A New Parallel Numerically improved KIVA3V Program for Diesel Combustion Computations.

Size: px
Start display at page:

Download "A New Parallel Numerically improved KIVA3V Program for Diesel Combustion Computations."

Transcription

1 A New Parallel Numerically improved KIVA3V Program for Diesel Combustion Computations. P.Belardini, C.Bertoli, P.DeMarino, G.Avolio. Istituto Motori National Research Council of Italy. Via Marconi Napoli. Tel Fax E_mail:p.belardini@im.cnr.it INTRODUCTION Due to the computational costs, moreover in presence of high-resolution computational domains, in the last years three-dimensional simulation codes have mostly used simplified combustion chemistry. Handling detailed chemical inetics involves dealing with a very high number of intermediates, whose concentrations are very low but dramatically affecting reaction speeds. Numerical problems become a major issue since the high number of species maes the solution of the chemical equations complicated; the reaction intermediates typically exhibit very high creation and destruction rates, but very low net creation rates; the concentration of the species changes with very much different time scales, adding further stiffness to the problem and thus complicating the choice of the integration time step. The KIVA3V code, an updated extension of previous versions of the same code developed in the 8's, was designed for scalar architecture computers in a period where the main concern of the programmers was to reduce the memory needs as much as possible[1]. This need led to an architecture where the time step, chosen at the beginning of each integration cycle, can't be changed if convergence criteria are not met, neither integrating the Navier-Stoes equations nor in the chemical inetic phase. Therefore the integration method was selected privileging stability (the lagrangian phase, unconditionally stable, but not efficient in term of computational time) over computational cost (the eulerian phase, time efficient, but not always stable), and consequently using partially implicit methods whenever possible. This approach, useful when the convergence criteria may be evaluated a priori, introduces many difficulties when dealing with stiff equations. At the present the availability of parallel architecture computers, moreover at low cost as for the Beowulf architecture, maes it possible both to use of a detailed description of the combustion chemistry attractive and to exploit more advanced computational methods. THE COMBUSTION MODEL The way KIVA3V solves chemical problems was not projected to handle detailed chemical models. Not only is the number of chemical species and chemical equations limited, but in addition no effort is spent to solve the set of the equations simultaneously. Therefore a different, more complex reaction mechanism was introduced. It is based on the Gustavsson and Golovitchev model [2], using 57 chemical species and 29 chemical reactions, reversible in the greater number. It was used to simulate a Common Rail FIAT 1.9 JTD Diesel engine, whose characteristics and whose selected test point is reported in table1: the diesel fuel is setched as n-eptane. Bore 82. [mm] Stroe 9.4 [mm] Displacement [cm 3 ] Compression ratio 17.5:1 Engine speed 15 [rpm] PME 2 [bar] Electro-injector VCO, 6hole,.156mm Table 1

2 The full set of the model equations is reported in [2]. The model is characterized by different n-eptane oxidation mechanisms: they provide the formation of primary and secondary radicals, with fragmentation of the resulting chetons; and on the other hand the termical cracing producing C4 and C3 species. There is no modelling of the aromatic compounds; at present the soot formation model has been removed because it cannot be easily managed by the CHEMKIN library. The KIVA3V code has been integrated with the CHEMKIN-II chemistry solver [3]: the CFD code, responsible for the flow solution, establishes the species and the thermodynamic information; the CHEMKIN solver, responsible for the chemistry, returns chemical reaction rates. In this way the flow and the chemistry calculations have been separated, obtaining a more flexible program and a more logical separation between the program and the thermo inetic data. A conversion lin between the two sections, using respectively species densities and mass fractions, was added, also introducing more controls and filters to deal both with numerically arising negative species concentrations and with inaccuracies of the mass balance. Regarding the inetics, CHEMKIN is able to manage a great number of reactions, considered as elementary steps. The reaction rates may be expressed in the Arrhenius, Troe or Landau-Teller form, which all loos lie: ω = K i K Χ fi = 1 [ X ] ν ' K K Χ fi = 1 [ X ] ν " where X is the -specie molar concentration and ν and ν are the specie reaction order. The chosen form of the reaction rate, Arrhenius, or Troe or Landau-Teller, establishes the form of the K fi coefficients. THE NUMERICAL SOLVERS The differential equations involved in the combustion process have strongly different time scales, and are very stiff. This consideration compelled the original and subsequent versions of the KIVA code to deal with the chemistry in two different sections, solving the fastest equations, treated as though at equilibrium, in a separate module, an approach that reduces the accuracy of the solution. In our version of the code this limit was removed. The full set of equations is simultaneously solved in each computational cell. To handle such a computationally intensive problem, many steps had to be taen. In first place, it was chosen to use the VODE library, developed at the Lawrence Livermore National Laboratory [4] [5]. This is a collection of subroutines that solve systems of ordinary differential equations using a great variety of numerical methods, all sharing a common interface. It was then possible to change the integration method used in every cell and in every time step, adapting the algorithms to the local conditions of the reacting system. VODE uses different families of methods, either the implicit Adams-Moulton method [6] or the BDF (Bacward Differentiation Formulas [7]), more fit to face stiff problems. The algorithms used to solve the systems of algebraic corrector equations range from functional iterations to chords method, with an explicit Jacobian or with a numerically calculated one, full or banded. All the systems of linear equations are solved using direct methods (mainly LU decomposition [8]). If one has a qualitative understanding of the nature of the equations it's also possible to accelerate the convergence of the system letting the solver assume a slowly varying Jacobian matrix. Under that hypothesis which is anyhow periodically verified by VODE -- the number of computations of partial derivatives isn't necessary on every step, drastically reducing the number of evaluations of inetic reaction rates. The huge difference in the chemical reaction and Navier-Stoes time scales also suggested the introduction of segregated integration algorithms. In the classical KIVA3V approach, the time step is the same both for the transport phenomena part and for the solution of chemical inetic equations. We chose to use the overall time step as upper extreme of integration for the chemical equations rather than reducing the overall time step to face the stiffness of the equations. This led to the chemical time step being related to the local conditions found in every cell rather than to the overall average conditions of the reactive system, refining the quality of the computation coherently with the complexity of the physical phenomena taing place in each cell. This choice has been particularly effective: it made it possible to drastically reduce the simulation times, not forcing the program to reduce the time step while it dealt with the parts of the problem which didn't need it. It was in fact found that typically only a few tens of cells out of the many thousands that mae up the grid show a stiffness that would require a drastic reduction of the time step and this method taes advantage of this situation, concentrating computational resources where they are most needed. Another advantage of this method is that it let us bypass one of the most severe limitations of KIVA3V: the monotonic simulation time. As the program can't repeat a non-converging pass under any circumstances, it was absolutely necessary to develop an algorithm that would complete the integration of the chemical equations in any case and using a variable-step sub-integrator ensures that under any circumstances.

3 Regarding the mathematical methods used to integrate the chemical equations in the interval given by the overall KIVA3V time step, we employed an adaptive strategy. At first the cheaper explicit Euler and 4 th order Runge- Kutta methods are attempted. Only if case of failure of both methods to converge an implicit method is used, at first assuming a mainly diagonal Jacobian matrix. This assumption is removed as last resort. This approach let the computational load be even more finely adapted to the complexity of the problem. THE PARALLELIZATION A preliminary study was performed to outline the most time consuming parts of the code. In a computational domain of about 12 cells more than the 95% of the computing time is spent for the chemistry: the time needed for the fluidynamic and thermodynamic parts of the code is therefore negligible, as already outlined by Kong and others [9]. As consequence the parallelization efforts were mainly focused on the chemical subroutines. The KIVA3V code structure made this choice particularly efficient: in fact any cell is considered as a separated CSTR adiabatic reactor, physically and formally independent from the surrounding cells. In such a context, the sharing of the computational domain among the different computing nodes is a critical issue in the load balancing., as the integration algorithm chosen for each cell may differ both in terms of method chosen (Euler, the 4 th Runge-Kutta, BDF methods), and of time sub-step, depending on the stiffness of the equations under the local conditions. Therefore the code modifications were mainly applied to the chemical module. The simulation runs only on the master node until the chemical phase is reached. Then the job is split among all the available nodes. At the end of the chemistry phase, all the data are collected on the master node, where the rest of the computation taes place (fig.1). Standard message passing software (Lam/MPI: standard MPI 1. and 1.1) was employed to control the nodes and to synchronize data among the processors. A few routines were also added to collect statistical information about the numerical choices operated in the cells. At this regard it seems interesting that most of the cells use either very simple methods (explicit Euler, with local time step equal to the global time step) wherever the chemical inetics are slow, or more stable methods (BDF), when forced to by faster inetics. Only a negligible amount of cells uses the Runge-Kutta method successfully. Processor Spray Dynamics Processor 1 Processor n Grid Partitioning Data Transmission Chemical Kinetics Evaluation Chemical Kinetics Evaluation Chemical Kinetics Evaluation Data Receive Transport Phenomena The KIVA3V Parallelization Fig.1 The grid sharing criterion was chosen considering the load balance. Sequential grid partition methods (Fig.2) didn't seem fit, as the structure of the most common grid generators mae the assignment of consecutive cell numbers to geometrically near cells very liely. It would have been therefore much probable that considering the particular combustion conditions of injection engines all the cells where fast inetics would tae place would also be assigned to the same node. This would have made all parallelization efforts useless. A bloc-cyclic distribution system was chosen [1] (fig.3). The reaction volume is thus assigned in a fairer way to the nodes, balancing the computational load much better in the average. The load related to the fluid dynamics was wholly delegated to one node, without any parallelization, given its relative much lesser importance. This strategy was proven to be right: all measurements showed that each of the eight nodes which mae up the Beowulf cluster we used for the simulation had a CPU load oscillating between 9 and 1%. The networing load was found out to be totally irrelevant.

4 Sequential criterion of grid sharing Round-Robin criterion of grid sharing fig.2 fig.3 To evaluate the quality of the performed parallelization, load balance analysis was performed in two different test cases. The results obtained showed uniform distribution of the load balance among the nodes for both test cases (figs 4,5 left): the master node, involved also in the fluid-dynamic part of simulations, is slightly more engaged. In both test cases the time spent for the data exchange among the nodes is short: from.2% to.5% for the master node, in dependence of the test case, and absolutely negligible for the other processors (figs.4,5-right). 1 9 % CPU Time.2.18 % System Time Test case #1 Fig % CPU Time.6.5 % System Time Test case #2 Fig RESULTS The results may be considered in terms of computational time advantages and prediction quality. First to be considered, the time needed to solve the full set of equation was reduced from 72 to 9 hours with the rough contribution of the parallelization. The speed up reaches 6 hours with the further contribution of the numerical integration refinements (fig.6).

5 8 72 Full, scalar set of equation Computing Time [h] Full, set of equation, parallely solved 9 6 Full, set of equation, parallely solved, with numerical solver improvement KIVA3V improved version speed up Fig.6 Fig.7 shows the correspondence between the simulation and the experimental tests: the coincidence between the predicted ignition angle and the measured one proves the correct tuning of the inetics, while the agreement of the predicted and measured pressure after the combustion too place (around +2 degrees ATDC) confirms the quality of the thermodynamic data describing the species. The disagreement between the maximum measured pressure and the predicted pressure, even though less than 1% in absolute value, deserves a more detailed analysis, as it shows an overestimate of the chemical inetics in the high temperature phases. This overestimate is surely at least in part due to the choice to use no model of interaction between turbulence and chemical inetics in the program at the moment: as consequence the assumption of perfect mixing in the cells surely raises the estimated reaction rates in highly turbulent zones. A model of turbulent combustion is anyway in phase of development. Numerical, experimental comparison Fig.7 CONCLUSIONS The computational efficiency of the KIVA3V code was significatively improved with the use of parallel techniques joint with the adaptative choice of the integration method, selected cell by cell as the fastest, but the most accurate. The gain obtained in term of computational time may therefore be spent to use more detailed inetics, expressed not only in the Arrhenius form, and able to model in whole the low and the high temperature oxidation process, as necessary for the new generation of combustion engines. The chemical combustion model, no more included in the CFD code, permits to easily change the chemistry using and testing more and more sophisticated inetics. The inetics part of the program is conceptually separated from the numerical solvers: therefore it is possible to separately evaluate the quality of the inetics and the quality of the numerical solutions.

6 The code was enriched with the capability to reduce the local time step for cells having stronger inetics, introducing in the same more efficient controls of the species mass balance, and increasing the robustness of the computation in term of stability. In the next it is necessary to tune and test the inetic model on a good experimental basis, also introducing a mechanism of handling of the non-gaseous phases which is necessary to model soot formation. Moreover coupling of turbulence with combustion has been developing. REFERENCES [1] Amsden, A.A., O Roure, P.J, Butler, T.D., KIVA3V-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory Report No. LA-1156-MS, 1989 [2] Gustavsson, J., Golovitchev, V.I., Spray Combustion Simulation Based on Detailed Chemistry Approach for Diesel Fuel Surrogate Model, SAE Paper , (23) [3] Kee, R.J., Rupley, F.M., Miller, J.A., Chemin-II: A Fortran Chemical Kinetics Pacage for the Analysis of Gas Phase Chemical Kinetics, Sandia Report SAND89-89B, 1991 [4] Brown,P.N., Byrne,G.D., Hindmarsh, A.C., VODE: A Variable Coefficient ODE Solver, SIAM J. Sci. Stat. Comput., 1 (1989), pp [5] Byrne, G.D., Hindmarsh, A.C., A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations, ACM Trans. Math. Software, 1 (1975), pp [6] Sampine,L.F., Gordon, M.K., Computer Solution of Ordinary Differential Equations: the Initial Value Problem, Freeman, 1975 [7] Hairer, E., Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, 1991 [8] Press,W.H., Teuolsy,S.A., Vetterling,W.T., Flannery, B.P., Numerical Recipes in C, Cambridge University Press, 1992 [9] Amr Ali, Cazzoli, G., Kong, S.C., Reitz, R.R., Mongomery, C., Improvement in Computational Efficiency for HCCI Engine Modelling by Using Reduced Mechanisms and Parallel Computing, Central State Section Meeting 23 [1] Kee, R.J., Miller, J.A., Jefferson, T.H., A Structured Approach to the Computational Modeling of Chemical Kinetics and Molecular Transport in Flowing Systems, Springer Series in Chemical Physics 47, 196 (also nown as Sandia National Laboratories Report, SAND8-83), 1986

Journal of Computational and Applied Mathematics. A distributed combustion solver for engine simulations on grids

Journal of Computational and Applied Mathematics. A distributed combustion solver for engine simulations on grids Journal of Computational and Applied Mathematics 226 (2009) 197 204 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

A comparison of the Bader Deuflhard and the Cash Karp Runge Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus

A comparison of the Bader Deuflhard and the Cash Karp Runge Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus 1368 A comparison of the Bader Deuflhard and the Cash Karp Runge Kutta integrators for the GRI-MECH 3.0 model based on the chemical inetics code Kintecus James C. Ianni Vast Technologies Development, Inc.,

More information

A Distributed Combustion Solver for Engine Simulations on Grids

A Distributed Combustion Solver for Engine Simulations on Grids Consiglio Nazionale delle Ricerche Istituto di Calcolo e Reti ad Alte Prestazioni A Distributed Combustion Solver for Engine Simulations on Grids L. Antonelli P. Belardini P. D'Ambra F. Gregoretti G. Oliva

More information

Overview of Turbulent Reacting Flows

Overview of Turbulent Reacting Flows Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Ever-Expanding

More information

Transported PDF Calculations of Combustion in Compression- Ignition Engines

Transported PDF Calculations of Combustion in Compression- Ignition Engines International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI 15 April 2013 Transported PDF Calculations of Combustion in Compression- Ignition Engines V. Raj Mohan

More information

Validation of a sparse analytical Jacobian chemistry solver for heavyduty diesel engine simulations with comprehensive reaction mechanisms

Validation of a sparse analytical Jacobian chemistry solver for heavyduty diesel engine simulations with comprehensive reaction mechanisms 212-1-1974 Validation of a sparse analytical Jacobian chemistry solver for heavyduty diesel engine simulations with comprehensive reaction mechanisms Federico Perini 1,2, G. Cantore 1, E. Galligani 1,

More information

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Christopher P. Stone, Ph.D. Computational Science and Engineering, LLC Kyle Niemeyer, Ph.D. Oregon State University 2 Outline

More information

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures Supplemental material for paper published in the International J of Hydrogen Energy, Vol. 30, 6044-6060, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.182 Application of a Laser Induced Fluorescence

More information

Reacting Flow Modeling in STAR-CCM+ Rajesh Rawat

Reacting Flow Modeling in STAR-CCM+ Rajesh Rawat Reacting Flow Modeling in STAR-CCM+ Rajesh Rawat Latest Additions (v 7.02/v 7.04) Eulerian Multi-phase Reaction Model Soot Model Moment Methods PPDF Flamelet Multi-stream model Complex Chemistry Model

More information

Simulation of soot formation and analysis of the "Advanced soot model" parameters in an internal combustion engine

Simulation of soot formation and analysis of the Advanced soot model parameters in an internal combustion engine Simulation of soot formation and analysis of the "Advanced soot model" parameters in an internal combustion engine Marko Ban, dipl. ing.* Power Engineering Department Faculty of Mechanical Engineering

More information

The Combination of Detailed Kinetics and CFD in Automotive Applications

The Combination of Detailed Kinetics and CFD in Automotive Applications The Combination of Detailed Kinetics and CFD in Automotive Applications J. M. Deur and S. Jonnavithula Analysis and Design Application Co., Ltd. Melville, New York E. Meeks Reaction Design San Diego, California

More information

Improvement in Computational Efficiency for HCCI Engine Modeling by Using Reduced Mechanisms and Parallel Computing

Improvement in Computational Efficiency for HCCI Engine Modeling by Using Reduced Mechanisms and Parallel Computing Improvement in Computational Efficiency for HCCI Engine Modeling by Using Reduced Mechanisms and arallel Computing Amr Ali *, Giulio Cazzoli, Song-Charng Kong, Rolf D. Reitz Engine Research Center, University

More information

Practical Combustion Kinetics with CUDA

Practical Combustion Kinetics with CUDA Funded by: U.S. Department of Energy Vehicle Technologies Program Program Manager: Gurpreet Singh & Leo Breton Practical Combustion Kinetics with CUDA GPU Technology Conference March 20, 2015 Russell Whitesides

More information

DARS Digital Analysis of Reactive Systems

DARS Digital Analysis of Reactive Systems DARS Digital Analysis of Reactive Systems Introduction DARS is a complex chemical reaction analysis system, developed by DigAnaRS. Our latest version, DARS V2.0, was released in September 2008 and new

More information

Towards Accommodating Comprehensive Chemical Reaction Mechanisms in Practical Internal Combustion Engine Simulations

Towards Accommodating Comprehensive Chemical Reaction Mechanisms in Practical Internal Combustion Engine Simulations Paper # 0701C-0326 Topic: Internal Combustion and gas turbine engines 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

Overview of Reacting Flow

Overview of Reacting Flow Overview of Reacting Flow Outline Various Applications Overview of available reacting flow models Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Chemical Process Industry

More information

Numerical Approach for Solving Stiff Differential Equations A Comparative Study

Numerical Approach for Solving Stiff Differential Equations A Comparative Study Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 13 Issue 6 Version 1.0 Year Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

TRAJECTORY BASED DROPLET COLLISION MODEL FOR SPRAY MODELING

TRAJECTORY BASED DROPLET COLLISION MODEL FOR SPRAY MODELING TRAJECTORY BASED DROPLET COLLISION MODEL FOR SPRAY MODELING Ö. O. TAŞKIRAN a,* and M. ERGENEMAN b a Domestic Research Division, Inventory Control Center, Golcuk, Kocaeli b Automotive Division, Faculty

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Numerical Integration of Equations of Motion

Numerical Integration of Equations of Motion GraSMech course 2009-2010 Computer-aided analysis of rigid and flexible multibody systems Numerical Integration of Equations of Motion Prof. Olivier Verlinden (FPMs) Olivier.Verlinden@fpms.ac.be Prof.

More information

Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion

Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion 29 International Multidimensional Engine Modeling Users Group Meeting Detroit, MI, 19 April 29 Abstract Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion H. Zhang, G.K.

More information

Advanced Turbulence Models for Emission Modeling in Gas Combustion

Advanced Turbulence Models for Emission Modeling in Gas Combustion 1 Advanced Turbulence Models for Emission Modeling in Gas Combustion Ville Tossavainen, Satu Palonen & Antti Oksanen Tampere University of Technology Funding: Tekes, Metso Power Oy, Andritz Oy, Vattenfall

More information

Efficient Engine CFD with Detailed Chemistry

Efficient Engine CFD with Detailed Chemistry www.cd-adapco.com Efficient Engine CFD with Detailed Chemistry Harry Lehtiniemi and Rajesh Rawat CD-adapco Karin Fröjd and Fabian Mauss Digital Analysis of Reaction Systems Challenges in CFD engine modeling

More information

Parallel Methods for ODEs

Parallel Methods for ODEs Parallel Methods for ODEs Levels of parallelism There are a number of levels of parallelism that are possible within a program to numerically solve ODEs. An obvious place to start is with manual code restructuring

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

consideration, is indispensable. Due to the great number of restarts, one for each split-step time interval, it is particularly important to use integ

consideration, is indispensable. Due to the great number of restarts, one for each split-step time interval, it is particularly important to use integ Gauss-Seidel Iteration for Sti ODEs from Chemical Kinetics J.G. Verwer CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Abstract A simple Gauss-Seidel technique is proposed which exploits the special

More information

Chapter 9 Implicit integration, incompressible flows

Chapter 9 Implicit integration, incompressible flows Chapter 9 Implicit integration, incompressible flows The methods we discussed so far work well for problems of hydrodynamics in which the flow speeds of interest are not orders of magnitude smaller than

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Effective Use of Storage/Retrieval-Based Chemistry Acceleration in CFD

Effective Use of Storage/Retrieval-Based Chemistry Acceleration in CFD 2006 International Multidimensional Engine Modeling Users Group Meeting, Detroit, MI, 2 April 2006 Effective Use of Storage/Retrieval-Based Chemistry Acceleration in CFD Y. Wu 1, I. Veljkovic 2 and D.C.

More information

OpenSMOKE: NUMERICAL MODELING OF REACTING SYSTEMS WITH DETAILED KINETIC MECHANISMS

OpenSMOKE: NUMERICAL MODELING OF REACTING SYSTEMS WITH DETAILED KINETIC MECHANISMS OpenSMOKE: NUMERICAL MODELING OF REACTING SYSTEMS WITH DETAILED KINETIC MECHANISMS A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi alberto.cuoci@polimi.it Department of Chemistry, Materials, and Chemical

More information

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Outline Motivation Multipole Expansions Tree Algorithms Periodic Boundaries Time integration Gravitational Softening SPH Parallel

More information

Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion

Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion Worshop on Numerical Aspects of Reduction in Chemical Kinetics CERMICS-ENPC Cite Descartes - Champus sur Marne, France, September 2nd, 1997 Abstract Development of Reduced Mechanisms for Numerical Modelling

More information

Manual for the Use of Soot Subroutines in Chemical Kinetics Applications

Manual for the Use of Soot Subroutines in Chemical Kinetics Applications Manual for the Use of Soot Subroutines in Chemical Kinetics Applications In a typical chemical inetics code, species conservation is described by a set of nonlinear differential equations Y t = f Y Y,

More information

High-dimensional, unsupervised cell clustering for computationally efficient engine simulations with detailed combustion chemistry

High-dimensional, unsupervised cell clustering for computationally efficient engine simulations with detailed combustion chemistry High-dimensional, unsupervised cell clustering for computationally efficient engine simulations with detailed combustion chemistry Federico Perini 1,a a Dipartimento di Ingegneria Meccanica e Civile, Università

More information

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel?

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel? CRYSTAL in parallel: replicated and distributed (MPP) data Roberto Orlando Dipartimento di Chimica Università di Torino Via Pietro Giuria 5, 10125 Torino (Italy) roberto.orlando@unito.it 1 Why parallel?

More information

EMISSION PREDICTIONS IN DIESEL ENGINES USING A NON-EQUILIBRIUM TURBULENCE DISSIPATION CORRECTION FOR THE k-ε MODEL

EMISSION PREDICTIONS IN DIESEL ENGINES USING A NON-EQUILIBRIUM TURBULENCE DISSIPATION CORRECTION FOR THE k-ε MODEL Twelfth International Multidimensional Engine Modeling Meeting at the SAE Congress March 3, 2002, Detroit, Michigan EMISSION PREDICTIONS IN DIESEL ENGINES USING A NON-EQUILIBRIUM TURBULENCE DISSIPATION

More information

Calculate Sensitivity Function Using Parallel Algorithm

Calculate Sensitivity Function Using Parallel Algorithm Journal of Computer Science 4 (): 928-933, 28 ISSN 549-3636 28 Science Publications Calculate Sensitivity Function Using Parallel Algorithm Hamed Al Rjoub Irbid National University, Irbid, Jordan Abstract:

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida To: From: Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114-3900 Gianluca Puliti, Research Assistant - Aerospace and Mechanical Engineering University

More information

Comparison of a fully coupled and a decoupled solver for the simulation of Fluid Catalytic Cracking Background Fully coupled solver

Comparison of a fully coupled and a decoupled solver for the simulation of Fluid Catalytic Cracking Background Fully coupled solver Comparison of a fully coupled and a decoupled solver for the simulation of Fluid Catalytic Cracking Paper number 341c Edward Baudrez, 1 Juray De Wilde, 2 Geraldine Heynderickx 1, and Guy B. Marin 1 1.

More information

Detailed Chemical Kinetics in Multidimensional CFD Using Storage/Retrieval Algorithms

Detailed Chemical Kinetics in Multidimensional CFD Using Storage/Retrieval Algorithms 13 th International Multidimensional Engine Modeling User's Group Meeting, Detroit, MI (2 March 23) Detailed Chemical Kinetics in Multidimensional CFD Using Storage/Retrieval Algorithms D.C. Haworth, L.

More information

An initialization subroutine for DAEs solvers: DAEIS

An initialization subroutine for DAEs solvers: DAEIS Computers and Chemical Engineering 25 (2001) 301 311 www.elsevier.com/locate/compchemeng An initialization subroutine for DAEs solvers: DAEIS B. Wu, R.E. White * Department of Chemical Engineering, Uniersity

More information

University of Texas-Austin - Integration of Computing

University of Texas-Austin - Integration of Computing University of Texas-Austin - Integration of Computing During 2001-2002 the Department of Chemical Engineering at UT-Austin revamped the computing thread in its curriculum in order to strengthen student

More information

A G-equation Combustion Model Incorporating Detailed Chemical Kinetics for PFI/DI SI Engine Simulations

A G-equation Combustion Model Incorporating Detailed Chemical Kinetics for PFI/DI SI Engine Simulations Sixteenth International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress, April 2, 2006, Detroit, Michigan A G-equation Combustion Model Incorporating Detailed Chemical Kinetics

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE Rafael ÅMAN*, Heikki HANDROOS*, Pasi KORKEALAAKSO** and Asko ROUVINEN** * Laboratory

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

The Seeding of Methane Oxidation

The Seeding of Methane Oxidation The Seeding of Methane Oxidation M. B. DAVIS and L. D. SCHMIDT* Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA Mixtures of light alkanes and

More information

Optimizing Time Integration of Chemical-Kinetic Networks for Speed and Accuracy

Optimizing Time Integration of Chemical-Kinetic Networks for Speed and Accuracy Paper # 070RK-0363 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

Adaptive Time Space Discretization for Combustion Problems

Adaptive Time Space Discretization for Combustion Problems Konrad-Zuse-Zentrum fu r Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany JENS LANG 1,BODO ERDMANN,RAINER ROITZSCH Adaptive Time Space Discretization for Combustion Problems 1 Talk

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information

Betatron Matching and Dispersion Matching

Betatron Matching and Dispersion Matching Betatron Matching and Dispersion Matching K. Hanke, CERN, Geneva, Switzerland Abstract The TT2-TT10 transfer line optics has been modeled and optimized in order to minimize blow-up at injection into the

More information

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF

TAU Extensions for High Enthalpy Flows. Sebastian Karl AS-RF TAU Extensions for High Enthalpy Flows Sebastian Karl AS-RF Contents Motivation Extensions available in the current release: Numerical schemes for super- and hypersonic flow fields Models for gas mixtures,

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting Applied Mathematical Sciences, Vol. 12, 2018, no. 2, 93-103 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.711340 Investigation on the Most Efficient Ways to Solve the Implicit Equations

More information

A Finite-Element based Navier-Stokes Solver for LES

A Finite-Element based Navier-Stokes Solver for LES A Finite-Element based Navier-Stokes Solver for LES W. Wienken a, J. Stiller b and U. Fladrich c. a Technische Universität Dresden, Institute of Fluid Mechanics (ISM) b Technische Universität Dresden,

More information

Compressed Air Discharge from a Blowing Unit

Compressed Air Discharge from a Blowing Unit The Open Mechanical Engineering Journal, 9, 3, 1-8 1 Compressed Air Discharge from a Blowing Unit Open Access G.L. Antinori and M. Spiga * Department of Industrial Engineering, University of Parma, Italy

More information

Vignolese 905/A, Modena, Italy

Vignolese 905/A, Modena, Italy 1 2 3 4 5 6 7 8 9 A study of direct and Krylov iterative sparse solver techniques to approach linear scaling of the integration of Chemical Kinetics with detailed combustion mechanisms Federico Perini

More information

CFD modeling of combustion

CFD modeling of combustion 2018-10 CFD modeling of combustion Rixin Yu rixin.yu@energy.lth.se 1 Lecture 8 CFD modeling of combustion 8.a Basic combustion concepts 8.b Governing equations for reacting flow Reference books An introduction

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

C. Vuik 1 S. van Veldhuizen 1 C.R. Kleijn 2

C. Vuik 1 S. van Veldhuizen 1 C.R. Kleijn 2 s: application to chemical vapor deposition C. Vuik 1 S. van Veldhuizen 1 C.R. Kleijn 2 1 Delft University of Technology J.M. Burgerscentrum 2 Delft University of Technology Department of Multi Scale Physics

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

On interval predictor-corrector methods

On interval predictor-corrector methods DOI 10.1007/s11075-016-0220-x ORIGINAL PAPER On interval predictor-corrector methods Andrzej Marcinia 1,2 Malgorzata A. Janowsa 3 Tomasz Hoffmann 4 Received: 26 March 2016 / Accepted: 3 October 2016 The

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Excerpt from the Proceedings of the COMSOL Conference 8 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan *,, Hamid Mehdizadeh

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

Spectral Methods for Reaction Diffusion Systems

Spectral Methods for Reaction Diffusion Systems WDS'13 Proceedings of Contributed Papers, Part I, 97 101, 2013. ISBN 978-80-7378-250-4 MATFYZPRESS Spectral Methods for Reaction Diffusion Systems V. Rybář Institute of Mathematics of the Academy of Sciences

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

A multi-solver quasi-newton method for the partitioned simulation of fluid-structure interaction

A multi-solver quasi-newton method for the partitioned simulation of fluid-structure interaction A multi-solver quasi-newton method for the partitioned simulation of fluid-structure interaction J Degroote, S Annerel and J Vierendeels Department of Flow, Heat and Combustion Mechanics, Ghent University,

More information

CHEMKIN 4.1 vs. Chemkin II By Reaction Design 6440 Lusk Blvd, Suite D205 San Diego, CA 92121 Phone: 858-550-1920 www.reactiondesign.com The Maturing of CHEMKIN In a world where everyone needs to maximize

More information

Prediction of CO Burnout using a CHEMKIN based Network Tool

Prediction of CO Burnout using a CHEMKIN based Network Tool Prediction of CO Burnout using a CHEMKIN based Network Tool Engler-Bunte-Institut / Bereich Verbrennungstechnik Universität Karlsruhe Contents Complex reaction schemes vs. complex transport models. Complex

More information

HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS

HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS G. Saccone*, P. Natale*, F. Battista* g.saccone@cira.it p.natale@cira.it f.battista@cira.it *CIRA Italian Aerospace Research Centre, Capua Italy,

More information

Current progress in DARS model development for CFD

Current progress in DARS model development for CFD Current progress in DARS model development for CFD Harry Lehtiniemi STAR Global Conference 2012 Netherlands 20 March 2012 Application areas Automotive DICI SI PPC Fuel industry Conventional fuels Natural

More information

ORBIT 14 The propagator. A. Milani et al. Dipmat, Pisa, Italy

ORBIT 14 The propagator. A. Milani et al. Dipmat, Pisa, Italy ORBIT 14 The propagator A. Milani et al. Dipmat, Pisa, Italy Orbit 14 Propagator manual 1 Contents 1 Propagator - Interpolator 2 1.1 Propagation and interpolation............................ 2 1.1.1 Introduction..................................

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

The Chemical Kinetics Time Step a detailed lecture. Andrew Conley ACOM Division

The Chemical Kinetics Time Step a detailed lecture. Andrew Conley ACOM Division The Chemical Kinetics Time Step a detailed lecture Andrew Conley ACOM Division Simulation Time Step Deep convection Shallow convection Stratiform tend (sedimentation, detrain, cloud fraction, microphysics)

More information

Which CHEMKIN is Right for You? Reaction Design

Which CHEMKIN is Right for You? Reaction Design Which CHEMKIN is Right for You? Reaction Design 6440 Lusk Blvd, Suite D205 Phone: 858-550-1920 San Diego, CA 92121 www.reactiondesign.com Modernization of CHEMKIN In a world where everyone needs to maximize

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

Direct Numerical Simulation of Nonpremixed Flame Extinction by Water Spray

Direct Numerical Simulation of Nonpremixed Flame Extinction by Water Spray 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-218 Direct Numerical Simulation of Nonpremixed Flame Extinction

More information

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

More information

A Fifth Order Flux Implicit WENO Method

A Fifth Order Flux Implicit WENO Method A Fifth Order Flux Implicit WENO Method Sigal Gottlieb and Julia S. Mullen and Steven J. Ruuth April 3, 25 Keywords: implicit, weighted essentially non-oscillatory, time-discretizations. Abstract The weighted

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD Andrzej Skrzat, Rzeszow University of Technology, Powst. Warszawy 8, Rzeszow, Poland Abstract: User-defined material models which can be used

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

CH 4 /NO x Reduced Mechanisms Used for Modeling Premixed Combustion

CH 4 /NO x Reduced Mechanisms Used for Modeling Premixed Combustion Energy and Power Engineering, 2012, 4, 264-273 http://dx.doi.org/10.4236/epe.2012.44036 Published Online July 2012 (http://www.scirp.org/journal/epe) CH 4 /NO x Reduced Mechanisms Used for Modeling Premixed

More information

IMPLEMENTATION OF REDUCED MECHANISM IN COMPLEX CHEMICALLY REACTING FLOWS JATHAVEDA MAKTAL. Submitted in partial fulfillment of the requirements

IMPLEMENTATION OF REDUCED MECHANISM IN COMPLEX CHEMICALLY REACTING FLOWS JATHAVEDA MAKTAL. Submitted in partial fulfillment of the requirements IMPLEMENTATION OF REDUCED MECHANISM IN COMPLEX CHEMICALLY REACTING FLOWS by JATHAVEDA MAKTAL Submitted in partial fulfillment of the requirements For the degree of Master of Science in Aerospace Engineering

More information

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow.

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow. Physical processes by characteristic timescale Diffusive timescale t diff ~ L2 D largest Sound crossing timescale t sound ~ L a Flow timescale t flow ~ L u Free fall timescale Cooling timescale Reaction

More information

CFD and Kinetic Analysis of Bluff Body Stabilized Flame

CFD and Kinetic Analysis of Bluff Body Stabilized Flame CFD and Kinetic Analysis of Bluff Body Stabilized ame A. Dicorato, E. Covelli, A. Frassoldati, T. Faravelli, E. Ranzi Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, ITALY

More information

Updating CRE: Implementing microkinetics Prof. Paolo Canu University of Padova - Italy

Updating CRE: Implementing microkinetics Prof. Paolo Canu University of Padova - Italy Updating CRE: Implementing microkinetics Prof. Paolo Canu University of Padova - Italy Computer-Aided Chemical Reaction Engineering Course Graduate School in Chemical Engineering (GSCE) Åbo Akademi - POKE

More information

Parallelism in Structured Newton Computations

Parallelism in Structured Newton Computations Parallelism in Structured Newton Computations Thomas F Coleman and Wei u Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1 E-mail: tfcoleman@uwaterlooca

More information

On the Effect of Variable Opening Geometries, and Operating Conditions on High Pressure Hydrogen Releases: Ignition Risks

On the Effect of Variable Opening Geometries, and Operating Conditions on High Pressure Hydrogen Releases: Ignition Risks On the Effect of Variable Opening Geometries, and Operating Conditions on High Pressure Hydrogen Releases: Ignition Risks Wissam Nakhle A Thesis in the Department of Mechanical and Industrial Engineering

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03024-7 An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Michel Lesoinne

More information

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms Department of Chemistry, Materials, and Chemical Engineering G. Natta Politecnico di Milano (Italy) A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi Numerical Modeling of Laminar, Reactive Flows with

More information

A Numerically Stable Method for Integration of the Multicomponent Species Diffusion Equations

A Numerically Stable Method for Integration of the Multicomponent Species Diffusion Equations Journal of Computational Physics 174, 460 472 (2001) doi:101006/jcph20016930, available online at http://wwwidealibrarycom on A Numerically Stable Method for Integration of the Multicomponent Species Diffusion

More information

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients AM 205: lecture 13 Last time: ODE convergence and stability, Runge Kutta methods Today: the Butcher tableau, multi-step methods, boundary value problems Butcher tableau Can summarize an s + 1 stage Runge

More information

Numerical Modeling of Anode Baking Process with COMSOL Multiphysics

Numerical Modeling of Anode Baking Process with COMSOL Multiphysics Numerical Modeling of Anode Baking Process with COMSOL Multiphysics P. Nakate 1,2, W. Voogd de 3, D.J.P. Lahaye 1, C. Vuik 1, M. Talice 4 1. Department of applied mathematics, Delft University of technology,

More information