Similarity coefficient methods applied to the cell formation problem: a comparative investigation

Size: px
Start display at page:

Download "Similarity coefficient methods applied to the cell formation problem: a comparative investigation"

Transcription

1 Computers & Industrial Engineering 48 (2005) Similarity coefficient methods applied to the cell formation problem: a comparative investigation Yong Yin a, *, Kazuhiko Yasuda b a Industrial and Management Science, Department of Public Policy and Social Studies, Yamagata University, , Kojirakawa-cho, Yamagata-shi , Japan b Graduate School of Economics and Management, Tohoku University, Kawauchi, Aoba-ku, Sendai , Japan Received 1 April 2001; revised 1 January 2003; accepted 1 January 2003 Abstract Although many similarity coefficients have been proposed, very few comparative studies have been done to evaluate the performance of various similarity coefficients. In this paper, we compare the performance of 20 wellknown similarity coefficients. Two hundred and fourteen numerical cell formation problems, which are selected from the literature or generated deliberately, are used for the comparative study. Nine performance measures are used for evaluating the goodness of cell formation solutions. Two characteristics, discriminability and stability of the similarity coefficients are tested under different data conditions. From the results, three similarity coefficients are found to be more discriminable. Jaccard is found to be the most stable similarity coefficient. Four similarity coefficients are not recommendable due to their poor performances. q 2005 Elsevier Ltd. All rights reserved. Keywords: Cellular manufacturing; Cell formation; Similarity coefficient; Comparative study 1. Introduction The design of cellular manufacturing systems is a complex, time-consuming work. Numerous methods have been proposed to solve the cell formation (CF) problem. Among these methods, those based on similarity coefficients are more basic and more flexible for dealing with the CF problem (Seifoddini, 1989a; Yin & Yasuda, 2005). * Corresponding author. Tel./fax: C address: yin@human.kj.yamagata-u.ac.jp (Y. Yin) /$ - see front matter q 2005 Elsevier Ltd. All rights reserved. doi: /j.cie

2 472 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Although numerous CF methods have been proposed, few comparative studies have been done to evaluate the robustness of various methods. Part reason is that different CF methods include different production factors, such as machine requirement, setup times, utilization, workload, setup cost, capacity, part alternative routings, and operation sequences. Selim, Askin, and Vakharia (1998) emphasized the necessity to evaluate and compare different CF methods based on the applicability, availability, and practicability. Previous comparative studies include Chu and Tsai (1990), Miltenburg and Zhang (1991), Mosier (1989), Seifoddini and Hsu (1994), Shafer and Meredith (1990), Shafer and Rogers (1993), and Vakharia and Wemmerlöv (1995). Among the above seven comparative studies, Chu and Tsai (1990) examined three array-based clustering algorithms: rank order clustering (ROC) (King, 1980), direct clustering analysis (DCA) (Chan & Milner, 1982), and bond energy analysis (BEA) (McCormick, Schweitzer, & White, 1972); Shafer and Meredith (1990) investigated six cell formation procedures: ROC, DCA, cluster identification algorithm (CIA) (Kusiak & Chow, 1987), single linkage clustering (SLC), average linkage clustering (ALC), and an operation sequences based similarity coefficient (Vakharia & Wemmerlöv, 1990); Miltenburg and Zhang (1991) compared nine cell formation procedures. Some of the compared procedures are combinations of two different algorithms A1/A2. A1/A2 denotes using A1 (algorithm 1) to group machines and using A2 (algorithm 2) to group parts. The nine procedures include: ROC, SLC/ ROC, SLC/SLC, ALC/ROC, ALC/ALC, modified ROC (MODROC) (Chandrasekharan & Rajagopalan, 1986b), ideal seed non-hierarchical clustering (ISNC) (Chandrasekharan & Rajagopalan, 1986a), SLC/ ISNC, and BEA. The other four comparative studies evaluated several similarity coefficients. We will discuss them in Section Comparative study 2.1. The objective of this study Although a large number of similarity coefficients exist in the literature, only a handful has been used for solving CF problems. Among various similarity coefficients, Jaccard similarity coefficient (Jaccard, 1908) was the most used similarity coefficient in the literature (Yin & Yasuda, 2005). However, contradictory viewpoints among researchers have been found in the previous studies: some researchers advocated the dominant power of Jaccard similarity coefficient; whereas some other researchers emphasized the drawbacks of Jaccard similarity coefficient and recommended other similarity coefficients; moreover, several researchers believed that there is no difference between Jaccard and other similarity coefficients, they considered that none of the similarity coefficients seems to perform always well under various cell formation situations. Therefore, a comparative research is crucially necessary to evaluate various similarity coefficients. Based on the comparative study, even if we cannot find a dominant similarity coefficient for all cell formation situations, at least we need to know which similarity coefficient is more efficient and more appropriate for some specific cell formation situations. In this paper, we investigate the performance of 20 well-known similarity coefficients. A large number of numerical data sets, which are taken from the open literature or generated specifically, are tested on nine performance measures.

3 2.2. Previous comparative studies Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Four studies that have focused on comparing various similarity coefficients and related cell formation procedures have been published in the literature. Mosier (1989) applied a mixture model experimental approach to compare seven similarity coefficients and four clustering algorithms. Four performance measures were used to judge the goodness of solutions: simple matching measure, generalized matching measure, product moment measure and intercellular transfer measure. As pointed out by Shafer and Rogers (1993), the limitation of this study is that three of the four performance measures are for measuring how closely the solution generated by the cell formation procedures matched the original machine-part matrix. However, the original machinepart matrix is not necessarily the best or even a good configuration. Only the last performance measure, intercellular transfer measure is for considering specific objectives associated with the CF problem. Shafer and Rogers (1993) compared 16 similarity coefficients and four clustering algorithms. Four performance measures were used to evaluate the solutions. Eleven small, binary machine-part group technology data sets mostly from the literature were used for the purpose of comparison. However, small and/or well-structured data sets may not have sufficient discriminatory power to separate good from inferior techniques. Further, results based on a small number of data sets may have little general reliability due to clustering results strong dependency on the input data (Anderberg, 1973; Milligan & Cooper, 1987; Vakharia & Wemmerlöv, 1995). Seifoddini and Hsu (1994) introduced a new performance measure: grouping capability index (GCI). The measure is based on exceptional elements and has been widely used in the subsequent research. However, only three similarity coefficients have been tested in their study. Vakharia and Wemmerlöv (1995) studied the impact of dissimilarity measures and clustering techniques on the quality of solutions in the context of cell formation. Twenty-four binary data sets were solved to evaluate eight dissimilarity measures and seven clustering algorithms. Some important insights have been provided by this study, such as data set characteristics, stopping parameters for clustering, performance measures, and the interaction between dissimilarity coefficients and clustering procedures. Unfortunately, similarity coefficients have not been discussed in this research. 3. Experimental design 3.1. The similarity coefficients tested in this study Twenty well-known similarity coefficients (Table 1) are compared in this paper. Among these similarity coefficients, several of them have never been studied in previous comparative research Data sets It is desirable to judge the effectiveness of various similarity coefficients under varying data set conditions. The tested data sets are classified into two distinct groups: selected from the literature and generated deliberately. Previous comparative studies used either one or the other to evaluate the performance of various similarity coefficients. Unlike those studies, this paper uses both types of the data sets to evaluate 20 similarity coefficients.

4 474 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Table 1 Definitions and ranges of selected similarity coefficients Coefficient Range Definition, S ij 1. Jaccard 0 1 a/(acbcc) 2. Hamann K1 to1 [(acd)k(bcc)]/[(acd)c(bcc)] 3. Yule K1 to1 (adkbc)/(adcbc) 4. Simple matching 0 1 (acd)/(acbcccd) 5. Sorenson 0 1 2a/(2aCbCc) 6. Rogers and Tanimoto 0 1 (acd)/[ac2(bcc)cd] 7. Sokal and Sneath 0 1 2(aCd)/[2(aCd)CbCc] 8. Rusell and Rao 0 1 a/(acbcccd) 9. Baroni-Urbani and Buser 0 1 [ac(ad) 1/2 ]/[acbccc(ad) 1/2 ] 10. Phi K1 to1 (adkbc)/[(acb)(acc)(bcd)(ccd) 1/2 ] 11. Ochiai 0 1 a/[(acb)(acc) 1/2 ] 12. PSC 0 1 a 2 /[(bca)(cca)] 13. Dot-product 0 1 a/(bccc2a) 14. Kulczynski 0 1 1/2[a/(aCb)Ca/(aCc)] 15. Sokal and Sneath a/[ac2(bcc)] 16. Sokal and Sneath /4[a/(aCb)Ca/(aCc)Cd/(bCd)Cd/(cCd)] 17. Relative matching 0 1 [ac(ad) 1/2 ]/[acbcccdc(ad) 1/2 ] 18. Chandrasekharan and Rajagopalan (1986b) 0 1 a/min[(acb),(acc)] 19. MaxSC 0 1 Max [a/(acb),a/(acc)] 20. Baker and Maropoulos (1997) 0 1 a/max[(acb),(acc)] a, the number of parts visit both machines; b, the number of parts visit machine i but not j; c, the number of parts visit machine j but not i; d, the number of parts visit neither machine Data sets selected from the literature In the previous comparative studies, Shafer and Rogers (1993), and Vakharia and Wemmerlöv (1995) took 11 and 24 binary data sets from the literature, respectively. The advantage of the data sets from the literature is that they stand for a variety of CF situations. In this paper, 70 data sets are selected from the literature. Table 2 shows the details of the 70 data sets Data sets generated deliberately From the computational experience with a wide variety of CF data sets, one finds that it may not always be possible to obtain a good GT solution, if the original CF problem is not amenable to wellstructural data set (Chandrasekharan & Rajagopalan, 1989). Hence, it is important to evaluate the quality of solutions of various structural data sets. Using data sets that are generated deliberately is a shortcut to evaluate the GT solutions obtained by various similarity coefficients. The generation process of data sets is often controlled by using experimental factors. In this paper, we use two experimental factors to generate data sets Ratio of non-zero element in cells (REC). Density is one of the most used experimental factors (Miltenburg & Zhang, 1991). However, in our opinion, density is an inappropriate factor for being used to control the generation process of cell formation data sets. We use Fig. 1 to illustrate this problem. Cell formation data are usually presented in a machine-part incidence matrix such as the one given in Fig. 1a. The matrix contains 0s and 1s elements that indicate the machine requirements of parts (to show

5 Table 2 Data sets from literature Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Data set Size NC a 1. Singh and Rajamani (1996) 4! Singh and Rajamani (1996) 4! Singh and Rajamani (1996) 5! Waghodekar and Sahu (1984) 5! Waghodekar and Sahu (1984) 5! Chow and Hawaleshka (1992) 5! Chow and Hawaleshka (1993a) 5! Chow and Hawaleshka (1993b) 5! Seifoddini (1989b) 5! Seifoddini (1989b) 5! Singh and Rajamani (1996) 6! Chen et al. (1996) 7! Boctor (1991) 7! Islam and Sarker (2000) 8! Seifoddini and Wolfe (1986) 8! Chandrasekharan and Rajagopalan (1986a) 8!20 2, Chandrasekharan and Rajagopalan (1986b) 8!20 2, Faber and Carter (1986) 9! Seifoddini and Wolfe (1986) 9! Chen et al. (1996) 9! Hon and Chi (1994) 9! Selvam and Balasubramanian (1985) 10! Mosier and Taube (1985a) 10! Seifoddini and Wolfe (1986) 10! McAuley (1972) 12! Seifoddini (1989a) 11! Hon and Chi (1994) 11! De Witte (1980) 12!19 2, Irani and Khator (1986) 14! Askin and Subramanian (1987) 14! King (1980) (machines 6, 8 removed) 14!43 4, Chan and Milner (1982) 15! Faber and Carter (1986) 16!16 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, Sofianopoulou (1997) 16!30 2, King (1980) 16!43 4, Boe and Cheng (1991) (mach 1 removed) 19! Shafer and Rogers (1993) 20! Shafer and Rogers (1993) 20!20 4 (continued on next page)

6 476 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Table 2 (continued) Data set Size NC a 48. Shafer and Rogers (1993) 20! Mosier and Taube (1985b) 20!20 3, Boe and Cheng (1991) 20! Ng (1993) 20! Kumar, Kusiak, and Vannelli (1986) 23!20 2, McCormick et al. (1972) 24! Carrie (1973) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! Chandrasekharan and Rajagopalan (1989) 24! McCormick et al. (1972) 27! Carrie (1973) 28!46 3, Lee, Luong, and Abhary (1997) 30! Kumar and Vannelli (1987) 30!41 2, 3, Balasubramanian and Panneerselvam (1993) 36! King and Nakornchai (1982) 36!90 4, McCormick et al. (1972) 37!53 4, 5, Chandrasekharan and Rajagopalan (1987) 40! Seifoddini and Tjahjana (1999) 50!22 14 a Number of cells. the matrix clearly, 0s are not usually shown). Rows represent machines and columns represent parts. A 1 in the ith row and jth column represents that the jth part needs an operation on the ith machine; similarly, a 0 in the ith row and jth column represents that the ith machine is not needed to process the jth part. For Fig. 1a, we assume that two machine-cells exist. The first cell is constructed by machines 2, 4, 1 and parts 1, 3, 7, 6, 10; The second cell is constructed by machines 3, 5 and parts 2, 4, 8, 9, 5, 11. Without loss of generality, we use Fig. 1b to represent Fig. 1a. The two cells in Fig. 1a are now shown as capital letter A, we call A as the inside cell region. Similarly, we call B as the outside cell region. There are three densities that are called Problem Density (PD), non-zero elements Inside cells Density (ID) and non-zero elements Outside cells Density (OD). The calculations of these densities are as follows: total number of non-zero elements in regions A CB PD Z total number of elements in regions A CB (1) total number of non-zero elements in regions A ID Z total number of elements in regions A (2)

7 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Fig. 1. Illustration of three densities used by previous studies. total number of non-zero elements in regions B OD Z total number of elements in regions B (3) In the design of cellular manufacturing systems, what we are interested in is to find out appropriate machine-part cells the region A. In practice, region B is only a virtual region that does not exist in the real job shops. For example, if Fig. 1a is applied to a real-life job shop, Fig. 1c is a possible layout. There is no region B exists in the real-life job shop. Therefore, we conclude that region B based densities are meaningless. Since PD and OD are based on B, this drawback weakens the quality of generated data sets in the previous comparative studies. To overcome the above shortcoming, we introduce a ratio to replace the density used by previous researchers. The ratio is called as Ratio of non-zero Element in Cells (REC) and is defined as follows: total number of non-zero elements REC Z total number of elements in region A (4) The definition is intuitive. REC can also be used to estimate the productive capacity of machines. If REC is bigger than 1, current machine capacity cannot respond to the production requirements of parts. Thus, additional machines need to be considered. Therefore, REC can be used as a sensor to assess the capacity of machines Radio of exceptions (RE). The second experimental factor is Radio of Exceptions (RE). An exception is defined as a 1 in the region B (an operation outside the cell). We define RE as follows: total number of non-zero elements in region B RE Z total number of non-zero elements (5)

8 478 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Table 3 Test levels of REC and RE Level REC RE RE is used to judge the goodness of machine-part cells and distinguish well-structured problems from ill-structured problems. In this paper, three levels of REC, from sparse cells (0.70) to dense cells (0.90), and eight levels of RE, from well-structured cells (0.05) to ill-structured cells (0.40), are examined. 24 (3!8) combinations exist for all levels of the two experimental factors. For each combination, five 30!60-sized (30 machines by 60 parts) problems are generated. The generation process of the five problems is similar by using the random number. Therefore, a total of 120 test problems for all 24 combinations are generated, each problem is made up of six equally sized cells. The levels of REC and RE are shown in Table Clustering procedure The most well-known clustering procedures that have been applied to cell formation are single linkage clustering (SLC) algorithm, complete linkage clustering (CLC) algorithm and average linkage clustering (ALC) algorithm. These three procedures have been investigated by lots of studies. A summary of the past comparative results is shown in Table 4. Due to that ALC has the advantage of showing the greatest robustness regardless of similarity coefficients, in this paper, we select ALC as the clustering algorithm to evaluate the 20 similarity coefficients (Table 1). The ALC algorithm usually works as follows. Steps (1) Compute similarity coefficients for all machine pairs and store the values in a similarity matrix. (2) Join the two most similar objects (two machines, a machine and a machine group or two machine groups) to form a new machine group. Table 4 Comparative results of SLC, ALC and CLC Procedure Advantage Drawback SLC Simplicity; Minimal computational requirement; Tends to minimize the degree of adjusted machine duplication (Vakharia & Wemmerlöv, 1995) Largest tendency to chain; Leads to the lowest densities and the highest degree of single part cells (Gupta, 1991; Seifoddini, 1989a; Vakharia & Wemmerlöv, 1995) CLC Simplicity; Minimal computational requirement Performed as the worst procedure (Vakharia & ALC (does the reverse of SLC) Performed as the best procedure; Produces the lowest degree of chaining; Leads to the highest cell densities; Indifferent to choice of similarity coefficients; Few single part cells (Seifoddini, 1989a; Tarsuslugil & Bloor, 1979; Vakharia & Wemmerlöv, 1995; Yasuda & Yin, 2001) Wemmerlöv, 1995; Yasuda & Yin, 2001) Requires the highest degree of machine duplication; Requires more computation (Vakharia & Wemmerlöv, 1995)

9 (3) Evaluate the similarity coefficient between the new machine group and other remaining machine groups (machines) as follows: P P i2t j2v S ij S tv Z (6) N t N v where i is the machine in the machine group t; j is the machine in the machine group v. And N t is the number of machines in group t; N v is the number of machines in group v. (4) When all machines are grouped into a single machine group, or predetermined number of machine groups has been obtained, go to step 5; otherwise, go back to step 2. (5) Assign each part to the cell, in which the total number of exceptions is minimum Performance measures Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) A number of quantitative performance measures have been developed to evaluate the final cell formation solutions. Sarker and Mondal (1999) reviewed and compared various performance measures. Nine performance measures are used in this study to judge final solutions. These measures provide different viewpoints by judging solutions from different aspects Number of exceptional elements (EE) Exceptional elements are the source of inter-cell movements of parts. One objective of cell formation is to reduce the total cost of material handling. Therefore, EE is the most simple and intuitive measure for evaluating the cell formation solution Grouping efficiency Grouping efficiency is one of the first measures developed by Chandrasekharan and Rajagopalan (1986a, 1986b). Grouping efficiency is defined as a weighted average of two efficiencies h 1 and h 2 h Z wh 1 Cð1 KwÞh 2 (7) where h 1 Z o Ke o Ke Cv MP Ko Kv h 2 Z MP Ko Kv Ce M number of machines P number of parts o number of operations (1s) in the machine-part matrix {a ik } e number of exceptional elements in the solution v number of voids in the solution A value of 0.5 is recommended for w. h 1 is defined as the ratio of the number of 1s in the region A(Fig. 1b) to the total number of elements in the region A (both 0s and 1s). Similarly, h 2 is the ratio

10 480 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) of the number of 0s in the region B to the total number of elements in the region B (both 0s and 1s). The weighting factor allows the designer to alter the emphasis between utilization and inter-cell movement. The efficiency ranges from 0 to 1. Group efficiency that has been reported has a lower discriminating power (Chandrasekharan & Rajagopalan, 1987). Even an extremely bad solution with large number of exceptional elements has an efficiency value as high as Group efficacy To overcome the problem of group efficiency, Kumar and Chandrasekharan (1990) introduced a new measure, group efficacy t Z ð1 K4Þ=ð1 CfÞ where 4 is the ratio of the number of exceptional elements to the total number of elements; f is the ratio of the number of 0s in the region A to the total number of elements Machine utilization index (grouping measure, GM) Proposed by Miltenburg and Zhang (1991), which is used to measure machine utilization in a cell. The index is defined as follows h g Z h u Kh m (9) where h u Zd/(dCv) and h m Z1K(d/o). d is the number of 1s in the region A, h u is the measure of utilization of machines in a cell and h m is the measure of inter-cell movements of parts. h g ranges from K1 to1,h u and h m range from 0 to 1. A bigger value of machine utilization index h g is desired Clustering measure (CM) This measure tests how closely the 1s gather around the diagonal of the solution matrix, the definition of the measure is as follows (Singh & Rajamani, 1996) np MiZ1 P PkZ1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffio d 2 h ða ikþ Cd 2 vða ik Þ h c Z P MiZ1 P PkZ1 (10) a ik where d h (a ik ) and d v (a ik ) are horizontal and vertical distances between a non-zero entry a ik and the diagonal, respectively d h Z i K kðm K1Þ ðp KMÞ K ðp K1Þ ðp K1Þ (8) (11) iðp K1Þ d v Z k K ðm K1Þ K ðp KMÞ ðm K1Þ (12) Grouping index (GI) Nair and Narendran (1996) indicated that a good performance measure should be defined with reference to the block diagonal space. And the definition should ensure equal weightage to voids (0s in the region A) and exceptional elements. They introduced a measure, incorporating the block diagonal

11 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) space, weighting factor and correction factor g Z 1 K qvcð1kqþðekaþ B 1 C qvcð1kqþðekaþ (13) B where B is the block diagonal space and q is a weighting factor ranges between 0 and 1. AZ0 for e%b and AZeKB for eob. For convenience, Eq. (13) could be written as follows g Z 1 Ka (14) 1 Ca where qv Cð1 KqÞðe KAÞ a Z (15) B Both a and g range from 0 to Bond energy measure (BEM) McCormick et al. (1972) used the BEM to convert a binary matrix into a block diagonal form. This measure is defined as follows: P MiZ1 P PK1 kz1 a ik a iðkc1þ C P MK1 P PkZ1 iz1 a ik a ðic1þk h BE Z P MiZ1 P PkZ1 (16) a ik Bond energy is used to measure the relative clumpiness of a clustered matrix. Therefore, the more close the 1s are, the larger the bond energy measure will be Grouping capability index (GCI) Hsu (1990) showed that neither group efficiency nor group efficacy is consistent in predicting the performance of a cellular manufacturing system based on the structure of the corresponding machinepart matrix (Seifoddini & Djassemi, 1996). Hsu (1990) considered the GCI as follows: GCI Z 1 K e o (17) Unlike group efficiency and group efficacy, GCI excludes zero entries from the calculation of grouping efficacy Alternative routeing grouping efficiency (ARG efficiency) ARG was proposed by Sarker and Li (1998). ARG evaluates the grouping effect in the presence of alternative routings of parts. The efficiency is defined as follows 1 K e o 1 K v h ARG Z 0 z 0 Z o0 Ke z 0 Kv 1 C e o 1 C v o 0 Ce z 0 (18) Cv 0 z 0 where o 0 is the total number of 1s in the original machine-part incidence matrix with multiple process routings, z 0 is the total number of 0s in the original machine-part incidence matrix with multiple process

12 482 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) routings. ARG efficiency can also be used to evaluate CF problems that have no multiple process routings of parts. The efficiency ranges from 0 to 1 and is independent of the size of the problem. 4. Comparison and results Two key characteristics of similarity coefficients are tested in this study, discriminability and stability. In this study, we compare the similarity coefficients by using following steps. Comparative steps 1. Computation At first, solve each problem in the data sets by using 20 similarity coefficients; compute performance values by nine performance measures. Thus, we obtain at least a total of d!20!9 solutions. d is the number of the problems (some data sets from literature are multi-problems due to the different number of cells, see the item NC of Table 2) Average performance values matrix: create a matrix whose rows are problems and columns are nine performance measures. An element in row i and column j indicates, for problem i and performance measure j, the average performance value produced by 20 similarity coefficients. 2. Based on the results of step 1, construct two matrices whose rows are 20 similarity coefficients and columns are nine performance measures, an entry SM ij in the matrices indicates: 2.1. Discriminability matrix: the number of problems in which the similarity coefficient i gives the best performance value for measure j Stability matrix: the number of problems in which the similarity coefficient i gives the performance value of measure j with at least average value (better or equal than the value in the matrix of step 1.2). 3. For each performance measure, find the top five values in the above two matrices. The similarity coefficients corresponding to these values are considered to be the most discriminable/stable similarity coefficients for this performance measure. 4. Based on the results of step 3, for each similarity coefficient, find the number of times that it has been selected as the most discriminable/stable coefficient for the total nine performance measures. We use small examples here to show the comparative steps. Step 1.1: a total of 214 problems were solved. One hundred and twenty problems were deliberately generated; 94 problems were from literature, see Table 2 (some data sets were multi-problems due to the different number of cells). A total of 38,520 (214!20!9) performance values were obtained by using 20 similarity coefficients and nine performance measures. For example, by using Jaccard similarity coefficient, the nine performance values of the problem McCormick et al. (no. 62 in Table 2) are as follows (Table 5). Table 5 The performance values of McCormick et al. by using Jaccard similarity coefficient EE Grouping efficiency Group efficacy GM CM GI BEM GCI ARG Jaccard

13 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Table 6 The average performance values of 20 similarity coefficients, for the problem McCormick et al. EE Grouping efficiency Group efficacy GM CM GI BEM GCI ARG Average values Step 1.2: The average performance values matrix contained 214 problems (rows) and nine performance measures (columns). An example of row (problem McCormick et al.) is as follows (Table 6). We use Jaccard similarity coefficient and the 94 problems from literature to explain steps 2 4. Step 2.1 (discriminability matrix): among the 94 problems and for each performance measure, the numbers of problems in which Jaccard s similarity coefficient gave the best values are shown in Table 7. For example, the 60 in the column EE means that comparing with other 19 similarity coefficients, Jaccard produced minimum exceptional elements to 60 problems. Step 2.2 (stability matrix): among the 94 problems and for each performance measure, the number of problems in which Jaccard s similarity coefficient gave the value with at least average value (matrix of step 1.2) are shown in Table 8. For example, the meaning of 85 in the column EE is as follows: comparing with the average exceptional elements of 94 problems in the matrix of step 1.2, the number of problems in which Jaccard produced fewer exceptional elements are 85. Step 3: For example, for the exceptional elements, the similarity coefficients that corresponded to the top five values in the discriminability matrix are Jaccard, Sorenson, Rusell and Rao, Dot-product, Sokal and Sneath 2, Relative matching, and Baker and Maropoulos. These similarity coefficients are considered as the most discriminable coefficients for the performance measure-exceptional elements. The same procedures are conducted to the other performance measures and stability matrix. Step 4: Using the results of step 3, Jaccard has been selected 5/6 times as the most discriminable/stable similarity coefficient. That means, among nine performance measures, Jaccard is the most discriminable/stable similarity coefficient for 5/6 performance measures. The result is shown in the column literature of Table 9. The results are shown in Table 9 and Figs. 2 4 (in the figures, the horizontal axes are 20 similarity coefficients and the vertical axes are nine performance measures). The tables and figures show the number of performance measures for which these 20 similarity coefficients have been regarded Table 7 The number of problems in which Jaccard s similarity coefficient gave the best performance values EE Grouping efficiency Group efficacy GM CM GI BEM GCI ARG Jaccard Table 8 The number of problems in which Jaccard s similarity coefficient gave the best performance values EE Grouping efficiency Group efficacy GM CM GI BEM GCI ARG Jaccard

14 Table 9 Comparative results under various conditions No. Similarity coefficient Literature All random REC RE D S D S D S D S D S D S D S D S 1 Jaccard Hamann Yule Simple matching 5 Sorenson Rogers and Tanimoto 7 Sokal and Sneath 8 Rusell and Rao 9 Baoroni Urban and Buser 10 Phi Ochiai PSC Dot-product Kulczynski Sokal and Sneath 2 16 Sokal and Sneath 4 17 Relative matching 18 Chandraseharan and Rajagopalan 19 MaxSC Baker and Maropoulos D, discriminability; S, stability. 484 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005)

15 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Fig. 2. Performance for all tested problems. as the most discriminable/stable coefficients. The columns of the table represent different conditions of data sets. The column literature includes all 94 problems from literature; the column all random includes all 120 deliberately generated problems. The deliberately generated problems are further investigated by using different levels of REC and RE. Fig. 3. Performance under different REC.

16 486 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Fig. 4. Performance under different RE. Literature and All random columns in Table 9 (also Fig. 2) give the performance results of all 214 tested problems. We can find that Jaccard and Sorenson are two best coefficients. On the other hand, four similarity coefficients: Hamann, Simple matching, Rogers and Tanimoto, and Sokal and Sneath are inefficient in both discriminability and stability. REC columns in Table 9 (also Fig. 3) show the performance results under the condition of different REC ratios. We can find that almost all similarity coefficients perform well under a high REC ratio. However, four similarity coefficients: Hamann, Simple matching, Rogers and Tanimoto, and Sokal and Sneath, again produce bad results under the low REC ratio. RE columns in Table 9 (also Fig. 4) give the performance results under the condition of different RE ratios. All similarity coefficients perform best under a low RE ratio (data sets are wellstructured). Only a few of similarity coefficients perform well under a high RE ratio (data sets are illstructured), Sokal and Sneath 2 is very good for all RE ratios. Again, the four similarity coefficients: Hamann, Simple matching, Rogers and Tanimoto, and Sokal and Sneath, perform badly under high RE ratios. In summary, three similarity coefficients: Jaccard, Sorenson, and Sokal and Sneath 2 perform best among twenty tested similarity coefficients. Jaccard emerges from the 20 similarity coefficients for its stability. For all problems, from literature or deliberately generated; and for all levels of both REC and RE ratios, Jaccard similarity coefficient is constantly the most stable coefficient among all 20 similarity coefficients. Another finding in this study is four similarity coefficients: Hamann, Simple matching, Rogers and Tanimoto, and Sokal and Sneath are inefficient under all conditions. So, these similarity coefficients are not recommendable for cell formation applications.

17 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Conclusions The initial problem in the design of cellular manufacturing systems is the cell formation problem. One methodology to form manufacturing cells is the use of similarity coefficients. Although a number of similarity coefficients have been proposed, very few comparative studies have been done to evaluate the performance of various similarity coefficients. This paper evaluated the performance of 20 well-known similarity coefficients. Ninety-four problems from literature and 120 problems generated deliberately were solved by using the 20 similarity coefficients. To control the generation process of data sets, experimental factors have been discussed. Two experimental factors were proposed and used for generating experimental problems. Nine performance measures were used to judge the solutions of the tested problems. The numerical results showed that three similarity coefficients are more efficient and four similarity coefficients are inefficient for solving the cell formation problems. Another finding is that Jaccard similarity coefficient is the most stable similarity coefficient. For the further studies, we suggest comparative studies in consideration of some production factors, such as production volumes, operation sequences, etc. of parts. References Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press. Askin, R. G., & Subramanian, S. P. (1987). A cost-based heuristic for group technology configuration. International Journal of Production Research, 25(1), Balasubramanian, K. N., & Panneerselvam, R. (1993). Covering technique-based algorithm for machine grouping to form manufacturing cells. International Journal of Production Research, 31(6), Baker, R. P., & Maropoulos, P. G. (1997). An automatic clustering algorithm suitable for use by a computer-based tool for the design, management and continuous improvement of cellular manufacturing systems. Computer Integrated Manufacturing Systems, 10(3), Boctor, F. F. (1991). A linear formulation of the machine-part cell formation problem. International Journal of Production Research, 29(2), Boe, W. J., & Cheng, C. H. (1991). A close neighbour algorithm for designing cellular manufacturing systems. International Journal of Production Research, 29(10), Carrie, A. S. (1973). Numerical taxonomy applied to group technology and plant layout. International Journal of Production Research, 11(4), Chan, H. M., & Milner, D. A. (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing Systems, 1(1), Chandrasekharan, M. P., & Rajagopalan, R. (1986a). An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. International Journal of Production Research, 24, Chandrasekharan, M. P., & Rajagopalan, R. (1986b). MODROC: An extension of rank order clustering for group technology. International Journal of Production Research, 24, Chandrasekharan, M. P., & Rajagopalan, R. (1987). ZODIAC: An algorithm for concurrent formation of part families and machine cells. International Journal of Production Research, 25, Chandrasekharan, M. P., & Rajagopalan, R. (1989). GROUPABILITY: An analysis of the properties of binary data matrices for group technology. International Journal of Production Research, 27(6), Chen, D. S., Chen, H. C., & Part, J. M. (1996). An improved ART neural net for machine cell formation. Journal of Materials Processing Technology, 61, 1 6. Chow, W. S., & Hawaleshka, O. (1992). An efficient algorithm for solving the machine chaining problem in cellular manufacturing. Computers and Industrial Engineering, 22(1),

18 488 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Chow, W. S., & Hawaleshka, O. (1993a). Minimizing intercellular part movements in manufacturing cell formation. International Journal of Production Research, 31(9), Chow, W. S., & Hawaleshka, O. (1993b). A novel machine grouping and knowledge-based approach for cellular manufacturing. European Journal of Operational Research, 69, Chu, C. H., & Tsai, M. (1990). A comparison of three array-based clustering techniques for manufacturing cell formation. International Journal of Production Research, 28(8), De Witte, J. (1980). The use of similarity coefficients in production flow analysis. International Journal of Production Research, 18(4), Faber, Z., & Carter, M. W. (1986). A new graph theory approach for forming machine cells in cellular production systems. In A. Kusiak (Ed.), Flexible manufacturing systems: Methods and studies (pp ). North-Holland: Elsevier. Gupta, T. (1991). Clustering algorithms for the design of cellular manufacturing systems an analysis of their performance. Computers and Industrial Engineering, 20(4), Hon, K. K. B., & Chi, H. (1994). A new approach of group technology part families optimization. Annals of the CIRP, 43(1), Hsu, C. P. (1990). Similarity coefficient approaches to machine-component cell formation in cellular manufacturing: A comparative study. PhD Thesis, Department of Industrial and Manufacturing Engineering, University of Wisconsin- Milwaukee. Irani, S. A., & Khator, S. K. (1986). A microcomputer-based design of a cellular manufacturing system. In Proceedings of the eighth annual conference on computers and industrial engineering (Vol. 11) (pp ). Islam, K. M. S., & Sarker, B. R. (2000). A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems. International Journal of Production Research, 38(3), Jaccard, P. (1908). Novelles recgerches sur la distribution florale. Bulletin de la Sociètè Vaudoise des Sciences Naturelles, 44, King, J. R. (1980). Machine-component grouping in production flow analysis: An approach using a rank order clustering algorithm. International Journal of Production Research, 18(2), King, J. R., & Nakornchai, V. (1982). Machine component group formation in group technology: Review and extension. International Journal of Production Research, 20, Kumar, C. S., & Chandrasekharan, M. P. (1990). Grouping efficacy: A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28(2), Kumar, K. R., Kusiak, A., & Vannelli, A. (1986). Grouping of parts and components in flexible manufacturing systems. European Journal of Operational Research, 24, Kumar, K. R., & Vannelli, A. (1987). Strategic subcontracting for efficient disaggregated manufacturing. International Journal of Production Research, 25(4), Kusiak, A., & Chow, W. S. (1987). Efficient solving of the group technology problem. Journal of Manufacturing Systems, 6, Lee, M. K., Luong, H. S., & Abhary, K. (1997). A genetic algorithm based cell design considering alternative routing. Computer Integrated Manufacturing Systems, 10(2), McAuley, J. (1972). Machine grouping for efficient production. The Production Engineer, 51(2), McCormick, W. T., Schweitzer, P. J., & White, T. W. (1972). Problem decomposition and data reorganization by a clustering technique. Operations Research, 20(5), Milligan, G. W., & Cooper, S. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11(4), Miltenburg, J., & Zhang, W. (1991). A comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology. Journal of Operations Management, 10(1), Mosier, C. T. (1989). An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem. International Journal of Production Research, 27(10), Mosier, C. T., & Taube, L. (1985a). The facets of group technology and their impacts on implementation a state of the art survey. Omega, 13(5), Mosier, C. T., & Taube, L. (1985b). Weighted similarity measure heuristics for the group technology machine clustering problem. Omega, 13(6), Nair, G. J. K., & Narendran, T. T. (1996). Grouping index: A new quantitative criterion for goodness of block-diagonal forms in group technology. International Journal of Production Research, 34(10),

19 Y. Yin, K. Yasuda / Computers & Industrial Engineering 48 (2005) Ng, S. M. (1993). Worst-case analysis of an algorithm for cellular manufacturing. European Journal of Operational Research, 69, Sarker, B. R., & Li, Z. (1998). Measuring matrix-based cell formation considering alternative routings. Journal of the Operational Research Society, 49(9), Sarker, B. R., & Mondal, S. (1999). Grouping efficiency measures in cellular manufacturing: A survey and critical review. International Journal of Production Research, 37(2), Seifoddini, H. (1989a). Single linkage versus average linkage clustering in machine cells formation applications. Computers and Industrial Engineering, 16(3), Seifoddini, H. (1989b). A note on the similarity coefficient method and the problem of improper machine assignment in group technology applications. International Journal of Production Research, 27(7), Seifoddini, H., & Djassemi, M. (1996). A new grouping measure for evaluation of machine-component matrices. International Journal of Production Research, 34(5), Seifoddini, H., & Hsu, C. P. (1994). Comparative study of similarity coefficients and clustering algorithm in cellular manufacturing. Journal of Manufacturing Systems, 13(2), Seifoddini, H., & Tjahjana, B. (1999). Part-family formation for cellular manufacturing: A case study at Harnischfeger. International Journal of Production Research, 37(14), Seifoddini, H., & Wolfe, P. M. (1986). Application of the similarity coefficient method in group technology. IIE Transactions, 18(3), Selim, H. M., Askin, R. G., & Vakharia, A. J. (1998). Cell formation in group technology: Review, evaluation and directions for future research. Computers and Industrial Engineering, 34(1), Selvam, R. P., & Balasubramanian, K. N. (1985). Algorithmic grouping of operation sequences. Engineering Cost and Production Economics, 9, Shafer, S. M., & Meredith, J. R. (1990). A comparison of selected manufacturing cell formation techniques. International Journal of Production Research, 28(4), Shafer, S. M., & Rogers, D. F. (1993). Similarity and distance measures for cellular manufacturing. Part II. An extension and comparison. International Journal of Production Research, 31(6), Singh, N., & Rajamani, D. (1996). Cellular manufacturing systems: Design, planning and control. London: Chapman & Hall. Sofianopoulou, S. (1997). Application of simulated annealing to a linear model for the formulation of machine cells in group technology. International Journal of Production Research, 35(2), Tarsuslugil, M., & Bloor, J. (1979). The use of similarity coefficients and cluster analysis in production flow analysis. In Proceedings of the 20th international machine tool design and research conference, Birmingham, UK, September (pp ). Vakharia, A. J., & Wemmerlöv, U. (1990). Designing a cellular manufacturing system: A materials flow approach based on operation sequences. IIE Transactions, 22(1), Vakharia, A. J., & Wemmerlöv, U. (1995). A comparative investigation of hierarchical clustering techniques and dissimilarity measures applied to the cell formation problem. Journal of Operations Management, 13, Waghodekar, P. H., & Sahu, S. (1984). Machine-component cell formation in group technology: MACE. International Journal of Production Research, 22(6), Yasuda, K., & Yin, Y. (2001). A dissimilarity measure for solving the cell formation problem in cellular manufacturing. Computers and Industrial Engineering, 39(1/2), Yin, Y., & Yasuda, K. (2005). Similarity coefficient methods applied to the cell formation problem: a taxonomy and review. International Journal of Production Economics.

Part Family and Operations Group Formation for RMS Using Bond Energy Algorithm Kamal Khanna #1, Rakesh Kumar *2

Part Family and Operations Group Formation for RMS Using Bond Energy Algorithm Kamal Khanna #1, Rakesh Kumar *2 Part Family and Operations Group Formation for RMS Using Bond Energy Algorithm Kamal Khanna #1, Rakesh Kumar *2 #1 PhD Research Scholar, Dept. of Mechanical Engineering, IKG PTU, Kapurthala, India kksbs1@gmail.com

More information

Merits of the Production Volume Based Sinlilarity Coefficient in Machine Cell Formation

Merits of the Production Volume Based Sinlilarity Coefficient in Machine Cell Formation Merits of the Production Volume Based Sinlilarity Coefficient in Machine Cell Formation Hamid Seifoddini, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin Manocher Djassemi, University of Wisconsin-Platteville,

More information

Design of Manufacturing Systems Manufacturing Cells

Design of Manufacturing Systems Manufacturing Cells Design of Manufacturing Systems Manufacturing Cells Outline General features Examples Strengths and weaknesses Group technology steps System design Virtual cellular manufacturing 2 Manufacturing cells

More information

Manufacturing cell formation using modified ART1 networks

Manufacturing cell formation using modified ART1 networks Int J Adv Manuf Technol (2005) 26: 909 916 DOI 10.1007/s00170-003-2048-5 ORIGINAL ARTICLE P. Venkumar A. Noorul Haq Manufacturing cell formation using modified ART1 networks Received: 15 August 2003 /

More information

Machine-part grouping and cluster analysis: similarities, distances and grouping criteria

Machine-part grouping and cluster analysis: similarities, distances and grouping criteria BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Machine-part grouping and cluster analysis: similarities, distances and grouping criteria J.W. OWSIŃSKI Systems Research

More information

PART-MACHINE GROUP FORMATION WITH ORDINAL-RATIO LEVEL DATA & PRODUCTION VOLUME

PART-MACHINE GROUP FORMATION WITH ORDINAL-RATIO LEVEL DATA & PRODUCTION VOLUME ISSN 1726-4529 Int j simul model 8 (2009) 2, 90-101 Original scientific paper PART-MACHINE GROUP FORMATION WITH ORDINAL-RATIO LEVEL DATA & PRODUCTION VOLUME Kumar, L. * & Jain, P. K. ** * Department of

More information

Shortening Picking Distance by using Rank-Order Clustering and Genetic Algorithm for Distribution Centers

Shortening Picking Distance by using Rank-Order Clustering and Genetic Algorithm for Distribution Centers Shortening Picking Distance by using Rank-Order Clustering and Genetic Algorithm for Distribution Centers Rong-Chang Chen, Yi-Ru Liao, Ting-Yao Lin, Chia-Hsin Chuang, Department of Distribution Management,

More information

Measuring the Structural Similarity between Source Code Entities

Measuring the Structural Similarity between Source Code Entities Measuring the Structural Similarity between Source Code Entities Ricardo Terra, João Brunet, Luis Miranda, Marco Túlio Valente, Dalton Serey, Douglas Castilho, and Roberto Bigonha Universidade Federal

More information

GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS

GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS A genetic algorithm is a random search technique for global optimisation in a complex search space. It was originally inspired by an

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 3 (2012) 787 806 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

Fuzzy order-equivalence for similarity measures

Fuzzy order-equivalence for similarity measures Fuzzy order-equivalence for similarity measures Maria Rifqi, Marie-Jeanne Lesot and Marcin Detyniecki Abstract Similarity measures constitute a central component of machine learning and retrieval systems,

More information

Design of Cellular Manufacturing Systems for Dynamic and Uncertain Production Requirements with Presence of Routing Flexibility

Design of Cellular Manufacturing Systems for Dynamic and Uncertain Production Requirements with Presence of Routing Flexibility Design of Cellular Manufacturing Systems for Dynamic and Uncertain Production Requirements with Presence of Routing Flexibility Anan Mungwattana Dissertation submitted to the Faculty of the Virginia Polytechnic

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

arxiv: v1 [stat.ml] 17 Jun 2016

arxiv: v1 [stat.ml] 17 Jun 2016 Ground Truth Bias in External Cluster Validity Indices Yang Lei a,, James C. Bezdek a, Simone Romano a, Nguyen Xuan Vinh a, Jeffrey Chan b, James Bailey a arxiv:166.5596v1 [stat.ml] 17 Jun 216 Abstract

More information

Correlation Analysis of Binary Similarity and Distance Measures on Different Binary Database Types

Correlation Analysis of Binary Similarity and Distance Measures on Different Binary Database Types Correlation Analysis of Binary Similarity and Distance Measures on Different Binary Database Types Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert Department of Computer Science, Pace University, New

More information

NOMINAL VARIABLE CLUSTERING AND ITS EVALUATION

NOMINAL VARIABLE CLUSTERING AND ITS EVALUATION NOMINAL VARIABLE CLUSTERING AND ITS EVALUATION Hana Řezanková Abstract The paper evaluates clustering of nominal variables using different similarity measures. The created clusters can serve for dimensionality

More information

Exact Mixed Integer Programming for Integrated Scheduling and Process Planning in Flexible Environment

Exact Mixed Integer Programming for Integrated Scheduling and Process Planning in Flexible Environment Journal of Optimization in Industrial Engineering 15 (2014) 47-53 Exact ixed Integer Programming for Integrated Scheduling and Process Planning in Flexible Environment ohammad Saidi mehrabad a, Saeed Zarghami

More information

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Fast Nonnegative Matrix Factorization with Rank-one ADMM Fast Nonnegative Matrix Factorization with Rank-one Dongjin Song, David A. Meyer, Martin Renqiang Min, Department of ECE, UCSD, La Jolla, CA, 9093-0409 dosong@ucsd.edu Department of Mathematics, UCSD,

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

A route map to calibrate spatial interaction models from GPS movement data

A route map to calibrate spatial interaction models from GPS movement data A route map to calibrate spatial interaction models from GPS movement data K. Sila-Nowicka 1, A.S. Fotheringham 2 1 Urban Big Data Centre School of Political and Social Sciences University of Glasgow Lilybank

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

DESIGN OF OPTIMUM CROSS-SECTIONS FOR LOAD-CARRYING MEMBERS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

DESIGN OF OPTIMUM CROSS-SECTIONS FOR LOAD-CARRYING MEMBERS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS DESIGN OF OPTIMUM CROSS-SECTIONS FOR LOAD-CARRING MEMBERS USING MULTI-OBJECTIVE EVOLUTIONAR ALGORITHMS Dilip Datta Kanpur Genetic Algorithms Laboratory (KanGAL) Deptt. of Mechanical Engg. IIT Kanpur, Kanpur,

More information

Definitive Screening Designs with Added Two-Level Categorical Factors *

Definitive Screening Designs with Added Two-Level Categorical Factors * Definitive Screening Designs with Added Two-Level Categorical Factors * BRADLEY JONES SAS Institute, Cary, NC 27513 CHRISTOPHER J NACHTSHEIM Carlson School of Management, University of Minnesota, Minneapolis,

More information

Moment Aberration Projection for Nonregular Fractional Factorial Designs

Moment Aberration Projection for Nonregular Fractional Factorial Designs Moment Aberration Projection for Nonregular Fractional Factorial Designs Hongquan Xu Department of Statistics University of California Los Angeles, CA 90095-1554 (hqxu@stat.ucla.edu) Lih-Yuan Deng Department

More information

Simultaneous polymer property modeling using Grid technology for structured products

Simultaneous polymer property modeling using Grid technology for structured products 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Simultaneous polymer property modeling using Grid technology

More information

Comprehensive grouping efficacy: A new measure for evaluating block-diagonal forms in group technology

Comprehensive grouping efficacy: A new measure for evaluating block-diagonal forms in group technology International Journal of Industrial Engineering Comutations 9 (08) 55 7 Contents lists available at GrowingScience International Journal of Industrial Engineering Comutations homeage: www.growingscience.com/ijiec

More information

CS224W: Social and Information Network Analysis

CS224W: Social and Information Network Analysis CS224W: Social and Information Network Analysis Reaction Paper Adithya Rao, Gautam Kumar Parai, Sandeep Sripada Keywords: Self-similar networks, fractality, scale invariance, modularity, Kronecker graphs.

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.4 The Projection Matrix 1 Chapter 6. Orthogonality 6.4 The Projection Matrix Note. In Section 6.1 (Projections), we projected a vector b R n onto a subspace W of R n. We did so by finding a basis for

More information

Construction Modelling of Input-Output Coefficients Matrices in an Axiomatic Context: Some Further Considerations.

Construction Modelling of Input-Output Coefficients Matrices in an Axiomatic Context: Some Further Considerations. 1 Construction Modelling of Input-Output Coefficients Matrices in an Axiomatic Context: Some Further Considerations. José Manuel Rueda-Cantuche Universidad Pablo de Olavide Seville - Spain XIVth International

More information

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance Notion of Distance Metric Distance Binary Vector Distances Tangent Distance Distance Measures Many pattern recognition/data mining techniques are based on similarity measures between objects e.g., nearest-neighbor

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Some optimal criteria of model-robustness for two-level non-regular fractional factorial designs

Some optimal criteria of model-robustness for two-level non-regular fractional factorial designs Some optimal criteria of model-robustness for two-level non-regular fractional factorial designs arxiv:0907.052v stat.me 3 Jul 2009 Satoshi Aoki July, 2009 Abstract We present some optimal criteria to

More information

Fixed Weight Competitive Nets: Hamming Net

Fixed Weight Competitive Nets: Hamming Net POLYTECHNIC UNIVERSITY Department of Computer and Information Science Fixed Weight Competitive Nets: Hamming Net K. Ming Leung Abstract: A fixed weight competitive net known as the Hamming net is discussed.

More information

Measuring Software Coupling

Measuring Software Coupling Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 6 Measuring Software Coupling JARALLAH S. ALGHAMDI Information

More information

Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times

Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times Preprints of the 13th IFAC Symposium on Information Control Problems in Manufacturing, Moscow, Russia, June 3-5, 2009 Fr-A2.3 Partial job order for solving the two-machine flow-shop minimum-length problem

More information

FUZZY TIME SERIES FORECASTING MODEL USING COMBINED MODELS

FUZZY TIME SERIES FORECASTING MODEL USING COMBINED MODELS International Journal of Management, IT & Engineering Vol. 8 Issue 8, August 018, ISSN: 49-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

Using Markov Chains To Model Human Migration in a Network Equilibrium Framework

Using Markov Chains To Model Human Migration in a Network Equilibrium Framework Using Markov Chains To Model Human Migration in a Network Equilibrium Framework Jie Pan Department of Mathematics and Computer Science Saint Joseph s University Philadelphia, PA 19131 Anna Nagurney School

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (2011) 797 802 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: wwwelseviercom/locate/aml Model order determination using the Hankel

More information

A Hierarchical Representation for the Reference Database of On-Line Chinese Character Recognition

A Hierarchical Representation for the Reference Database of On-Line Chinese Character Recognition A Hierarchical Representation for the Reference Database of On-Line Chinese Character Recognition Ju-Wei Chen 1,2 and Suh-Yin Lee 1 1 Institute of Computer Science and Information Engineering National

More information

The Stochastic Facility Layout Problem

The Stochastic Facility Layout Problem Lisa Turner Supervisors: Yefei Zhao and Stein W.Wallace 9th September, 2011 Background Introduction It is important to design production floors so they are: Flexible Robust Large amounts of money can be

More information

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment 25.04.2017 Course Outline Forecasting overview and data management Trip generation modeling Trip distribution

More information

CIV3703 Transport Engineering. Module 2 Transport Modelling

CIV3703 Transport Engineering. Module 2 Transport Modelling CIV3703 Transport Engineering Module Transport Modelling Objectives Upon successful completion of this module you should be able to: carry out trip generation calculations using linear regression and category

More information

56:171 Operations Research Final Exam December 12, 1994

56:171 Operations Research Final Exam December 12, 1994 56:171 Operations Research Final Exam December 12, 1994 Write your name on the first page, and initial the other pages. The response "NOTA " = "None of the above" Answer both parts A & B, and five sections

More information

The Tool Switching Problem Revisited

The Tool Switching Problem Revisited The Tool Switching Problem Revisited Yves Crama HEC Management School, University of Liège, Boulevard du Rectorat, 7 (B31), B-4000 Liège, Belgium, Y.Crama@ulg.ac.be Linda S. Moonen (corresponding author),

More information

Automated Statistical Recognition of Partial Discharges in Insulation Systems.

Automated Statistical Recognition of Partial Discharges in Insulation Systems. Automated Statistical Recognition of Partial Discharges in Insulation Systems. Massih-Reza AMINI, Patrick GALLINARI, Florence d ALCHE-BUC LIP6, Université Paris 6, 4 Place Jussieu, F-75252 Paris cedex

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

The transport skeleton as a part of spatial planning of Tatarstan Republic

The transport skeleton as a part of spatial planning of Tatarstan Republic The transport skeleton as a part of spatial planning of Tatarstan Republic Introduction The Transport strategy of Russia [], developed one year ago became a major landmark in development of transport branch,

More information

Power Grid Partitioning: Static and Dynamic Approaches

Power Grid Partitioning: Static and Dynamic Approaches Power Grid Partitioning: Static and Dynamic Approaches Miao Zhang, Zhixin Miao, Lingling Fan Department of Electrical Engineering University of South Florida Tampa FL 3320 miaozhang@mail.usf.edu zmiao,

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads Operations Research Letters 37 (2009) 312 316 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Instability of FIFO in a simple queueing

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 60 (2010) 1374 1384 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Heuristics

More information

Forecasting in Hierarchical Models

Forecasting in Hierarchical Models Forecasting in Hierarchical Models Lucy Morgan Supervisor: Nikolaos Kourentzes 20 th February 2015 Introduction Forecasting is the process of making statements about events whose actual outcomes (typically)

More information

THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS

THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS ISAHP 200, Berne, Switzerland, August 2-4, 200 THE IMPACT ON SCALING ON THE PAIR-WISE COMPARISON OF THE ANALYTIC HIERARCHY PROCESS Yuji Sato Department of Policy Science, Matsusaka University 846, Kubo,

More information

MATH Mathematics for Agriculture II

MATH Mathematics for Agriculture II MATH 10240 Mathematics for Agriculture II Academic year 2018 2019 UCD School of Mathematics and Statistics Contents Chapter 1. Linear Algebra 1 1. Introduction to Matrices 1 2. Matrix Multiplication 3

More information

3 (Maths) Linear Algebra

3 (Maths) Linear Algebra 3 (Maths) Linear Algebra References: Simon and Blume, chapters 6 to 11, 16 and 23; Pemberton and Rau, chapters 11 to 13 and 25; Sundaram, sections 1.3 and 1.5. The methods and concepts of linear algebra

More information

Production Capacity Modeling of Alternative, Nonidentical, Flexible Machines

Production Capacity Modeling of Alternative, Nonidentical, Flexible Machines The International Journal of Flexible Manufacturing Systems, 14, 345 359, 2002 c 2002 Kluwer Academic Publishers Manufactured in The Netherlands Production Capacity Modeling of Alternative, Nonidentical,

More information

An LP-based inconsistency monitoring of pairwise comparison matrices

An LP-based inconsistency monitoring of pairwise comparison matrices arxiv:1505.01902v1 [cs.oh] 8 May 2015 An LP-based inconsistency monitoring of pairwise comparison matrices S. Bozóki, J. Fülöp W.W. Koczkodaj September 13, 2018 Abstract A distance-based inconsistency

More information

Worst case analysis for a general class of on-line lot-sizing heuristics

Worst case analysis for a general class of on-line lot-sizing heuristics Worst case analysis for a general class of on-line lot-sizing heuristics Wilco van den Heuvel a, Albert P.M. Wagelmans a a Econometric Institute and Erasmus Research Institute of Management, Erasmus University

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

ANALYTICAL MODEL OF A VIRTUAL BACKBONE STABILITY IN MOBILE ENVIRONMENT

ANALYTICAL MODEL OF A VIRTUAL BACKBONE STABILITY IN MOBILE ENVIRONMENT (The 4th New York Metro Area Networking Workshop, New York City, Sept. 2004) ANALYTICAL MODEL OF A VIRTUAL BACKBONE STABILITY IN MOBILE ENVIRONMENT Ibrahim Hökelek 1, Mariusz A. Fecko 2, M. Ümit Uyar 1

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/282 Motivation Motivation Why do we study the TSP? c R.F. Hartl, S.N. Parragh 2/282 Motivation Motivation Why

More information

Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition

Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Research Article Scheduling Algorithm: Tasks Scheduling Algorithm for Multiple Processors with Dynamic Reassignment

Research Article Scheduling Algorithm: Tasks Scheduling Algorithm for Multiple Processors with Dynamic Reassignment Hindawi Publishing Corporation Journal of Computer Systems, Networks, and Communications Volume 008, Article ID 57880, 9 pages doi:0.55/008/57880 Research Article Scheduling Algorithm: Tasks Scheduling

More information

Algorithms and Complexity theory

Algorithms and Complexity theory Algorithms and Complexity theory Thibaut Barthelemy Some slides kindly provided by Fabien Tricoire University of Vienna WS 2014 Outline 1 Algorithms Overview How to write an algorithm 2 Complexity theory

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 50 - CHAPTER 3: MATRICES QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 03 marks Matrix A matrix is an ordered rectangular array of numbers

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 6: Some Other Stuff PD Dr.

More information

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants Unit II - Matrix arithmetic 1 Things we can already do with matrices equality

More information

Comparison of Different Updating Procedures and Identification of Temporal Patterns

Comparison of Different Updating Procedures and Identification of Temporal Patterns Twelfth Annual Conference on Global Economic Analysis Santiago, Chile June 10 12, 2009 Comparison of Different Updating Procedures and Identification of Temporal Patterns Casiano Manrique de Lara Peñate

More information

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Zhixiang Chen (chen@cs.panam.edu) Department of Computer Science, University of Texas-Pan American, 1201 West University

More information

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

Scheduling of two and three machine robotic cells with fuzzy methodology

Scheduling of two and three machine robotic cells with fuzzy methodology ISSN 1750-9653, England, UK International Journal of Management Science and Engineering Management Vol. 2 (2007) No. 4, pp. 243-256 Scheduling of two and three machine robotic cells with fuzzy methodology

More information

Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times

Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times Advances in Operations Research Volume 2009, Article ID 153910, 10 pages doi:10.1155/2009/153910 Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times Lika Ben-Dati,

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Synchronous vs asynchronous behavior of Hopfield's CAM neural net

Synchronous vs asynchronous behavior of Hopfield's CAM neural net K.F. Cheung, L.E. Atlas and R.J. Marks II, "Synchronous versus asynchronous behavior of Hopfield's content addressable memory", Applied Optics, vol. 26, pp.4808-4813 (1987). Synchronous vs asynchronous

More information

Recognizing single-peaked preferences on aggregated choice data

Recognizing single-peaked preferences on aggregated choice data Recognizing single-peaked preferences on aggregated choice data Smeulders B. KBI_1427 Recognizing Single-Peaked Preferences on Aggregated Choice Data Smeulders, B. Abstract Single-Peaked preferences play

More information

Design of Plant Layouts with Queueing Effects

Design of Plant Layouts with Queueing Effects Design of Plant Layouts with Queueing Effects Saifallah Benjaafar Department of echanical Engineering University of innesota inneapolis, N 55455 July 10, 1997 Abstract In this paper, we present a formulation

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Omega 38 (2010) Contents lists available at ScienceDirect. Omega. journal homepage:

Omega 38 (2010) Contents lists available at ScienceDirect. Omega. journal homepage: Omega 38 (2010) 3 -- 11 Contents lists available at ScienceDirect Omega journal homepage: www.elsevier.com/locate/omega A single-machine learning effect scheduling problem with release times Wen-Chiung

More information

Matrices and Determinants

Matrices and Determinants Chapter1 Matrices and Determinants 11 INTRODUCTION Matrix means an arrangement or array Matrices (plural of matrix) were introduced by Cayley in 1860 A matrix A is rectangular array of m n numbers (or

More information

CMOS Ising Computer to Help Optimize Social Infrastructure Systems

CMOS Ising Computer to Help Optimize Social Infrastructure Systems FEATURED ARTICLES Taking on Future Social Issues through Open Innovation Information Science for Greater Industrial Efficiency CMOS Ising Computer to Help Optimize Social Infrastructure Systems As the

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Descriptive Data Summarization

Descriptive Data Summarization Descriptive Data Summarization Descriptive data summarization gives the general characteristics of the data and identify the presence of noise or outliers, which is useful for successful data cleaning

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA

BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA Neha Guleria Department of Electronics and Communication Uttarakhand Technical University Dehradun, India Abstract Quantum dot Cellular Automata (QCA)

More information

The tool switching problem revisited

The tool switching problem revisited European Journal of Operational Research 182 (2007) 952 957 Short Communication The tool switching problem revisited Yves Crama a, Linda S. Moonen b, *, Frits C.R. Spieksma b, Ellen Talloen c a HEC Management

More information

Cost models for lot streaming in a multistage flow shop

Cost models for lot streaming in a multistage flow shop Omega 33 2005) 435 450 www.elsevier.com/locate/omega Cost models for lot streaming in a multistage flow shop Huan Neng Chiu, Jen Huei Chang Department of Industrial Management, National Taiwan University

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

On Detecting Multiple Faults in Baseline Interconnection Networks

On Detecting Multiple Faults in Baseline Interconnection Networks On Detecting Multiple Faults in Baseline Interconnection Networks SHUN-SHII LIN 1 AND SHAN-TAI CHEN 2 1 National Taiwan Normal University, Taipei, Taiwan, ROC 2 Chung Cheng Institute of Technology, Tao-Yuan,

More information

Computers and Mathematics with Applications. Project management for arbitrary random durations and cost attributes by applying network approaches

Computers and Mathematics with Applications. Project management for arbitrary random durations and cost attributes by applying network approaches Computers and Mathematics with Applications 56 (2008) 2650 2655 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Project

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

Network Analysis of Fuzzy Bi-serial and Parallel Servers with a Multistage Flow Shop Model

Network Analysis of Fuzzy Bi-serial and Parallel Servers with a Multistage Flow Shop Model 2st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 205 wwwmssanzorgau/modsim205 Network Analysis of Fuzzy Bi-serial and Parallel Servers with a Multistage Flow

More information

Dimensionality of Hierarchical

Dimensionality of Hierarchical Dimensionality of Hierarchical and Proximal Data Structures David J. Krus and Patricia H. Krus Arizona State University The coefficient of correlation is a fairly general measure which subsumes other,

More information

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS M. N. ELLINGHAM AND JUSTIN Z. SCHROEDER In memory of Mike Albertson. Abstract. A distinguishing partition for an action of a group Γ on a set

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

On the Relative Gain Array (RGA) with Singular and Rectangular Matrices

On the Relative Gain Array (RGA) with Singular and Rectangular Matrices On the Relative Gain Array (RGA) with Singular and Rectangular Matrices Jeffrey Uhlmann University of Missouri-Columbia 201 Naka Hall, Columbia, MO 65211 5738842129, uhlmannj@missouriedu arxiv:180510312v2

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information