymer bound adsorbent

Continuous fixed bed adsorption studies of Rhodamine-B dye using polymer bound adsorbent Indian Journal of hemical Technology Vol. 23, January 2016, pp. 53-58 ontinuous fixed bed adsorption studies of Rhodamine-B dye using polymer bound adsorbent Gopal N 1, *, Asaithambi M 1, Sivakumar P 2

More information

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Anoop Raj J R Anil K Das Aishwarya B S Sruthi Suresh Abstract- Batch sorption experiments

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (): 37-34 (24) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Sorption of SO 2 and NO by Modified Palm Shell Activated Carbon: Breakthrough Curve

More information

Egyptian Petroleum Research Institute BY Rasha Hosny Abdel Mawla Yousef

Egyptian Petroleum Research Institute BY Rasha Hosny Abdel Mawla Yousef Novel Mesoporous Silicas and its Characterizations for Oil Adsorption from Produced Water Injected in Water Injection Projects using Fixed Bed Column Processes BY Rasha Hosny Abdel Mawla Yousef Egyptian

More information

Modification of Synthetic Zeolite Pellets from Lignite Fly Ash B : Treatability Study

Modification of Synthetic Zeolite Pellets from Lignite Fly Ash B : Treatability Study 27 World of Coal Ash (WOCA), May 7-1, 27, Northern Kentucky, USA http://www.flyash.info Modification of Synthetic Zeolite Pellets from Lignite Fly Ash B : Treatability Study Chaiwat Rongsayamanont 1, Khajornsak

More information

Biosorbent Sewage Sludge for Removing Basic Dye from Aqueous Solutions

Biosorbent Sewage Sludge for Removing Basic Dye from Aqueous Solutions International Journal of Applied Engineering Research ISSN 973-4562 Volume 12, Number 24 (217) pp. 1481-14817 Biosorbent Sewage Sludge for Removing Basic Dye from Aqueous Solutions Prof. Dr. Alaa Hussein

More information

Copper biosorption in a column of pretreated Aspergillus niger biomass

Copper biosorption in a column of pretreated Aspergillus niger biomass Copper biosorption in a column of pretreated Aspergillus niger biomass Mausumi Mukhopadhyay a, S.B. Noronha a, G.K. Suraishkumar b a Department of Chemical Engineering, Indian Institute of Technology Bombay,

More information

Chapter 7 Adsorption thermodynamics and recovery of uranium

Chapter 7 Adsorption thermodynamics and recovery of uranium Chapter 7 Adsorption thermodynamics and recovery of uranium 99 Chapter 7. Adsorption thermodynamics and recovery of uranium from aqueous solutions by Spatoglossum 7.1. Materials 7.1.1. Preparation of sorbent

More information

Research Journal of Chemical Sciences ISSN X Vol. 4(9), , September (2014)

Research Journal of Chemical Sciences ISSN X Vol. 4(9), , September (2014) Research Journal of Chemical Sciences ISSN -66X Vol. 4(9), 88-, September (4) Nano iron oxide loaded Poly (Acrylonitrile-co-Acrylic acid) hydrogel applied as Novel adsorbent for Effective removal of Toxic

More information

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article EQUILIBRIUM ISOTHERM STUDIES OF METHYLENE BLUE FROM AQUEOUS SOLUTION UNTO ACTIVATED CARBON PREPARED FORM STRYCHNOS

More information

Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems

Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems Journal of Scientific & Industrial Research Vol. 73, April 2014, pp. 267-272 Removal characteristics of basic dyes from aqueous solution by fly ash in single and tertiary systems R. Gandhimathi *, S. T.

More information

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon Chem Sci Trans., 2013, 2(1), 294-300 Chemical Science Transactions DOI:10.7598/cst2013.200 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Adsorption Kinetics and Intraparticulate Diffusivity of Aniline

More information

Modeling and Simulation of Fixed bed Adsorption column: Effect of Velocity Variation

Modeling and Simulation of Fixed bed Adsorption column: Effect of Velocity Variation Modeling and Simulation of Fixed bed Adsorption column: Effect of Velocity Variation B.V. Babu * and Suresh Gupta Department of Chemical Engineering Birla Institute of Technology & Science Pilani 333031

More information

Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell

Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 211, 3 (1):154-164 (http://scholarsresearchlibrary.com/archive.html) ISSN 975-58X CODEN

More information

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves Chemical Science Transactions DOI:10.7598/cst2013.15 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular

More information

Column adsorption studies for the removal of U by phosphonated cross-linked polyethylenimine: modelling and optimization

Column adsorption studies for the removal of U by phosphonated cross-linked polyethylenimine: modelling and optimization Appl Water Sci (2015) 5:57 63 DOI 10.1007/s13201-014-0162-1 ORIGINAL ARTICLE Column adsorption studies for the removal of U by phosphonated cross-linked polyethylenimine: modelling and optimization Dalia

More information

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

a variety of living species. Therefore, elimination of heavy metals/dyes from water and Chapter IV Studies on the adsorption of metal ions and dyes The presence of heavy metals/dyes in the aquatic environment can be detrimental to a variety of living species. Therefore, elimination of heavy

More information

RSC Advances.

RSC Advances. This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after

More information

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Nikazar, M.*, Davarpanah, L., Vahabzadeh, F. * Professor of Department of Chemical Engineering, Amirkabir University

More information

Methylene blue adsorption by pyrolytic tyre char

Methylene blue adsorption by pyrolytic tyre char NATIONAL UNIVERSITY OF SINGAPORE Division of Environmental Science and Engineering Division of Environmental Science and Engineering EG2605 UROP Report Methylene blue adsorption by pyrolytic tyre char

More information

APPLICATION OF ADSORPTION MODEL FOR DYE REMOVAL

APPLICATION OF ADSORPTION MODEL FOR DYE REMOVAL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 121 APPLICATION OF ADSORPTION MODEL FOR DYE REMOVAL F. Abdelrasoul Sanitary Engineering Department, Alexandria University,

More information

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent Removal of copper and cadmium using industrial effluents in continuous column studies by mixed adsorbent Srinivas Tadepalli 1*, Masresha Temeselew Letik 2 1* Lecturer, Department of Chemical Engineering,

More information

Biosorption of Malachite Green from Aqueous Solution Using Alocasia Macrorrhizos Leaf Powder

Biosorption of Malachite Green from Aqueous Solution Using Alocasia Macrorrhizos Leaf Powder Biosorption of Malachite Green from Aqueous Solution Using Alocasia Macrorrhizos Leaf Powder Poiba Venkata Rao 1, Pandranki Srinivasa Rao 2, Mohammad Shamma 3,,Sk.Naseer Aslam 4 Asst. Professor, Department

More information

MASS TRANSFER AND ADSORPTION OF AMOXICILLIN FROM WASTEWATER USING WHEAT GRAIN

MASS TRANSFER AND ADSORPTION OF AMOXICILLIN FROM WASTEWATER USING WHEAT GRAIN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MASS TRANSFER AND ADSORPTION OF AMOXICILLIN FROM WASTEWATER USING WHEAT GRAIN

More information

Evaluation of adsorptive capacity of natural and burnt kaolinitic clay for removal of congo red dye

Evaluation of adsorptive capacity of natural and burnt kaolinitic clay for removal of congo red dye Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (2):939-946 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Evaluation

More information

Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin

Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin T. Nur, M.A.H. Johir, P. Loganathan, T. Nguyen, S. Vigneswaran*, J. Kandasamy Faculty of Engineering and Information

More information

ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM

ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Research Article ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM

More information

IOSR Journal Of Pharmacywww.iosrphr.org (e)-issn: , (p)-issn: PP

IOSR Journal Of Pharmacywww.iosrphr.org (e)-issn: , (p)-issn: PP IOSR Journal Of Pharmacywww.iosrphr.org (e)-issn: 225-313, (p)-issn: 2319-4219 PP. 69-78 Analysis of packed bed adsorption column with nanochitosan /sodium alginate/ microcrystalline cellulose bead for

More information

UTILIZATION OF THOMAS MODEL TO PREDICT THE BREAKTHROUGH CURVES FOR ADSORPTION AND ION EXCHANGE

UTILIZATION OF THOMAS MODEL TO PREDICT THE BREAKTHROUGH CURVES FOR ADSORPTION AND ION EXCHANGE Number 4 Volume 16 December 2010 Journal of Engineering UTILIZATION OF THOMAS MODEL TO PREDICT THE BREAKTHROUGH CURVES FOR ADSORPTION AND ION EXCHANGE Yasmen A. Mustafa and Shahlaa E. Ebrahim Environmental

More information

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS Int. J. Chem. Sci.: 12(4), 2014, 1550-1556 ISSN 0972-768X www.sadgurupublications.com STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS AMITA SHARMA * Chemistry Department,

More information

EXPERIMENTAL STUDY ON THE USE OF CHITOSAN-COATED ACTIVATED CARBON TO REDUCE THE CONTENT OF METAL Fe THE PRODUCED WATER

EXPERIMENTAL STUDY ON THE USE OF CHITOSAN-COATED ACTIVATED CARBON TO REDUCE THE CONTENT OF METAL Fe THE PRODUCED WATER EXPERIMENTAL STUDY ON THE USE OF CHITOSAN-COATED ACTIVATED CARBON TO REDUCE THE CONTENT OF METAL Fe THE PRODUCED WATER Yustia Wulandari Mirzayanti Department of Chemical Engineering, Institut Teknologi

More information

Continuous-flow metal biosorption in a regenerable Sargassum column

Continuous-flow metal biosorption in a regenerable Sargassum column Water Research 37 (2003) 297 306 Continuous-flow metal biosorption in a regenerable Sargassum column B. Volesky a, *, J. Weber a, J.M. Park b a Department of Chemical Engineering, McGill University, 3610

More information

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (4):283-290 ISSN: 0976-8610 CODEN (USA): AASRFC Removal of Basic Dyes from Aqueous Solutions by Sugar Can

More information

The Characteristic Performance of Fluidized bed Ion Exchange

The Characteristic Performance of Fluidized bed Ion Exchange Nahrain University, College of Engineering Journal (NUCEJ) Vol.12, No.1, 2009 pp.38-46 Dr. Malik M. Mohamed Biochemical Engineering Department AL-Khwarizmi College of Engineering Dr. Nahidh W. Kaseer Chemical

More information

International Conference on: Pollution Control & Sustainable Environment

International Conference on: Pollution Control & Sustainable Environment International Conference on: Pollution Control & Sustainable Environment Water treatment containing organic compounds by coupling adsorption éa and electrochemical degradation at BDD anode: Sawdust adsorption

More information

DEVELOPMENT OF NOVEL BIOSORBENTS IN REMOVING HEAVY METALS FROM AQUEOUS SOLUTION. By Md Anwar Hossain

DEVELOPMENT OF NOVEL BIOSORBENTS IN REMOVING HEAVY METALS FROM AQUEOUS SOLUTION. By Md Anwar Hossain DEVELOPMENT OF NOVEL BIOSORBENTS IN REMOVING HEAVY METALS FROM AQUEOUS SOLUTION A Thesis Submitted in Fulfilment of the Requirement for the degree of DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING By

More information

Uranium biosorption by Spatoglossum asperum J. Agardh:

Uranium biosorption by Spatoglossum asperum J. Agardh: Chapter 6 Uranium biosorption by Spatoglossum asperum J. Agardh: 76 Chapter 6. Uranium biosorption by Spatoglossum asperum J. Agardh: Characterization and equilibrium studies. 6.1. Materials 6.1.1. Collection

More information

Efficient removal of typical dye and Cr(VI) reduction using N-doped

Efficient removal of typical dye and Cr(VI) reduction using N-doped Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Efficient removal of typical dye and Cr(VI) reduction using N-doped magnetic porous carbon

More information

Research in Chemistry and Environment

Research in Chemistry and Environment International Journal of Research in Chemistry and Environment Available online at: www.ijrce.org ISSN 2248-9649 Research Paper Adsorption of Eosin Dyes Onto Activated Carbon Prepared from Wood of Adina

More information

Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri. Nigeria.

Department of Chemistry, Federal University of Technology Owerri, PMB 1526, Owerri. Nigeria. International Letters of Chemistry, Physics and Astronomy Submitted: 2016-06-11 ISSN: 2299-3843, Vol. 69, pp 49-57 Revised: 2016-07-22 doi:10.18052/www.scipress.com/ilcpa.69.49 Accepted: 2016-07-26 2016

More information

Sriperumbudur , INDIA

Sriperumbudur , INDIA The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 1 Pages 287-292 2013 Issn: 2319 1813 Isbn: 2319 1805 Adsorption Studies On Reactive Blue 4 By Varying The Concentration Of Mgo

More information

MIXING KINETICS IN BATCH ADSORPTION OF CHROMIUM (VI) BY EMBLICA OFFICINALIS LEAF POWDER

MIXING KINETICS IN BATCH ADSORPTION OF CHROMIUM (VI) BY EMBLICA OFFICINALIS LEAF POWDER MIXING KINETICS IN BATCH ADSORPTION OF CHROMIUM (VI) BY EMBLICA OFFICINALIS LEAF POWDER Ram Pal Singh 1, Fatma Zahra 2 1 Professor, Department of Civil Engineering, MNNIT, Allahabad (India) 2 Research

More information

Study of Adsorption Isotherm and Kinetics of Reactive Yellow Dye on Modified Wheat Straw

Study of Adsorption Isotherm and Kinetics of Reactive Yellow Dye on Modified Wheat Straw Petroleum Science and Engineering 2017; 1(1): 17-22 http://www.sciencepublishinggroup.com/j/pse doi: 10.11648/j.pse.20170101.14 Study of Adsorption Isotherm and Kinetics of Reactive Khalid M. Mousa *,

More information

ADSORPTION OF METHYL VIOLET 2B DYE FROM AQUEOUS SOLUTIONS ONTO WASTE OF BANANA PEEL USING FIXED-BED COLUMN

ADSORPTION OF METHYL VIOLET 2B DYE FROM AQUEOUS SOLUTIONS ONTO WASTE OF BANANA PEEL USING FIXED-BED COLUMN International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 9, September 218, pp. 294 219, Article ID: IJCIET_9_9_25 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=9

More information

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras. Adsorption Lecture # 34 Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Adsorption Lecture # 34 Last class we were discussing about advanced wastewater treatment

More information

Studies on Fixed and Fluidized Bed Ion Exchange Column to Treat Wastewater

Studies on Fixed and Fluidized Bed Ion Exchange Column to Treat Wastewater IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-issn: 239-242,p- ISSN: 239-2399.Volume 6, Issue (Sep. - Oct. 23), PP -6 www.iosrjournals.org Studies on Fixed and Fluidized

More information

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers All Rights Reserved Available online at: http://www.wjpsonline.org/ Original

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Preparation of biomass derived porous carbon: Application for methane energy storage

Preparation of biomass derived porous carbon: Application for methane energy storage Edith Cowan University Research Online ECU Publications Post 013 016 Preparation of biomass derived porous carbon: Application for methane energy storage Yong Sun Edith Cowan University, y.sun@ecu.edu.au

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent

Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent 22 International Conference on Future Environment and Energy IPCBEE vol.28(22) (22)IACSIT Press, Singapoore Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent Vikrant

More information

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Removal of Copper (II) from Aqueous Solutions using Chalk Powder Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (2): Pg. 713-717 Removal

More information

D DAVID PUBLISHING. 1. Introduction. 2. Materials and Methods. Odysseas Kopsidas. initial dye concentrations, flow rates and bed-depths [7].

D DAVID PUBLISHING. 1. Introduction. 2. Materials and Methods. Odysseas Kopsidas. initial dye concentrations, flow rates and bed-depths [7]. Journal of Environmental Science and Engineering A 5 (2016) 489-497 doi:10.17265/2162-5298/2016.10.001 D DAVID PUBLISHING Fixed-bed-column Studies in Laboratory and Pilot Scale for Methylene Blue Removal

More information

Treatment of a Selected Refinery Wastewater Compound (Benzene) by Chitin and Chitosan by Dr Maryam Mohamed

Treatment of a Selected Refinery Wastewater Compound (Benzene) by Chitin and Chitosan by Dr Maryam Mohamed Treatment of a Selected Refinery Wastewater Compound (Benzene) by Chitin and Chitosan by Dr Maryam Mohamed Outline Introduction - Benzene - Treatment Methods for VOCs - Treatment Techniques of Oil Refinery

More information

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Adsorption

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Adsorption DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS Adsorption adsorption lab experiments Framework This module explains the lab experiments on adsorption. Contents This module has the following contents:

More information

NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER

NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER NATURAL ZEOLITE AS A PERMEABLE REACTIVE BARRIER PREDICTION OF LEAD CONCENTRATION PROFILE THROUGH ZEOLITE BARRIER N. Vukojević Medvidović, J. Perić, M. Trgo, M. Ugrina, I. Nuić University of Split, Faculty

More information

PHENOL REMOVAL IN PACKED BED USING COCONUT STALK AS ADSORBENT

PHENOL REMOVAL IN PACKED BED USING COCONUT STALK AS ADSORBENT International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 319 326, Article ID: IJMET_08_11_035 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Journal of Hazardous Materials

Journal of Hazardous Materials Journal of Hazardous Materials 159 (2008) 574 579 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Malachite green adsorption by

More information

Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering

Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering Appendix A. Supplementary information for ACS Sustainable Chemistry & Engineering Encapsulation of silica nanotubes from elephant grass with graphene oxide/reduced graphene oxide and its application in

More information

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Removal Of Copper From Waste Water Using Low Cost Adsorbent IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 3, Issue 6 (Jan. Feb. 2013), PP 51-55 Removal Of Copper From Waste Water Using Low Cost Adsorbent Jubraj Khamari* Sanjeet Kumar Tiwari**

More information

Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study

Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study Kai Schute, 1 Chaline Detoni, 1,2 Anna, Kann 1, Oliver Jung 1, Regina Palkovits, 1 * and

More information

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo.

Faculty of Sciences, University of Tlemcen, P.O. Box Tlemcen - ALGERIA Tel./Fax: 00 (213) : yahoo. INFLUENCE OF TEMPERATURE ON METHYLENE BLUE SORPTION FROM SYNTHETIQUE AQUEOUS SOLUTIONS USING ALMOND PEEL (HARD VARIETY): EXPERIMENTAL, THERMODYNAMIQUE AND MODELLING STUDIES H. Benaïssa* 1, M. Boumediene

More information

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 2 ABSTRACT Calcium alginate beads generated from alginic acid sodium salt from brown algae were 3 used to explore the adsorption

More information

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment Performance evaluation of industrial by-product phosphog in the sorptive removal of nickel(ii) from aqueous environment M.M. EL-Tyeb & S.R.Zeedan Sanitary and Environmental Engineering Department, Housing&

More information

KINETICS FOR REMOVAL OF FLUORIDE FROM AQUEOUS SOLUTION THROUGH ADSORPTION FROM MOUSAMBI PEEL, GROUND NUT SHELL AND NEEM LEAVES

KINETICS FOR REMOVAL OF FLUORIDE FROM AQUEOUS SOLUTION THROUGH ADSORPTION FROM MOUSAMBI PEEL, GROUND NUT SHELL AND NEEM LEAVES KINETICS FOR REMOVAL OF FLUORIDE FROM AQUEOUS SOLUTION THROUGH ADSORPTION FROM MOUSAMBI PEEL, GROUND NUT SHELL AND NEEM LEAVES TEJ PRATAP SINGH 1, C.B.MAJUMDER 2 1 Department of Chemical Engineering, IIT

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 09 Sep p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 09 Sep p-issn: International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 A COMPARISION OF SYNTHESIZED ZEOLITE FROM FLY ASH USING FUSION AND HYDROTHERMAL METHOD FOR REMOVAL OF COD AND COLOUR

More information

Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column

Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column Journal of Hazardous Materials B123 (2005) 135 144 Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column V. Christian

More information

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Suman Mor a,b*, Khaiwal Ravindra c and N. R. Bishnoi b a Department of Energy and Environmental Science, Chaudhary

More information

Separation Benzene and Toluene from BTX using Zeolite 13X

Separation Benzene and Toluene from BTX using Zeolite 13X Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.9 No.3 (September 27) 7-24 ISSN: 997-4884 University of Baghdad College of Engineering Separation

More information

Equilibrium and Kinetic Studies of Reactive Dye Adsorption on Water Hyacinth Root Powder

Equilibrium and Kinetic Studies of Reactive Dye Adsorption on Water Hyacinth Root Powder International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-12, December 2014 Equilibrium and Kinetic Studies of Reactive Dye Adsorption on Water Hyacinth Root

More information

Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester HW Set2. Adsorption

Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester HW Set2. Adsorption Department of Civil Engineering-I.I.T. Delhi CVL722 1st Semester 2016-17 HW Set2 Adsorption Q1: For the following information, determine Langmuir and Freundlich model constants? Also plot Q of these models

More information

Kinetics and Equilibrium Studies on Biosorption of CBB by Coir Pith

Kinetics and Equilibrium Studies on Biosorption of CBB by Coir Pith American-Eurasian Journal of Scientific Research 3 (2): 123-127, 08 ISSN 1818-6785 IDOSI Publications, 08 Kinetics and Equilibrium Studies on Biosorption of CBB by Coir Pith R. Naveen Prasad, S. Viswanathan,

More information

Fixed-Bed System for Adsorption of Anionic Acid Dyes from Binary Solution onto Quaternized Kenaf Core Fiber

Fixed-Bed System for Adsorption of Anionic Acid Dyes from Binary Solution onto Quaternized Kenaf Core Fiber Fixed-Bed System for Adsorption of Anionic Acid Dyes from Binary Solution onto Quaternized Kenaf Core Fiber Intidhar Jabir Idan, a,b, * Luqman Chuah Abdullah, a Siti Nurul Ain Binti Md. Jamil, c Maytham

More information

T. SANTHI a*, S. MANONMANI b, T.SMITHA a

T. SANTHI a*, S. MANONMANI b, T.SMITHA a Kinetics And Isotherm Studies On Cationic Dyes Adsorption Onto Annona Squmosa Seed Activated Carbon T. SANTHI a*, S. MANONMANI b, T.SMITHA a a Department of Chemistry, Karpagam University, Coimbatore-641021,

More information

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells

Equilibrium, Kinetics and Isothem Studies onthe Adsorption of Eosin Red and Malachite Green Using Activated Carbon from Huracrepitans Seed Shells AASCIT Journal of Environment 2018; 3(4): 24-28 http://www.aascit.org/journal/environment ISSN: 2381-1331 (Print); ISSN: 2381-134X (Online) Equilibrium, Kinetics and Isothem Studies onthe Adsorption of

More information

Batch system example (previous midterm question)

Batch system example (previous midterm question) Batch system example (previous midterm question) You are to design a batch adsorber to remove an organic contaminant (A) from 400L of aqueous solution containing 0.05g/L of the contaminant. To facilitate

More information

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk

Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk African Journal of Environmental Science and Technology Vol. 4(6), pp. 382-387, June, 2010 Available online at http://www.academicjournals.org/ajest DOI: 10.5897/AJEST09.224 ISSN 1991-637X 2010 Academic

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum Iranian J Env Health Sci Eng, 24, Vol.1, Barkhordar No.2, pp.58-64 B and Ghiasseddin M: Comparing of Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum * B Barkhordar

More information

APPLICATION OF ADSORPTION PACKED-BED REACTOR MODEL FOR PHENOL REMOVAL

APPLICATION OF ADSORPTION PACKED-BED REACTOR MODEL FOR PHENOL REMOVAL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 131 APPLICATION OF ADSORPTION PACKED-BED REACTOR MODEL FOR PHENOL REMOVAL M. T. Sorour, F. Abdelrasoul and W.A. Ibrahim Sanitary

More information

pechischeva@gmail.ru germanium from the poor raw materials and for the arsenic removal from the technological solutions ties studies were performed. The mechanical activation in the high-energy planetary

More information

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Dr. Robert Eschrich Quantachrome GmbH & Co. KG 2018-04-17 Leipziger Symposium on Dynamic Sorption

More information

Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents

Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 407-415, 2016 Adsorptive Removal of Colour from Aqueous Solution of Disazo Dye by Using Organic Adsorbents

More information

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water International Journal of Applied Chemistry. ISSN 0973-1792 Volume 13, Number 3 (2017) pp. 453-460 Research India Publications http://www.ripublication.com Developing a Low Cost Activated Carbon from Agricultural

More information

Simultaneous Adsorption and Biodegradation of Phenol and Cyanide in Multicomponent System

Simultaneous Adsorption and Biodegradation of Phenol and Cyanide in Multicomponent System International Journal of Environmental Engineering and Management. ISSN 2231-1319, Volume 4, Number 3 (2013), pp. 233-238 Research India Publications http://www.ripublication.com/ ijeem.htm Simultaneous

More information

International Journal of Chemistry and Pharmaceutical Sciences

International Journal of Chemistry and Pharmaceutical Sciences V. Nandhakumar et al IJCPS, 2014, Vol.2(8): 1032-1039 Research Article ISSN: 2321-3132 International Journal of Chemistry and Pharmaceutical Sciences www.pharmaresearchlibrary.com/ijcps Kinetics of Adsorption

More information

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER Geetha K.S 1, Belagali S.L 2 1 Department of Environmental science, University of Mysore, Mysuru, Karnataka, India-570006 2 Department of Environmental

More information

Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests

Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests Estimation of Flow Geometry, Swept Volume, and Surface Area from Tracer Tests Paul W. Reimus, Los Alamos National Laboratory G. Michael Shook, Chevron Energy Technology Company 28 th Oil Shale Symposium

More information

Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin

Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin M.R. El-Naggar, H.A. Ibrahim, and A.M. El-Kamash Hot Lab. Center, Atomic Energy Authority, P.O.

More information

Sixteenth International Water Technology Conference, IWTC , Istanbul, Turkey 1

Sixteenth International Water Technology Conference, IWTC , Istanbul, Turkey 1 Sixteenth International Water Technology Conference, IWTC 16 2012, Istanbul, 1 INFLUENCE OF SOME EXPERIMENTAL PARAMETERS ON METHYLENE BLUE SORPTION KINETICS FROM SYNTHETIQUE AQUEOUS SOLUTIONS USING THISTLE

More information

An Efficient Biosorption of Direct Dyes from Industrial Wastewaters Using Pretreated Sugarcane Bagasse

An Efficient Biosorption of Direct Dyes from Industrial Wastewaters Using Pretreated Sugarcane Bagasse Energy and Environmental Engineering 1(1): 10-16, 2013 DOI: 10.13189/eee.2013.010103 http://www.hrpub.org An Efficient Biosorption of Direct Dyes from Industrial Wastewaters Using Pretreated Sugarcane

More information