The Flory-Huggins Theory of Polymer Solutions. Purdue University Biomedical Engineering. Professors Kinam Park & Luis Solorio

Size: px
Start display at page:

Download "The Flory-Huggins Theory of Polymer Solutions. Purdue University Biomedical Engineering. Professors Kinam Park & Luis Solorio"

Transcription

1 The Flory-Huggins Theory of Polymer Solutions Purdue University Biomedical Engineering Professors Kinam Park & Luis Solorio

2 Thermodynamics of Ideal Solutions G m G Mixture_ A&B G A G B G H TS G m H m TS m Ideal Solution: Mixture of moleules that are identical in. size. energy of like and unlike molecular interactions are equal Results in athermal mixing, or ΔH m =0 G m TS m Solutions are homogenous mixtures of two or more components on the molecular scale G 0 for spontaneous events, Gibbs free energy is related to enthalpy and entropy Driven towards creating the greatest chaotic dispersal Gasses don t spontaneously contract How does athermal mixing affect rotation, vibrational, and translation of molecules in the system?

3 Boltzmann s Equation S k ln S comb m k ln ideal _ mix solvent solute S comb m k ln ideal _ mix ln solvent ln solute solvent solute S m comb k ln ideal _ mix Solvent Lattice Solute From statistical mechanics S=entropy Ω=number of distinguishable equal energy states k=boltzmann constant Identical pure substances have only spatial arrangement

4 Ideal Liquids Sterling's approximation: ln!=ln- (for significantly large) S comb m k ln! kln!!!!! S comb m k ln ln Latice_ size Solvent Solute ideal _ mix!!! A ( ) and n i = i S comb m kn ln X n ln X k R A S m comb Rn ln X n ln X G m TdS RT n ln X n ln X

5 Ideal Gasses G H TS 0 dg dh SdT TdS dsdt H U PV 0 dh du PdV VdP dvdp dg du PdV VdP SdT TdS du TdS PdV dg TdS TdS PdV PdV VdP SdT dg VdP SdT At Constant Temperature dg=vdp Δ Δ dg V nrt P dg nrt VdP P P G nrt ln P P G molar RT ln P P dp P

6 Raoult s Law G m TdS RT n ln X n ln X Look at a single component system: G RTn ln X G n P,T G n G molar G molar RT ln X i i 0 RT ln X i G molar RT ln P P Raoult s Law X i P i P 0 Raoult s law is used to define an ideal solution It is used to identify how solutes affect factors such as changes in boiling temperature, freezing temperature, or to calculate the osmotic pressure It can also be used to determine how the solute is affecting the vapor pressure of the solvent above the solution Could these equations be used to accurately describe a polymer system?

7 Paul J. Flory, Ph.D. The obel Prize in Chemistry Born on 9 June, 90, in Sterling, Illinois. B.S. Manchester College in Indiana, 93. Ph.D. Physical Chemistry, Ohio State University, 934. I joined the Central Research Department of the DuPont Company. There it was my good fortune to be assigned to the small group headed by Dr. Wallace H. Carothers, inventor of nylon and neoprene, and a scientist of extraordinary breadth and originality. It was through the association with him that I first became interested in exploration of the fundamentals of polymerization and polymeric substances. His conviction that polymers are valid objects of scientific inquiry proved contagious. The time was propitious, for the hypothesis that polymers are in fact covalently linked macromolecules had been established by the works of Staudinger and of Carothers only a few years earlier. A year after the untimely death of Carothers, in 937, I joined the Basic Science Research Laboratory of the University of Cincinnati for a period of two years. With the outbreak of World War II and the urgency of research and development on synthetic rubber, supply of which was imperiled, I returned to industry, first at the Esso (now Exxon) Laboratories of the Standard Oil Development Company (940-43) and later at the Research Laboratory of the Goodyear Tire and Rubber Company (943-48). Provision of opportunities for continuation of basic research by these two industrial laboratories to the limit that the severe pressures of the times would allow, and their liberal policies on publication, permitted continuation of the beginnings of a scientific career which might otherwise have been stifled by the exigencies of those difficult years.

8 Paul J. Flory, Ph.D. The obel Prize in Chemistry 974 In the Spring of 948 it was my privilege to hold the George Fisher Baker on-resident Lectureship in Chemistry at Cornell University. The invitation on behalf of the Department of Chemistry had been tendered by the late Professor Peter J.W. Debye, then Chairman of that Department. The experience of this lectureship and the stimulating asociations with the Cornell faculty led me to accept, without hesitation, their offer of a professorship commencing in the Autumn of 948. There followed a most productive and satisfying period of research and teaching "Principles of Polymer Chemistry," published by the Cornell University Press in 953, was an outgrowth of the Baker Lectures It was during the Baker Lectureship that I perceived a way to treat the effect of excluded volume on the configuration of polymer chains. I had long suspected that the effect would be non-asymptotic with the length of the chain; that is, that the perturbation of the configuration by the exclusion of one segment of the chain from the space occupied by another would increase without limit as the chain is lengthened. The treatment of the effect by resort to a relatively simple "smoothed density" model confirmed this expectation and provided an expression relating the perturbation of the configuration to the chain length and the effective volume of a chain segment. It became apparent that the physical properties of dilute solutions of macromolecules could not be properly treated and comprehended without taking account of the perturbation of the macromolecule by these intramolecular interactions. Out of these developments came the formulation of the hydrodynamic constant called theta, and the recognition of the Theta point at which excluded volume interactions are neutralized. Criteria for experimental identification of the Theta point are easily applied. Ideal behavior of polymers, natural and synthetic, under Theta conditions has subsequently received abundant confirmation in many laboratories. These findings are most gratifying. More importantly, they provide the essential basis for rational interpretation of physical measurements on dilute polymer solutions, and hence for the quantitative characterization of macromolecules.

9 Polymer Solution. Flory-Huggins Mean Field Theory S k ln Polymer ideal _ mixture Solvent S comb m k ln ideal _ mixture Polymer Solvent S comb m k ln ideal _ mixture Polymer Solvent Lattice Solute Spatial arrangement of polymers is increased due to the different chain segment conformations 0 = + x 0 : number of lattice positions : number of solvent molecules : number of polymer molecules x : ratio of molecular volumes of solvent and polymer(~number of mers)

10 Polymer Solution. Flory-Huggins Mean Field Theory Mean field approximation: Effect of the other individuals on any single individual is approximated by a single average effect ideal _ mixture Continuous product of ν, i ν=possible conformations of the polymer! i in the lattice /! accounts for identical indistinguishable conformations (over counting) Solvent Lattice Each polymer molecule occupies x lattices, and i polymer molecules have already been placed in the lattice. 0 -x i : The number of vacant positions: f i : The fraction occupied by i molecules ( - f i ) : The fraction of remaining vacant positions z. ( - f i ) : The number of ways arranging the next segment Repeating unit (z-). ( - f i ) : The number of ways arranging the third (and all z neighboring lattice sites the remaining) segment (Z-)(-f i ) : The number of ways arranging the (i+)th polymer molecule ( o xi) Z( f )( )( )( )( ) i z fi Z fi i st segment nd segment 3rd segment 4th segment... f i 0 xi z(z ) x- (z-) x- 0

11 Polymer Solution. Flory-Huggins Mean Field Theory 0 0 x x i Z xi V The Stirling approximation 0 0 0!! x i Z i x xi V V i+ : The number of configurations of just one polymer molecule in the lattice : The number of ways to place the indistinguishable polymer molecules 0!! i i i i V V !!!!!! x x Z Z x There are many fewer configurations possible for the polymer solutions compared to small-molecule solutions. ideal _ mixture z (x) Polymer x e x Polymer Solvent solvent x Polymer Polymer Total conformations of the polymer molecules with complete freedom in the lattice Conformations when polymer molecules are competing for cells in a pure amorphous polymer The number of conformations of the polymer in a solvent Ω polymer is provided by the first two factors

12 Polymer Solution. Flory-Huggins Mean Field Theory The configurational entropy represents the entropy of mixing of the perfectly ordered pure solid polymer, for which S = 0, with pure solvent. S c k ln ln x x e Z x ln S c = S dis + S mix Disordering & dissolution of a polymer. Formation of an amorphous polymer (disorientation) S dis. Dissolution of the amorphous polymer in the solvent S mix Z Sdis lim Sc k ln x x ln Smix 0 e k ln x x ln x x

13 Polymer Solution. Flory-Huggins Mean Field Theory Assume x V V S mix R n ln n ln Polymer molecules S mix R n lnx n ln X Small molecules n : number of moles ϕ : volume fraction G=H-TS This provides the entropy and is sufficient for the cases when no enthalpy occurs However that is an unrealistic assumption with polymers

14 Polymer Solution. Flory-Huggins Mean Field Theory Mixing Enthalpy: Interaction energy between solvent molecules and solute segments,,, w, w, w w H mix RT n The energy change (in units of RT) that occurs when a mole of solvent molecules is removed from the pure solvent (where ϕ = 0) and is immersed in an infinite amount of pure polymer (where ϕ = 0). H mix < 0 : Exothermal H mix = 0 : Athermal H mix > 0 : Endothermal χ = z w /RT : Interaction parameter

15 Polymer Solution. Flory-Huggins Mean Field Theory G mix G mix RT 0 n n ln n ln n n ln n ln Polymer dissolves in solvent Polymer does not dissolve in solvent ϕ and ϕ are always lower than. Thus, lnϕ and lnϕ have always negative value. For complete miscibility over all concentrations, for the solute-solvent pair at the temperature (T) of interest must be less than 0.5. If > 0.5, then G mix > 0 and phase separation occurs If < 0.5, then G mix < 0 over the whole composition range. The temperature at which = 0.5 is the θ temperature. o G n o mix p, T, n o : Pure solvent activity : Solvent activity in solution RTln( ) x

16 Polymer Solution. Flory-Huggins Mean Field Theory ϕ G mix RT n n ln n ln and ϕ are always lower than. Thus, lnϕ and lnϕ have always negative value. Flory-Huggins equation makes it possible to account for the thermodynamic properties of polymer solutions Accounts for the large derivations form Raoult s Law It is great for predicting general trends, but theory still deviates from the experimental data Deviation occurs as a result of the necessary assumptions needed to create a solution -Does not account for volume change during mixing -Does not exclude self-intersections of the chain -Mean field approximations are more accurate for high polymer concentration Regardless, it was a huge step forward in understanding how polymers behave

17 Application: Polymer Solubility Polymer with higher molecular weight precipitates more readily than the polymer with lower molecular weight. Add non-solvent until solution becomes turbid Heat, cool slowly and separate precipitate Finite drop in temperature always renders finite range of molecular weight insoluble Some high molecular weight polymer will also remain soluble! Solubility of polymers generally decreases with increasing molecular weight. T p : Precipitation temperature at which detectable turbidity can be first observed. T p phases phase Mol. Wt Volume fraction polymer

18 The θ Conditions Described in Movies

19 Viscosity of Polymer Solutions

20 Dynamic Viscosity (Absolute or Shear Viscosity) Dynamic viscosity is a measure of the resistance of a fluid to gradual deformation by shear stress. The resistance is a result of friction caused by sliding layers of fluid. c y m / m s ewton s Law of Friction / m s s Kg m m m s : Shear stress in fluid in Pascal (/m ) : Dynamic viscosity of fluid (. s/m ) : Shear rate (s - ) = c/ y c: Unit velocity (m/s) y: Unit distance between layers (m) s m Pa s 0P 0 Pa s (Pascal second) P: Poise g cm s Pa s: Two plates are separated by m with a fluid in between, and one plate is moving parallel to the other plate with a shear stress of pascal to move m/s. If m/s, then the viscosity is ½ Pa s. The viscosity of water = cp ( = 0.0 g/cm. sec = mpa. sec = 0.00 Pa. sec = s/m ).

21 Viscosity of Polymer Solutions Viscosity of a polymer solution can be measured by various methods. Viscosity of a polymer solution is a function of temperature, solvent, polymer concentration, and polymer molecular weight. When a polymer molecular weight is determined Viscosity of a polymer solution provides insightful information on the configuration of the polymer molecules in solution. At high polymer concentrations, polymer molecules tend to entangle each other, and this affect the measurement of viscosity. Thus, it is necessary to estimate the effect of solvent viscosity and polymer concentration on the overall viscosity. Since the viscosity measurement procedures do not remove the effects of polymer-solvent interactions, the viscosity average molecular weight ( ) depends on some extent on the solvent used In a dilute solution, the disturbance of the flow pattern of the suspending medium by one particle does not overlap with that caused by another. Solvent trapped inside a polymer molecule has lower viscosity than the bulk solution. Thus, the polymer coil behaves as an impenetrable sphere.

22 Viscosity of Polymer Solutions Viscosity of spheres and random coil molecules. where A is the Avogadro s number, c is the polymer concentration (g/ml), M is the polymer molecular weight, and V h is the volume of a solvated molecule. Relative viscosity ( rel ): Specific viscosity ( sp ): The specific viscosity accounts for the effect of solvent viscosity. The specific viscosity ( sp ) is a suitable indicator for the changes in shape. Spherical polymer has low resistance to flow, and so, small sp. Stretched, rod-like shape has higher resistance to flow, leading to high sp.

23 Viscosity of Polymer Solutions Reduced viscosity ( red ): The concentration effect is adjusted and it is valid only for dilute solution. Intrinsic viscosity ( ) lim The contribution of the individual macromolecules to the viscosity increase will be independent and additive only when the polymer molecules are infinitely far from each other. A and M are constants, so V h can be calculated from the viscosity measurement. Huggins Equation: The reduced viscosity is related to [η] by a power series of the form. The constant k H is termed the Huggins constant and has values ranging from 0.3 in good solvents to 0.5 in poor solvents. It contains information about hydrodynamic and thermodynamic interactions between coils in solution.

24 Solubility Parameters Poly(lactide-co-glycolide) (PLGA)

25 Solubility Parameters Solubility parameters are frequently used to predict compatibility between polymers and solvents. The dissolution rate and extent of polymer dissolution in a solvent depend on the thermodynamic compatibility of the polymer with solvent and the T g of the polymer, the nature of solvent (solubility parameters), temperature, chemical composition and molecular structure of the polymer, and crystalline form of solid polymorphism. The solubility of a given polymer in different solvents largely depends on its chemical structure. Polymers dissolve in solvents whose solubility parameters are similar to their own, and in general, structural similarity favors solubility, known as the like dissolves like principle. Dissolution of a polymer in a solvent requires the energy (E vap ) to break all intermolecular physical links in a unit volume, which is known as the cohesive energy density (CED): where H vap is the enthalpy of vaporization, RT is the thermal energy, and V m is the molar volume of the polymer. Thus, CED is the energy of vaporization in calories (or Joules) per cubic centimeter. CED reflects the degree of van der Waals forces that hold the molecules together.

26 The Hildebrand Solubility Parameter (Total Solubility Parameter), t The Hildebrand solubility parameter (or total solubility parameter), t, is defined as: / / H vap of polymers cannot be measured directly, and thus, indirect methods are used to calculate the solubility parameters of polymers. The enthalpy of mixing a polymer with a solvent per unit volume, H mix /V mix, is given by:,, where V mix is the volume of mixing, and ϕ and ϕ are the volume fractions of solvent and polymer, respectively. As a general rule, (δ t, - δ t, ), the difference in solubility parameters of a solvent and a polymer, must be small for dissolution to occur over the entire volume fraction range. In fact, it is related to the Flory-Huggins parameter χ by the following relation:,, The Hildebrand solubility parameter does not account for any specific interaction, especially hydrogen bonding. Thus, if polar contributions are significant to the total CED of a solvent, the Hildebrand solubility parameter may not be able to explain the lack of interaction between the solvent and the polymer.

27 The Hansen s Partial solubility parameters Since slight differences in polar contributions cause significant differences in solubility behavior, different types of polar contributions were identified to more accurately reflect the solubility behavior of solvents. The Hildebrand solubility parameter can include the hydrogen bonding based on the assumption that solubility is highest if the two materials have similar polarities. In this approach, solvents are divided into three categories of hydrogen bonding, such as poor (or weak), moderate, and strong hydrogen bonding capabilities. Hansen also developed solubility parameters based on three specific interactions: dispersive (non-polar), polar cohesive (dipole-dipole), and hydrogen bonding interactions. Thus, it is called Hansen s three-component solubility parameters (or partial solubility parameters) in comparison with Hildebrand s total solubility parameter. In this approach, the cohesive energy (E) has dispersive (d), polar (p), and hydrogen bonding (h) components. / / Thus, For selecting good solvents for PLGA, each solvent needs to be examined by individual contributions, i.e., δ d, δ p, and δ h separately, instead of the total solubility parameter δ t. If a solvent has high polar contribution, the solvent molecules may be attracted to each other than to PLGA. Thus, to avoid any inconsistencies in the like dissolves like principle, all 4 solubility parameters (δ d, δ p, δ h, and δ t ) need be measured for each PLGA.

28 Solubility Parameters of Solvents Solubility parameters of solvents can be determined from experimentally measuring H vap, and the values of most solvents are available in the literature. The H vap value of a solvent measured at one temperature can be converted to the values at any other temperature using the following empirical equation:,,. where T c is the critical temperature, i.e., the theta (θ) temperature, at which a polymer of infinite size mixes with the solvent completely. The solubility parameters of the solvent blends can be calculated by averaging the solubility parameter values of the individual solvents by their volume fractions (ϕ i ): This equation is useful when different solvents need to be mixed to generate a solvent with particular solubility parameters, and/or solvents in need are not readily available or too toxic to use. It may sound strange but the mixture of two bad solvents can result in a good solvent, assuming that the two mix well.

29 Solubility Parameters of Polymers The solubility parameters of polymers are difficult to obtain, because there is no measurable value of H vap or boiling point for polymers. Thus, indirect methods are used to obtain the values. The classical method of determining Hansen solubility parameters of a polymer involves testing of polymer solubility in different solvents with known partial solubility parameters (Hansen s three solubility parameters). The partial solubility parameters of solvents that interact with the given solvent (i.e., either dissolves the polymer or the polymer swells in the solvent) are plotted in 3 planes of the δ d, δ p and δ h axes to form circles of radius R, which is the radius of interaction sphere. The coordinates of the center of the spheres represent Hansen solubility parameters of polymers. This classical method has a shortcoming that good solvents may not be included in the interaction sphere or poor solvents may be included in the sphere. This shortcoming was overcome by calculating the maximum separation distance and using it as the diameter of the interaction sphere to find the coordinates of its middle as the Hansen parameters. The limitation of this method is that the position of the middle is not well defined, if there exist several equal maximum separation distances. In addition, this method treats good and limiting solvents of a polymer with equal weight, i.e., there is no mechanism of distinguishing the good from the limiting solvents. Limiting solvents are those that have limited interactions, e.g., the polymer may not dissolve but can swell in them.

30 Solubility Parameters of Polymers The more accurate radius of interaction sphere can be obtained by assigning different weights to good and limiting solvents of a polymer. The weights of the solvents can be easily determined by the intrinsic viscosities [η] which can be readily measured by a triple-detector GPC. The measured [η] is normalized to unity as follows.,,,, where the subscript i indicates individual solvents. Solvents that do not dissolve the polymer are given an intrinsic viscosity of zero. The good solvents result in higher [η], while the limiting solvents results in much lower [η]. The accuracy of the experimentally measured δ d,i, δ p,i and δ h,i increases as more solvents are tested. Once the coordinates of δ d, δ p and δ h are plotted as the center, the separating distances from the center to points corresponding to good and limiting solvents are plotted to calculate R i values. The largest value of R i is considered the radius of interaction sphere, R. 4,,, This improved method based on weighted intrinsic viscosities of a polymer in various solvents results in the interaction sphere including all good and limiting solvents.

31 Solubility Parameters of PLGA

32 Solubility Parameters of PLGA + = Fig. 3 Fig. 3. Comparison of Hansen s solubility parameters for various solvents: contributions of dispersion forces ( f d ), polar interactions (f p ), and hydrogen bonding (f h ). ( ) Good solvent; ( ) intermediately good solvent; ( ) intermediately poor solvent; and (x) poor solvent. (Yeo et al., J. Controlled Rel. 93: 6-73, 003) Dried PLGA (L:G=50:50, [η] = 0.58 dl/g) (5 mg) was added to glass vials containing 5 ml of the test organic solvent. The vials were agitated overnight at room temperature. Solubility of PLGA was judged by visual examination. Solvents were classified into four groups: good solvents that formed clear polymer solutions; intermediately good solvents that formed turbid polymer solutions upon heating; intermediately poor solvents that were marginally able to swell the polymer; and poor solvents in which the polymer remained intact.

33 The Group Contribution Methods The solubility parameters of polymers can be measured by the weighted intrinsic viscosity ([η]) method, but measurement of [η] has not been practical until recently when GPC-TDS became available. Thus, the solubility parameter of polymers has been calculated using the group contribution methods, which consider the energy (E) as an additive property for low molecular weight materials. / / / where h i is the contribution of ith group to the molar heat of vaporization. The solubility parameter can also be calculated using Small s molar attraction constants (F). where ρ is the density. From the general structure of PLGA, the F value of each group found in the literature can be used to calculate the Hildebrand solubility parameter of PLGA.

34 The Group Contribution Methods Group CH 3 CH CH C=O O F F: (cal. cm 3 ) / cm 3 /mol at 5 C The Units of the solubility parameters: / / / Although the solubility parameters of polymers can be estimated using the group contribution methods, the estimated values are likely to be different from the experimentally measured values. This is because the group contribution methods only consider the chemical structure without considering the molecular weight of the polymer, and a polymer as a whole may have different interactions with solvents unlike small groups do. Even though the polymer has the same structure regardless of the molecular weight, the reality is that the same polymer often has different solubility in a given solvent depending on the molecular weight. Thus, it is important to obtain the partial solubility parameters based on experimental values, such as weighted intrinsic viscosity values.

35 The Mark-Houwink Plot The dependence of intrinsic viscosity [η] of a polymer on its molecular weight M is given by the Mark-Houwink(-Sakurada) equation: or where K and α are two parameters that depend on the solvent, polymer, and temperature. It is common to plot the Mark-Houwink equation in a log-log graph to calculate the K and α values from the intercept and the slope. The slope is related to the shape of the polymer molecules and the polymer-solvent interactions. α = 0.5 for a polymer under θ conditions (i.e., an unperturbed random coil). α = 0.8 for a polymer in a good solvent, while α = for rod-like polymers. The slope α is related to the solubility parameters of the polymer and the solvent. log[η] Good Solvent log M Poor Solvent Mark-Houwink plots of a polymer in different solvents. The molecular weight (M) remains the same but the V h of the polymer changes in different solvents. The intrinsic viscosity [η] increases as the V h increases in good solvents. Thus, the solvent quality for each PLGA can be characterized by using the K and α values.

36 The Intrinsic Viscosity and Solubility Parameters ACE: acetone, H O: water, DCM: dichloromethane Solvents in which the polymer is insoluble were given an intrinsic viscosity of zero. The calculated Hildebrand and Hansen solubility parameters of PLGA are indicated by broken lines. The shaded line indicates best cubic fit (R 0.95). The 90/0% ACE/H O blend was excluded from the fit. Intrinsic viscosities and solubility parameters of PLGA (L:G=50:50) in various solvents. C.G. Madsen, A. Skov, S. Baldursdottir, T. Rades, L. Jorgensen,.J. Medlicott. Simple measurements for prediction of drug release from polymer matrices Solubility parameters and intrinsic viscosity. Eur. J. Pharm. Biopharm., 9 (05) -7.

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

The lattice model of polymer solutions

The lattice model of polymer solutions The lattice model of polymer solutions Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 25, 2009 1 The lattice model of polymer solutions In the last note, we

More information

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Liquids and Solids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gases, Liquids and Solids Gases are compressible fluids. They have no proper volume and proper

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical Subject PHYSICAL Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 34, Method for determining molar mass - I CHE_P6_M34 Table of Contents 1. Learning Outcomes 2. Introduction

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

χ A = P A Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly.

χ A = P A Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly. Gen. Chem. II Exam I review sheet (Ch. 10, 11, 13, 14) Ch. 10 Gases behave physically similarly. KMT (Kinetic Molecular Theory): particles in a gas: are in constant rapid motion are tiny compared to the

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Chapter 4 Polymer solutions

Chapter 4 Polymer solutions Chapter 4 Polymer solutions 4.1 Introduction Solution: any phase containing more than one component.(gas, liquid or solid) Polymer solution is important: Classical analyses of polymers are conducted on

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics Remember: ΔE univ = 0 Total energy of the universe is constant. Energy can be transferred: ΔE = q + w q = heat w = work (F*D) = ΔPV 1 st Law, review For constant volume process:

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 9a BONDING AND SOLUTIONS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 9a BONDING AND SOLUTIONS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 9a BONDING AND SOLUTIONS 1. INTRODUCTION Condensed phases, whether liquid or solid, may form solutions. Everyone is familiar with liquid solutions.

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes Chapter 13 States of Matter 13.2 Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes I. Forces of Attraction (13.2) Intramolecular forces? (forces within) Covalent Bonds, Ionic Bonds, and metallic

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 9 8//4 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 04. Solutions that re Very, Very on-ideal In the prior lectures on non-ideal solution behavior, we have considered

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Intermolecular Forces: Liquids, and Solids. Chapter 11

Intermolecular Forces: Liquids, and Solids. Chapter 11 Intermolecular Forces: Liquids, and Solids Chapter 11 1 Review Practice Excited Na atoms may emit radiation having a wavelength of 589 nm. a) What is the wavelength in meters? b) What is the frequency

More information

POGIL: Principles of Solubility

POGIL: Principles of Solubility NAME: DATE: AP Chemistry POGIL: Principles of Solubility Why? The previous POGIL discussed a few factors affecting how and why solutions form based on entropy and interparticle forces. Another factor affecting

More information

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion)

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) States of Matter The Solid State Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) Fixed shape and volume Crystalline or amorphous structure

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond

V(φ) CH 3 CH 2 CH 2 CH 3. High energy states. Low energy states. Views along the C2-C3 bond Example V(φ): Rotational conformations of n-butane C 3 C C C 3 Potential energy of a n-butane molecule as a function of the angle φ of bond rotation. V(φ) Potential energy/kj mol -1 0 15 10 5 eclipse gauche

More information

Final Exam Worksheet Answers Chemistry 102

Final Exam Worksheet Answers Chemistry 102 Final Exam Worksheet Answers hemistry 102 hapter 9 hemical Bonding I The ovalent Bond 1. a. I b. I c. d. I e. f. N g. I h. I i. I j. k. N l. m. n. N o. IN p. q. I 2. For the Born aber cycle the standard

More information

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular forces and liquid structure. The

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Chapter 11. Intermolecular Forces, Liquids, and Solids A Molecular Comparison of Gases, Liquids, and Solids Physical properties of substances are understood in terms of kinetic-molecular theory: Gases

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary Worksheet 1.1 Chapter 1: Quantitative chemistry glossary Amount The number of moles of a substance present in a sample. Aqueous solution A solution with water as the solvent. Atmosphere The unit atmosphere

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solute s ) relative to the

More information

Miami Dade College CHM Second Semester General Chemistry

Miami Dade College CHM Second Semester General Chemistry Miami Dade College CHM 1046 - Second Semester General Chemistry Course Description: CHM 1046 is the second semester of a two-semester general chemistry course for science, premedical science and engineering

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation Measuring the size and shape of macromolecules Hydrodynamics: study of the objects in water How do the move? Translation Rotation 1) Movement with no external forcefree diffusion 2) Movement under the

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13 AP* Chapter 10 Liquids and Solids AP Learning Objectives LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses

More information

CH.8 Polymers: Solutions, Blends, Membranes, and Gels

CH.8 Polymers: Solutions, Blends, Membranes, and Gels CH.8 Polymers: Solutions, Blends, embranes, and Gels 8. Properties of Polymers Polymers are chain-like molecules. Linear polymer Branched polymer Cross-linked polymer Polymers show little tendency to crystallize.

More information

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs) LIQUIDS / SOLIDS / IMFs Intermolecular Forces (IMFs) Attractions BETWEEN molecules NOT within molecules NOT true bonds weaker attractions Represented by dashed lines Physical properties (melting points,

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab Advanced Placement Chemistry Chapters 10 11 Syllabus As you work through each chapter, you should be able to: Chapter 10 Solids and Liquids 1. Differentiate between the various types of intermolecular

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 5.0 Thermodynamics of Polymer Solutions Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, AU 5.0 Thermodynamics of Polymer Solutions In this section, we investigate the solubility of polymers in small molecule

More information

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination Chapter 3 Molecular Weight 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination 1. Weight, shape, and size of polymers monomer oligomer polymer dimer, trimer, --- telomer ~ oligomer from telomerization

More information

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function. Lecture #5 1 Lecture 5 Objectives: 1. Identify athermal and residual terms from the van der Waals mixture partition function.. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

Gases, Liquids, Solids, and Intermolecular Forces

Gases, Liquids, Solids, and Intermolecular Forces Chapter 6 Gases, Liquids, Solids, and Intermolecular Forces Solids: The particles of a solid have fixed positions and exhibit motions of vibration. Liquids: The particles of a liquid are free to move within

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University School of Chemical & iological Engineering, Konkuk University Lecture 7 Ch. 5 Simple Mixtures Colligative properties Prof. Yo-Sep Min Physical Chemistry I, Spring 2009 Ch. 5-2 he presence of a solute in

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Exam 3 Concepts! CH110 FA10 SAS 33

Exam 3 Concepts! CH110 FA10 SAS 33 Exam 3 Concepts! CH110 FA10 SAS 33 Properties of Gases What sorts of elements and compounds tend to be found as gasses at room temperature? What are the physical properties of gases? What is pressure?

More information

AP CHEM WKST KEY: SOLIDS, LIQUIDS, SOLUTIONS REVIEW

AP CHEM WKST KEY: SOLIDS, LIQUIDS, SOLUTIONS REVIEW ) The particles of solids and liquids are close enough to each other that the interecular forces can exist without any trouble. In gases, the particles are so far apart that the only time IMF s occur is

More information

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Preview Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Section 1 Types of Mixtures Objectives Distinguish between electrolytes and nonelectrolytes. List three different

More information

Multiple Choice 2 POINTS EACH Select the choice that best answers the question. Mark it clearly on your answer sheet.

Multiple Choice 2 POINTS EACH Select the choice that best answers the question. Mark it clearly on your answer sheet. Chemistry 45.5 100 Points Take Home Exam 1 2009-10 Name: Student ID: Form A Multiple Choice 2 POINTS EACH Select the choice that best answers the question. Mark it clearly on your answer sheet. 1. Likes

More information

Lattice Theories for Polymer/Small-Molecule Mixtures and the Conformational Entropy Description of the Glass Transition Temperature

Lattice Theories for Polymer/Small-Molecule Mixtures and the Conformational Entropy Description of the Glass Transition Temperature Lattice Theories for Polymer/Small-Molecule Mixtures and the Conformational Entropy Description of the Glass Transition Temperature Membrane osmometry and the osmotic pressure expansion. A porous membrane

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation Lecture Presentation Chapter 11 Liquids, Solids, and Intermolecular Forces Water, No Gravity In the space station there are no spills. Rather, the water molecules stick together to form a floating, oscillating

More information

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties) Chemical Potential Combining the First and Second Laws for a closed system, Considering (extensive properties) du = TdS pdv Hence For an open system, that is, one that can gain or lose mass, U will also

More information

Chap. 2. Molecular Weight and Polymer Solutions

Chap. 2. Molecular Weight and Polymer Solutions Chap.. Molecular Weight and Polymer Solutions. Number Average and Weight Average Molecular Weight A) Importance of MW and MW Distribution M.W. physical properties As M.W., toughness, viscosity ) Optimum

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Empirical Gas Laws. Systematic variation of one variable while measuring another, keeping the remaining variables fixed

Empirical Gas Laws. Systematic variation of one variable while measuring another, keeping the remaining variables fixed Empirical Gas Laws Early experiments conducted to understand the relationship between P, V and T (and number of moles n) Results were based purely on observation No theoretical understanding of what was

More information