K in etic co m b u stio n p a ra m eters for ch ars using the I F R F solid fuel data base

Size: px
Start display at page:

Download "K in etic co m b u stio n p a ra m eters for ch ars using the I F R F solid fuel data base"

Transcription

1 K in etic co m b u stio n p a ra m eters for ch ars using the I F R F solid fuel data base Oskar Karlstroma, Anders Brinka, Jaroslaw Hercogb, Mikko Hupaa, Leonardo Tognottic aabo Akademi University, Faculty of inorganic chemistry binstitute of Power Engineering, cifrf Abstract In this study, kinetic combustion parameters are determined for chars in the IFRF solid fuel data base (SFDB) in order to model the combustion history of the chars. Experimental burn-out data are used to determine the kinetic parameters that best fit the experimental data according to two standard char combustion models. The SFDB contains burn-out data, for more than 130 different chars of which more than 100 are coal chars, obtained from drop tube experiments. In previous IFRF-reports, kinetic parameters have been determined for several of the chars. The parameters are, however, model specific and only valid for the model that has been used when determining the parameters. In this study, two standard particle models available in Fluent have been used: the kinetic/diffusion surface reaction rate model and the intrinsic char combustion model. The intrinsic model is more detailed and requires a larger amount of fuel specific information. In order to simplify the use of the intrinsic model, some properties of the fuel can be assumed, which will affect the accuracy of the modeling results. The main purpose of the study is to compare which of the models that is most suitable for modeling the combustion history of char particles, while choosing some fuel properties to be constant for different coals in the intrinsic model. Keywords: kinetic parameters, char combustion, modeling 1 INTRODUCTION Today, several different types of coals are normally used in a coal-fired utility boiler. Therefore, predicting the behavior of coal fired utility boilers for various types of coals is essential. Computational fluid dynamics (CFD) tools are important for this purpose. 1,2,3One of the main limitations in CFD modeling of coal combustion is the use of simplified sub-models for char combustion.1,4 Char can be defined as the porous solid residue remaining from the thermal decomposition (pyrolysis, devolatilization) occurring during the heating of the particle. In coal combustion, the char combustion takes much longer than the devolatilization. Thus, the residence time needed to achieve complete burn-out of the particles is mostly affected by the char combustion. Consequently, the char combustion determines whether the residence times in the furnace are sufficient. Char combustion is controlled by a complex coupling between oxygen transport to the reacting char surface and chemistry between the reactant species. The oxygen transport can be divided into oxygen diffusion to the external surface of the particle and intra-particle pore diffusion. Factors affecting the heterogeneous process are among others: particle size, reactant - and product diffusion, chemical reactions, pore structure, diffusion in pores, pore size distribution, changes in

2 pore sizes (and the internal surface area) during the combustion, mineral content and fracturing of the char5. Several types of models have been presented in literature.6,7,8,9 In spite of the complexity, strongly simplified char combustion models have successfully been used, questioning the necessity of detailed, complex models. Ballester and Santiago9 (2005) pointed out that the effects of property heterogeneities and deactivation phenomena play minor role if the particle size distribution is taken into account when modeling pulverized coal combustion, even in the case of narrow size distribution. Taking the particle size distribution, obtained from ground sieving, into account and using a simplified char combustion model, they managed to accurately model the complete combustion history of char particles. In order to use conventional combustion models for a single char particle, kinetic parameters - pre-exponential factor and activation energy - need to be determined. Kinetic char combustion parameters are fuel specific and must be determined from experimental combustion data9,10. A suitable experimental facility for performing char particle combustion experiments in order to derive kinetic parameters is a drop tube /entrained flow reactor.11 Traditionally, kinetic char combustion parameters have been determined from Arrhenius plots.5,10 In reality, the lines in Arrhenius plots will never completely go through all experimental points obtained from drop tube experiments.9 As alternatives to Arrhenius plots, kinetic char combustion parameters have been determined from fitting modeled particle combustion history to experimentally observed particle combustion history 9 and by using neural networks.1,12 In this study, experimental burn-out data are used to determine kinetic parameters that best fit experimental data according to two standard char combustion models: the kinetic/diffusion surface reaction rate model6,13 and the intrinsic char combustion model10. The intrinsic model is more detailed and requires more fuel specific information than the kinetic/diffusion model. In order to simplify the use of the intrinsic model, some of the fuel properties can be assumed, which will affect the accuracy of the modeling results. The main purpose of the study is to compare which of the models that is most suitable for modeling the combustion history of char particles, while choosing several fuel properties to be constant in the intrinsic model. Both models have frequently been used and evaluated in literature, but often the models have only been tested for a few fuels. The IFRF solid fuel data base contains burn-out data, of more than 130 different chars from which are coal chars, obtained from drop tube tests in realistic combustion conditions. All fuels are similar-sized, providing excellent comparison possibilities for the modeling. 2 EXPERIMENTS - IFRF SOLIF FUEL DATA BASE The IFRF solid fuel database contains proximate- and ultimate analyzes of more than 130 fuels and of 130 chars derived from the fuels. Additionally, ash fraction analyses, true density-, apparent density- and internal specific area measurements have been performed on several of the fuels. The degrees of burnout of the fuels and the chars have been measured in a drop tube reactor at different residence times. The data base contains burnout- versus time data of the fuels and of the chars derived from the fuels. 2.1 Experimental setup and tests Devolatilization and combustion experiments have been performed in two IFRF drop tube reactors. The first one was used in the period and the second has been used since The principles of the two reactors are similar. The major difference is the height: the height of the older reactor was 2 meter and of the new reactor is 4 meter. Most of the experiments have been performed in the newer drop tube reactor. A detailed description of the setups can be found in a previous work14. Here, a brief description of the newer reactor will be given.

3 The drop tube reactor consists of a 4 m long tube, where the combustion takes place. The tube consists of eight modules which can be controlled and heated independently. A K-tron sample feeder provides a continuous mass flow of pulverised fuel. At the outlet of the K-tron, the pulverised fuel is mixed with preheated gases in order to transport the particles to the furnace. A fuel feeder injects the fuel-gas mixture into the tube-reactor. The furnace is perforated with sampling points at different levels. From the holes in the tube, partially burned particles can be rapidly quenched and burn-out fractions at different residence times can be obtained using an ash tracer. In the experiments, fuels were first devolatalized in an oxygen free gas at heating rates typical for real combustion systems. The remaining chars were collected for combustion tests. Most of the chars were combusted at three different temperatures in the range C and at three different oxygen fractions below 20 molar %. The fuel rate for the char combustion tests was set to achieve a maximum relative oxygen drop of 10% over the reactor length. For each experimental condition, seven fuel samples were taken. Table 1 Properties of two coals. (%daf) refers to mass fraction of dry- and ash free fuel. Property Coal/char Columbian Coal South African Coal CC - char SAC -char Moisture (%) Ash (%) Fixed C (%) Volatiles (%) Volatiles -droptube (%daf) C (%daf) H (%daf) O (%daf) N (%daf) S (%daf) Mass mean diameter ( jm) True density (kg/m3) Apparent density (kg/m3) Mean particle mass (ng) Experimental results Tab. 1 and Fig. 1 exemplify char data available in the SFDB for two coal chars. Fig. 1 shows burn-out curves of the two coal chars. Fig. 2 compares burn-out curves of the two chars. Tab. 1 shows fuel properties of the chars and of the initial fuels (i.e. before char preparation). Tab. 1 shows that the coals and their coal chars are very similar, but Fig. 2 shows that the char conversion rates of the chars differ significantly. In order to model the burn-out curves of the two chars, it is, therefore, evident that the same models or model input parameters can not be used when modeling the two chars.

4 Fig. 1. Burn-out (U) as function of time of Columbian (left) and South African (right) coal t (m s) Fig. 2. Comparison of Burn-outs (U) as function of time of Columbian and South African coal 3 COMBUSTION MODELS When choosing a char combustion model, the regime under which the combustion takes place must be considered. Normally, three char combustion regimes (or zones) are defined. Regime I means that the chemistry is slow compared to the reactant diffusion (internal- and external-) and, as a result, the gas species penetrates fully inside the char particle during the combustion (Th << 1). Combustion under regime III conditions occurs when the chemistry is fast compared to the reactant diffusion and, consequently, the combustion takes place close to the surface of the char particle (Th >> 1). Combustion under regime II takes place when the reactant species penetrate partially inside the particle. Analogously, regime I can be referred as chemical kinetic control, regime III can be referred as mass transfer control and regime II then is a mixing of chemical kinetic- and mass transfer control. Generally, if coal char particles are less than 100 ^m and the combustion temperature are below 1800 C, chemistry controls the conversion partially or fully15. Thus, the combustion in the IFRF drop tube tests can be considered to be in regime I - or in regime II conditions, since the particle diameters of the chars are in the range of 50 ^m and the reactor temperatures are between C. In this study, two standard char particle combustion models for pulverized fuels, suitable for regime II conditions, available in Fluent have been used: the kinetic/diffusion limited surface rate model6 and the intrinsic char combustion model10. The models do not take intra particle temperature gradients into account

5 which is a realistic assumption for the chars in the SFDB (d ~ 50 ^m, Bi << 0.1). The intrinsic model is more detailed and more realistic than the kinetic/diffusion limited model. Thus, the intrinsic model requires more fuel specific input information than the kinetic/diffusion model. In this study, some of the fuel properties are assumed in the intrinsic model. The purpose is to determine which of the models - the kinetics/diffusion model or the intrinsic model with some of the fuel properties chosen constant - that is most suitable for modeling the combustion history of char particles. The two standard models are described briefly here with the same equations as are presented in the Fluent 6.3 manual. More detailed descriptions of the models can be found in Fluent manuals or in studies by the model developers Kinetic/diffusion limited surface rate model In Fluent 6.3, the char particle temperature is obtained from an approximate analytical solution to the following heat balance of the particle: " ' C ' d i ' = hap ( - T ) - - Tp ) ) where mp is the mass of the particle, Ap is the outer surface area of the particle, Tp is the temperature of the particle, Tx is the temperature of the gas surrounding the particle, f h is the fraction of heat that the particle absorbs from the heat released by the surface reaction H reac, s p is the emissivity of the particle surface and 0R is the radiation temperature. The char combustion rate in the kinetic/diffusion limited surface reaction rate model is governed by the following equation: dm D 0 ^ ~ t (2) where p ox is the partial pressure of oxidant species in the gas surrounding the particle. The term D 0^ / ( ( 0 + is the overall reaction rate coefficient. The diffusion rate coefficient D 0 and the kinetic rate ^ are calculated using the expressions and D 0 = C, [ M l (3) d p a -(Ekd / RTp ) = A KDe ykd p) (4) where C is a diffusion coefficient, d p is the diameter of the particle, AKD is a pre-exponential factor, EKD is an activation energy and R is the ideal gas constant. In this model, the kinetic

6 rate, *, takes the effect of chemical reactions on the internal surface of the char particle as well as the effect of pore diffusion into account. 3.2 Intrinsic char combustion model The intrinsic model also uses Eq. 1 for solving the particle temperature and Eq. 2 for calculating the char combustion rate. In this model, the chemical rate depends both on intrinsic chemical- and pore diffusion rates: d i * i = n P p Ask, (5) 6 n is the ratio of the real combustion rate to the rate achievable if no pore diffusion existed16: 3 n = - - ( c o th ^ - 1) (6) 2 <P where <j>is the Thiele modulus: ' = d t SbPpAgkiPox D epox 1/2 (7) p p is the apparent density of the char particle, Ag is the mean value of the internal surface area during the char conversion and p ox is the density of the oxidant in the bulk gas. Sb is a mass stoichiometric coefficient of the char combustion reaction: Char(s) + Sb ox(g) ^ Products(g) (8) The intrinsic reactivity ki and the effective diffusion coefficient D e are calculated as follows: kt = A e -(e, / RTp) (9) and D 1 1 ' H---- D (10) where Ai is a pre-exponential factor and Ei is the intrinsic activation energy and T is the tortuosity of the pores. 0 is the porosity of the char particle as calculated from the true density and apparent density of the char particle:

7 0 = 1 - P P pt (11) D is the bulk molecular diffusion coefficient and the Knudsen diffusion coefficient D Kn : D Kn = 97rp T M w,ox P (12) rp is the mean pore radius and M w ox is the molar mass of the oxidant in the gas. It is important to note that using a constant value for pore radius is a strong simplification because of the pore size distribution characterizing coal chars. In this study, the mean pore radius is calculated according to T rv = (13) Ag Pp The outer surface area, Ap, in Eq. 1, is constant in the kinetic/diffusion model. In the intrinsic model Ap and, hence, d p is related to the fractional degree of burnout U : - i - = (1 - U )a (14) d p,0 U = (15) mp0af For spherical particles a = 0 corresponds to a constant particle size with decreasing density during burnout, which is typical for regime I conditions. a = 1/3 corresponds to a decreasing particle size with a constant density occurring during regime III conditions. Combustion under regime II conditions means that both the particle diameter and density decreases during the conversion, and, consequently a should be between 0 and 1/3. 4 DETERMINATION OF KINETIC PARAMETERS AND RESULTS Eq are used to model the combustion of the pulverized char particles along the IFRF drop tube reactor, based on the experimental conditions and the fuel properties. The fuel properties that are taken from the SFDB are: ash-, volatiles- and char content, true and apparent density and mean mass diameter. Remaining properties, except the kinetic parameters, are chosen to be the same for all coals (see Table 2). The internal specific surface areas of coals can vary between ~ m /g. For many coal chars the internal specific surface area is typically in the range of 100 m2/g.18 During the combustion of a char particle, the internal specific surface area changes and therefore it might be inappropriate to use a constant value for the area as required in the intrinsic model. In this work, the internal specific surface area has been chosen to 300 m2/g for all coal

8 chars. Nevertheless, if an inappropriate value of the internal specific surface area is used in the modeling, the pre-exponential factor in the Arrhenius reactivity expressions can be modified in order to improve the accuracy of the model. For calculating the diameter evolution, and thus the change in outer surface area and density, a = 0.25 has been used. Ballester and Santiago9 (2005) pointed out that using a higher value of a, than the real value of a, can improve the modeling of coal combustion in drop tube tests if the particles are treated as mono-sized in the modeling. In this study, the particle size distribution is neglected and, therefore, it might be appropriate to use a = 0.25 even if the real value of a is far below Table 2. Parameter values used for all coals in the modeling. Ag = m2/kg cp = 2300 J/kgK C = 5*10-12 s/k0 75 D = 0.24* 104 * (T» /298)175 m2/s h = Nu / kmd p W/m2K H reac = 9.583*106 J/kg fh = 1 M wox = kg/mol Sb = 0.75 a = 0.25 = 0.9 T = s p 4.1 Calculation procedure In order to determine the kinetic parameters for combustion modeling of the char particles in the SFDB, a parameter determination method used in this study is similar to the one used by Ballester and Jimenez9. The calculation of kinetic parameters follows the approach described below: Values of kinetic parameters - pre-exponential factor and activation energy - are discretized for a wide range of values e.g. E KD = 30000, 31000, J/mol. For each kinetic parameters pair, the burn-out curve UM (t) is modeled: du M = _ l dm (16) dt mc0 dt An object function is defined using the equation J f min. = j k ' ' ''Jk ( 17) Jmax max k j where f, t = U m - U e ) (18) where U E is the experimentally measured burn-out fraction, j equals to the j th sampled point in the experiments for the k th experimental test condition.

9 The object function is calculated for each kinetic parameters pair. Based on the optimal values the kinetic parameters are discretized into a new smaller range of values. Then, the procedure is repeated as described above as long as the value of the object function is decreasing. The reason to using this brute-force reminding optimization approach is that the optimization problem is nonconvex and, therefore, it is inappropriate to use conventional optimization methods like the Simplex method19 for non-linear optimization problems. Fig. 3. Level plot diagram of pre-exponential factor and activation energy of a Columbian coal (see table 1). The levels represent the object function in Eq. 17 that compares the difference of modeled char combustion history data to experimental observations. The graph to the right is a more detailed description of the graph to the left around the area of the optimum point marked with a black sphere. The optimum values are f = 0.069, A. = 5.523*107 kg/m2spa and E. = J/mol s min ' i i x 10 Ai (kg/m2spa) x 10 Fig. 4. Level plot diagram of pre-exponential factor and activation energy of Columbian coal. The values of the levels are included and represents the object function in Eq. 17 that compares the difference of modeled char combustion history data to experimental observations

10 4.2 Results Fig. 3 shows the level plot diagram of the optimized parameters Ai and E i of the Columbian coal (see Tab. 1). The minimum object function value f min = is obtained for Ai = 5.52*106 kg/m2spa and Ei = J/mol. Fig. 4 includes the values of the levels of the optimized kinetic parameters of the Columbian coal. The levels shows that there is a large range of kinetic parameter values giving approximately equal object function values compared to the optimum kinetic parameters. The levels demonstrate the sensitivity of the object function against the change in kinetic parameters: if e.g. the optimum activation energy is fixed, the preexponential factor can be varied to some extent without significantly decreasing the accuracy of the modeling results. Columbian Coal - kinetics/diffusion model t (ms) 1500 A expl exp2 O exp3 A exp modi mod mod3... mod4 Columbian Coal- intrinsic model t (ms) South African Coal charkinetics/diffusion m odel South African Coal - intrinsic model t (ms) 1500 expl exp2 O exp3 exp modi mod mod3... mod4 t (ms) Fig. 5. Modeled and experimental burn-out fraction U v.s. time for Columbian and South African Coal. 1 : 1223 K 4% O 2, 2 : 1223 K 12% O 2, 3 : 1423 K 4% O 2, 4 : 1623 K 4% O2. f min lcc = 0.069, AlCC = 5.523*107 kg/m2spa and EiCC = J/mol. fminisac = 0067, AjSAC = 9.514*107 kg/m2spa and EiSAC = J/mol. (The given numbers are for the intrinsic model). Fig. 5 compares modeling results, of the two different models using optimized kinetic parameters, with experimental results in Fig 1. The figures show that the combustion rates of the diffusion/kinetics model are constant. In the intrinsic model, the diameter is allowed to decrease and, consequently, the combustion behavior of the fuels is better modeled. The intrinsic model

11 reproduces the experimental burnout curves accurately, except in the latest stages of the burnout in some of the curves. A possible reason is that the particles are considered mono-sized in the model and, thus, the particle size distribution is not taken into account, which could explain the deviations9. The determined intrinsic activation energies of the two coal chars are similar, but the pre-exponential factors, and thus the reactivity, differ by a factor of 2, which is interesting since the fuels are very similar (see experimental results section). The deviation could be explained by a difference in the internal surface areas of the two coal chars, since the same internal specific surface areas have been used when determining the kinetic parameters for both of the fuels. 1.E+01-1.E-01 - tz I Ql (A 1.E-03 - C <UC " f 1.E-05 - a i? gu 1.E-07 - ^ 1.E Activation energy E (J/mol). * Fig. 6. Optimized pre-exponential factors versus calculated intrinsic activation energies for 60 coal chars. Each point represent a different coal char. fmin intrinsic model Fig. 7. Minimized object function values in Eq. 17 that compares the difference of modeled char combustion history data to experimental observations of 60 different coal chars. Each point represents a different coal char. X-axis: minimized object function values for the intrinsic model. Y-axis: minimized object function values for the Kinetic/diffusion limited model. The grey line distinguishes where the object function values are equal for the two models.

12 Fig. 6 shows optimized pre-exponential factors versus optimized activation energies for 60 coal chars. The greater part of the activation energies are in the range J/mol, which can be considered as typical values510. The lowest and highest activation energy of the chars in Fig. 6 are and J/mol. These values might be unrealistically low and high respectively, suggesting that there might be some uncertainties either in experimental data or in the fuel properties that was used in the intrinsic model. Fig. 7 compares the accuracy of the two models for 60 coal chars. For all the chars, the object function values for the intrinsic model are close to or below The object function values for the kinetic/diffusion model are for many of the coals close to Thus, the intrinsic model was more flexible than kinetic diffusion model, even though some fuel properties were chosen constant for all coals using the intrinsic model. E-02 n "i? Q_ uj*t 8 - * < E-03 E-04 E-05 E-06 E C A C A & A A* A 9 Kinetic/diffusion model * E Voldaf % Fig. 8. Kinetic rate versus dry and ash-free (daf) volatile content in initial fuel sample (before char preparation) at 1000 C and 1300 C for 60 coal chars. The kinetic rate is calculated with the kinetic parameters obtained for the kinetic/diffusion limited model. Each point of the same symbol represents a different coal char. Fig. 8 shows the kinetic rate for 60 different coal chars at 1000 and at 1300 C. The kinetic rate is here calculated with the optimized parameters for the kinetic/diffusion model. The figure shows that the scatter of the kinetic rate is large, but that there generally is an increasing trend between the kinetic rate and the coal rank 5 CONCLUSIONS AND FURTHER WORK Determining of kinetic combustion parameters for coal chars in order to model the combustion history of the chars has been demonstrated. Kinetic parameters were determined from fitting modeled particle combustion history data to experimental particle combustion history data, obtained from drop tube experiments. Optimized kinetic parameters for 60 coal chars were used in two standard char particle models: the kinetic/diffusion limited surface rate model and the intrinsic char combustion model. The intrinsic model is more detailed and requires more fuel specific input data. The study shows that the intrinsic model was more flexible than the kinetic/diffusion model for 60 coal chars, even though several fuel properties were chosen to be constant for all coals in the intrinsic model. In further studies, the burning mode a and the

13 internal specific surface area A will be chosen based on values typical for different kinds of coals and on combustion conditions. Also, the two models will be compared while allowing the diameter to decrease in the kinetic/diffusion model. Ag specific internal surface area mc0 initial mass of char particle (kg) (m2/kg) M w.ox molar mass of oxidant species A pre-exponential factor in intr. model (kg/mol) (s/m) Nu Nusselt number (-) Akd pre-exponential factor in kin/diff pox partial pressure of oxidant species model (s/m) (Pa) Ap surface area of particle (m2) rp mean pore radius (m) s heat capacity of the particle (J/kgK) R ideal gas constant (J/molK) c, coefficient for calc. diffusion rate kinetic rate in kin/diff model (s/m) (s/k0 75) % intrinsic chemical rate (s/m) D bulk molecular diffusion coefficient Sb stoichiometric coefficient (-) (m2/s) Tp temperature of the particle (K) D 0 diffusion rate coefficient (s/m) Ta, temperature of continuous phase (K) D e effective diffusion coefficient in U fractional degree of burn-out (-) UE experimentally calculated U (-) D Kn Knudsen diffusion coefficient (m /s) UM modeled U (-) d p diameter of particle (m) d p,0 initial particle diameter (m) a burning mode for the diameter Ei activation energy in intr. model evolution (-) (J/mol) emissivity of particle surface (-) E activation energy in kin/diff model F KD efficiency factor (-) (J/mol) n J f min. object function to be minimized (-) G porosity of the char (-) h convective heat transfer coefficient Or radiation temperature (K) (W/m2K) P'ox density of the oxidant species H reac heat released by surface reaction (kg/m2) (J/kg) Pp density of the particle (kg/m3) ki intrinsic reactivity (s/m) P pa apparent density of the particle k «thermal conductivity of the (kg/m3) continuous phase (W/mK) Pvt 1 Fl true density of the particle (kg/m3) A particle absorbed heat fraction (-) C Stefan-Boltzmann constant (5.67 x mp mass of particle (kg) 10-8 W/m2K4) m paf mass of ash free particle (kg) T tortuosity of the pores (-) $ Thiele modulus (-) mp0af initial mass of ash free particle g s re o p (kg) /s) c

14 1 Korytnyi E, Saveliev R, Perelman M, Chudnovsky B, Bar-Ziv E. Computational fluid dynamic simulations of coal-fired utility boilers: An engineergin tool. Fuel 88 (2009) Bris T. L., Cadavid F, Caillat S, Pietrzyk S, Blondin J, Baudoin B. Coal combustion modeling of large power plant, for NOx abatement. Fuel 86 (2007) Pallares J, Arauzo I, Williams A. Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel 86 (2007) Williams A., Backreedy R., Habib R., Jones J. M., Pourkashanian M. Modeling coal combustion: the current position. Fuel 81 (2002) Smooth D. L., Smith P. J. Coal Combustion and Gasification ISBN Baum M. M., Street P. J. Prediciting the Combustion Behavior of Coal Particles. Combustion Science and Tehnology, 1971, Vol Reginald E. M., Liqiang M., BumJick K. On the burning behaviour of pulverized coal chars. Combustion and Flame 151 (2007) Hurt R, Sun J-K, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combustion and Flame 113 (1998) Ballester J, Jimenez S. Kinetic parameters for the oxidation of pulverized coal as measured from drop tube tests. Combustion and Flame 142 (2005) Smith IW. The combustion rates of coal chars: a review. Nineteenth Symposium (International) on Combustion/The Combustion Institute, 1982/pp Jimenez, S., Remacha P., Ballesteros J. C., Gimenez A., Ballester J. C. Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions. Combustion and Flame 152 (2008) Zhu Q., Jones J. M., Williams A., Thomas K. M. The predictions of coal/char combustion rate using an artificial neural network approach. Fuel 78 (1999) Field M. A. Rate of Combustion of Size-graded Fractions of Char from a Low-rank Coal between 1200 K and 2000 K. Combustion and Flame 13 (1969) Hercog J., Tognotti L. Realisation of IFRF Solid Fuel Data Base. Phase 1IFRF Doc No. E36/y02, Essenhigh R. H. Combustion and Flame Propagation in Coal Systems: a Review. Sixteenth Symposium (International) on Combustion/The Combustion Institute, 1976/pp Thiele, E. W. Relation between Catalytic Activity and Size of Particle. Industrial and Engineering Chemistry Vol. 31 No. 7 (1939) 17 Wheeler A. Reaction rates and selectivity in catalysist pores. Advances in Catalysis (1951), Charpenay S., Serio M. A., Solomon P. R. The Prediction of Coal Char Reactivity under Combustion Conditions. 24th Symposium (International) on Combustion p Nelder J. A., Mead R. A Simplex Method for Function Minimization. The Computer Journal 7 (1965)

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

COMBUSTION CHEMISTRY COMBUSTION AND FUELS COMBUSTION CHEMISTRY CHEMICAL REACTION AND THE RATE OF REACTION General chemical reaction αa + βb = γc + δd A and B are substracts and C and are products, α, β, γ and δ are stoichiometric coefficients.

More information

MODELING HIGH-PRESSURE CHAR OXIDATION USING LANGMUIR KINETICS WITH AN EFFECTIVENESS FACTOR

MODELING HIGH-PRESSURE CHAR OXIDATION USING LANGMUIR KINETICS WITH AN EFFECTIVENESS FACTOR Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2215 2223 MODELING HIGH-PRESSURE CHAR OXIDATION USING LANGMUIR KINETICS WITH AN EFFECTIVENESS FACTOR J. HONG, W. C. HECKER and T. H. FLETCHER

More information

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth Abstract Nitrogen and sulphur compounds are investigated in

More information

NUMERICAL RESEARCH OF HEAT AND MASS TRANSFER DURING LOW-TEMPERATURE IGNITION OF A COAL PARTICLE

NUMERICAL RESEARCH OF HEAT AND MASS TRANSFER DURING LOW-TEMPERATURE IGNITION OF A COAL PARTICLE THERMAL SCIENCE: Year 2015, Vol. 19, No. 1, pp. 285-294 285 NUMERICAL RESEARCH OF HEAT AND MASS TRANSFER DURING LOW-TEMPERATURE IGNITION OF A COAL PARTICLE by Dmitrii O. GLUSHKOV *, Pavel A. STRIZHAK,

More information

DEVELOPMENT AND VALIDATION OF A COAL COMBUSTION MODEL FOR PULVERISED COAL COMBUSTION

DEVELOPMENT AND VALIDATION OF A COAL COMBUSTION MODEL FOR PULVERISED COAL COMBUSTION Proceedings of the 14th International Heat Transfer Conference IHTC14 August 8-13, 010, Washington, DC, USA IHTC14- DEVELOPMENT AND VALIDATION OF A COAL COMBUSTION MODEL FOR PULVERISED COAL COMBUSTION

More information

User's Manual for the CPD Model. The CPD model has been incorporated into two separate computer programs:

User's Manual for the CPD Model. The CPD model has been incorporated into two separate computer programs: User's Manual for the CPD Model The CPD model has been incorporated into two separate computer programs: cpd.f reads in particle temperatures vs. particle residence times cpdcp.f reads in gas temperatures

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature

Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature ICHMT2014-XXXX Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature B. Zahed 1, T. Fanaei Sheikholeslami 2,*, A. Behzadmehr 3, H. Atashi 4 1 PhD Student, Mechanical

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. # 26 Problem solving : Heterogeneous reactions Friends, in last few

More information

Well Stirred Reactor Stabilization of flames

Well Stirred Reactor Stabilization of flames Well Stirred Reactor Stabilization of flames Well Stirred Reactor (see books on Combustion ) Stabilization of flames in high speed flows (see books on Combustion ) Stabilization of flames Although the

More information

Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave

Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave Patadiya D. M. 1,1, Sheshadri T. S. 1,, Jaishankar S 1,3. 1,1 Department of Aerospace

More information

Mathematical Modeling of Oil Shale Pyrolysis

Mathematical Modeling of Oil Shale Pyrolysis October, 19 th, 2011 Mathematical Modeling of Oil Shale Pyrolysis Pankaj Tiwari Jacob Bauman Milind Deo Department of Chemical Engineering University of Utah, Salt Lake City, Utah http://from50000feet.wordpress.com

More information

RICE. Quarterly Technical Report Performance Period: 7/1/94-9/30/94 (Quarter #12) Submitted to the. Department of Energy

RICE. Quarterly Technical Report Performance Period: 7/1/94-9/30/94 (Quarter #12) Submitted to the. Department of Energy RICE COAL COMBUSTION= EFFECT OF PROCESS CONDlTlONS ON CHAR REACTIVITY Quarterly Technical Report Performance Period: 7/1/94-9/30/94 (Quarter #12) Submitted to the Department of Energy Grant Number DE-FG22-91

More information

Numerical Study of Hydrogen Inhibition of Char

Numerical Study of Hydrogen Inhibition of Char Master s Thesis Numerical Study of Hydrogen Inhibition of Char Author: Joanna Lazar Supervisor: Nils Erland L. Haugen Supervisor: Andrzej Szlek Norwegian University of Science and Technology Faculty of

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 263 The simulation with the Finite Element Method of the velocity and temperature

More information

Comparison of competitive and non-competitive char formation in polymer combustion

Comparison of competitive and non-competitive char formation in polymer combustion Comparison of competitive and non-competitive char formation in polymer combustion S.D.WATT*, J.E.J. STAGGS*, A.C. MCINTOSH* and J. BRINDLEY +, *Department of Fuel and Energy, University of Leeds, Leeds

More information

GLOWING AND FLAMING AUTOIGNITION OF WOOD

GLOWING AND FLAMING AUTOIGNITION OF WOOD Proceedings of the Combustion Institute, Volume 29, 2002/pp. 289 296 GLOWING AND FLAMING AUTOIGNITION OF WOOD N. BOONMEE and J. G. QUINTIERE Department of Fire Protection Engineering University of Maryland

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL ENTROPY INEQUALITY

A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL ENTROPY INEQUALITY THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Special Issue/2018, pp. 285 290 A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL

More information

Moving Grate Combustion Optimisation with CFD and PIV (Particle Image Velocimetry)

Moving Grate Combustion Optimisation with CFD and PIV (Particle Image Velocimetry) Moving Grate Combustion Optimisation with CFD and PIV (Particle Image Velocimetry) Thomas Nussbaumer Martin Kiener Bioenergy Research Group Lucerne University of Applied Sciences Verenum 1. Introduction

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Excerpt from the Proceedings of the COMSOL Conference 8 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan *,, Hamid Mehdizadeh

More information

MODELING CHAR OXIDATION AS A FUNCTION OF PRESSURE USING AN INTRINSIC LANGMUIR RATE EQUATION. Jianhui Hong. A dissertation submitted to the faculty of

MODELING CHAR OXIDATION AS A FUNCTION OF PRESSURE USING AN INTRINSIC LANGMUIR RATE EQUATION. Jianhui Hong. A dissertation submitted to the faculty of MODELING CHAR OXIDATION AS A FUNCTION OF PRESSURE USING AN INTRINSIC LANGMUIR RATE EQUATION by Jianhui Hong A dissertation submitted to the faculty of Brigham Young University in partial fufillment of

More information

Context and fundamental issues

Context and fundamental issues Context and fundamental issues Fire behaviour of composite materials Multi-scale problem X-ray µtomography, Panerai @NASA Length scale Condensed matter [mg - mm] Laser-induced decomposition of a composite

More information

Mathematical Modelling of Heating and Evaporation of a Spheroidal Droplet

Mathematical Modelling of Heating and Evaporation of a Spheroidal Droplet ILASS Europe 2016, 27th Annual Conference on Liquid Atomization and Spray Systems, 4-7 September 2016, Brighton, UK Mathematical Modelling of Heating and Evaporation of a Spheroidal Droplet Vladimir Zubkov

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

Assessment of Self-Heating in Wood Pellets by FE Modelling

Assessment of Self-Heating in Wood Pellets by FE Modelling Assessment of Self-Heating in Wood Pellets by FE Modelling JOHAN ANDERSON, JOHAN SJÖSTRÖM, ANDERS LÖNNERMARK, HENRY PERSSON AND IDA LARSSON SP Safety, Fire Research SP Technical Research Institute of Sweden

More information

Apportioning of Fuel and Thermal NO x

Apportioning of Fuel and Thermal NO x DEVELOPMENT OF STABLE NITROGEN ISOTOPE RATIO MEASUREMENTS OBJECTIVES The main aim of the project was to develop a nitrogen-stable isotope measurement technique for NO x and to ascertain whether it can

More information

Heat-recirculating combustors. Paul D. Ronney

Heat-recirculating combustors. Paul D. Ronney Heat-recirculating combustors Paul D. Ronney Department of Aerospace and Mechanical Engineering, 3650 McClintock Ave., OHE 430J University of Southern California, Los Angeles, CA, USA 90089-1453 1-213-740-0490

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

A STUDY OF THE COMPOSITION OF CARRYOVER PARTICLES IN KRAFT RECOVERY BOILERS

A STUDY OF THE COMPOSITION OF CARRYOVER PARTICLES IN KRAFT RECOVERY BOILERS A STUDY OF THE COMPOSITION OF CARRYOVER PARTICLES IN KRAFT RECOVERY BOILERS by Asghar Khalaj-Zadeh A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy (PhD), Graduate

More information

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER Ing. Vojtech Betak Ph.D. Aerospace Research and Test Establishment Department of Engines Prague, Czech Republic Abstract

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

THE RELATIONSHIP BETWEEN PHYSICAL PARAMETERS AND THE REACTION RATE OF PYRITE IN MINE WASTE ROCK

THE RELATIONSHIP BETWEEN PHYSICAL PARAMETERS AND THE REACTION RATE OF PYRITE IN MINE WASTE ROCK THE RELATIONSHIP BETWEEN PHYSICAL PARAMETERS AND THE REACTION RATE OF PYRITE IN MINE WASTE ROCK BY A.H. Stiller K.I. Batarseh G.P. Swaney J.J. Renton West Virginia University Morgantown, WV Acid mine drainage

More information

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Ameer Khan Patan *1, Mallaiah Mekala 2, Sunil Kumar Thamida 3 Department of Chemical Engineering, National Institute

More information

Heat and Mass transfer in Reactive Multilayer Systems (RMS)

Heat and Mass transfer in Reactive Multilayer Systems (RMS) Heat and Mass transfer in Reactive Multilayer Systems (RMS) M. Rühl *1, G. Dietrich 2, E. Pflug 1, S. Braun 2 and A. Leson 2 1 TU-Dresden Institute of Manufacturing Technology, George-Bähr 3c, 01069 Dresden,

More information

USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS

USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS F. Manenti*, D. Papasidero*, A. Cuoci*, A. Frassoldati*, T. Faravelli*, S. Pierucci*, E. Ranzi*, G. Buzzi-Ferraris*

More information

SCR Catalyst Deactivation for PRB-Firing Coal Utility Boilers

SCR Catalyst Deactivation for PRB-Firing Coal Utility Boilers SCR Catalyst Deactivation for PRB-Firing Coal Utility Boilers Christopher Bertole Cormetech, Inc. Presentation Outline Cormetech Experience Catalyst Deactivation from Ca, P, and Na Impact on Catalyst Activity

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter

Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter TALAL FATEH, FRANCK RICHARD, and THOMAS ROGAUME Institut Pprime / Département FTC Téléport 2-1, avenue Clément Ader, 86961

More information

Numerical and experimental investigations into combustion of a single biomass particle

Numerical and experimental investigations into combustion of a single biomass particle Paper # 070CO-0009 Topic: Coal and biomass combustion and gasification 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

Total Organic Carbon Analysis of Solid Samples for Environmental and Quality Control Applications

Total Organic Carbon Analysis of Solid Samples for Environmental and Quality Control Applications Application Note 35140710 Total Organic Carbon Analysis of Solid Samples for Environmental and Quality Control Applications Keywords 1030S Solids Module Aurora 1030 TOC Analyzer High Temperature Catalytic

More information

Transactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 5, 1994 WIT Press,  ISSN Smolder spread through thin horizontal fuel layers C. Di Blasi Dipartimento di Ingegneria Chimica, Universitd degli Studi di Napoli Federico II, PmzWe 7. Tecc/wo, (90^^5 Mzpo/z, 7(a/?/ ABSTRACT Two-dimensional

More information

SCALE UP OF COMBUSTION POT BEHAVIOR BY DIMENSIONAL ANALYSIS

SCALE UP OF COMBUSTION POT BEHAVIOR BY DIMENSIONAL ANALYSIS SCALE UP OF COMBUSTION POT BEHAVIOR BY DIMENSIONAL ANALYSIS T. R. SATYANARAYANA RAO G. GELERNTER R. H. ESSENHIGH The Pennsylvania State University University Park, Pennsylvania ABSTRACT The purpose this

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 97

TOPICAL PROBLEMS OF FLUID MECHANICS 97 TOPICAL PROBLEMS OF FLUID MECHANICS 97 DOI: http://dx.doi.org/10.14311/tpfm.2016.014 DESIGN OF COMBUSTION CHAMBER FOR FLAME FRONT VISUALISATION AND FIRST NUMERICAL SIMULATION J. Kouba, J. Novotný, J. Nožička

More information

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Catharina Tillmark April 18, 2006 Lund University Dept. of Energy Sciences P.O.Box 118, SE-221 00 Lund

More information

MASTE. Heterogeneous Coal Ignition. DKUMEl\lT IS UMlA$KD DISTRIBUTION OF. A Distributed Activation Energy Model of. ltlm

MASTE. Heterogeneous Coal Ignition. DKUMEl\lT IS UMlA$KD DISTRIBUTION OF. A Distributed Activation Energy Model of. ltlm A Distributed Activation Energy Model of Heterogeneous Coal Ignition Technical Progress Report for period: April 1, 1995 to June 3, 1995 US Department of Energy Grant Number: DE-FG22-94MT9413 Submitted

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

NUMERICAL SIMULATION OF HYDROGEN COMBUSTION. Jan-patrice SIMONEAU, FRAMATOME - FRANCE

NUMERICAL SIMULATION OF HYDROGEN COMBUSTION. Jan-patrice SIMONEAU, FRAMATOME - FRANCE FR0200503 NUMERICAL SIMULATION OF HYDROGEN COMBUSTION Jan-patrice SIMONEAU, FRAMATOME - FRANCE Novatome - 10, rue Juliette Recamier- F 69456 LYON cedexo6 - France Ph : +33 4 72 74 73 75 - Facs : +33 4

More information

Review of Fitting Kinetic Data

Review of Fitting Kinetic Data L6-1 Review of Fitting Kinetic Data True or false: The goal of fitting kinetic data is to find the true rate expression. What are the two general methods used to fit kinetic data? L6-2 Advantages and Drawbacks

More information

Fuel ash behavior importance of melting

Fuel ash behavior importance of melting Fuel ash behavior importance of melting Why is ash melting important? Bed agglomeration in fluidized bed boilers Bed behavior in BL recovery boilers Deposit formation and build up Corrosion of superheaters

More information

Quantitative Study of Fingering Pattern Created by Smoldering Combustion

Quantitative Study of Fingering Pattern Created by Smoldering Combustion Quantitative Study of Fingering Pattern Created by Smoldering Combustion Tada Y. 1, Suzuki K. 1, Iizuka H. 1, Kuwana K. 1, *, Kushida G. 1 Yamagata University, Department of Chemistry and Chemical Engineering,

More information

Smoldering combustion of incense sticks - experiments and modeling

Smoldering combustion of incense sticks - experiments and modeling Smoldering combustion of incense sticks - experiments and modeling H. S. Mukunda*, J. Basani*, H. M. Shravan** and Binoy Philip*, May 30, 2007 Abstract This paper is concerned with the experimental and

More information

Justification of the Modeling Assumptions in the Intermediate. Fidelity Models for Portable Power Generation Internal Report

Justification of the Modeling Assumptions in the Intermediate. Fidelity Models for Portable Power Generation Internal Report Justification of the Modeling Assumptions in the Intermediate Fidelity Models for Portable Power Generation Internal Report Alexander Mitsos, Benoît Chachuat and Paul I. Barton* Department of Chemical

More information

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY L. H. NOSZKO, A. BOTA, A. SIMAY and L. Gy. NAGY Department for Applied Chemistry, Technical University, H-1521 Budapest Received

More information

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online): 2321-0613 Development and theoretical analysis of mathematical expressions for change of entropy

More information

[ A] 2. [ A] 2 = 2k dt. [ A] o

[ A] 2. [ A] 2 = 2k dt. [ A] o Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions The reaction 2A P follows second-order kinetics The rate constant for the reaction is k350 0 4 Lmol s Determine the time required for the concentration

More information

Coupling of ChemApp and OpenFOAM

Coupling of ChemApp and OpenFOAM Coupling of ChemApp and OpenFOAM Messig, Danny; Rehm, Markus; Meyer, Bernd 19th May 2009 Contents 1 Introduction 2 Software OpenFOAM ChemApp Cantera 3 Coupling of chemistry packages and OpenFOAM 4 Testcases

More information

Copper Oxide as an Oxygen Carrier for Chemical Looping Combustion

Copper Oxide as an Oxygen Carrier for Chemical Looping Combustion Copper Oxide as an Oxygen Carrier for Chemical Looping Combustion Eli A. Goldstein and Reginald E. Mitchell High Temperature Gasdynamics Laboratory Thermosciences Group Mechanical Engineering Department

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS A. GREGÓRIO *, A. GARCIA-GARCIA #, D. BOAVIDA *, I. GULYURTLU * AND I. CABRITA * * Department of

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer

2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer This is the Pre-Published Version. 2D Heat and Mass Transfer Modeling of Methane Steam Reforming for Hydrogen Production in a Compact Reformer Meng Ni Building Energy Research Group, Department of Building

More information

Experimental investigation of Methane Partial Oxidation for Hydrogen Production

Experimental investigation of Methane Partial Oxidation for Hydrogen Production Research Article Journal of Energy Management and Technology (JEMT) Vol. 2, Issue 1 20 Experimental investigation of Methane Partial Oxidation for Hydrogen Production HAMID REZA LARI 1 AND MOHAMMAD REZA

More information

CFD Ablation Predictions with Coupled GSI Modeling for Charring and non-charring Materials 6

CFD Ablation Predictions with Coupled GSI Modeling for Charring and non-charring Materials 6 for Charring and non-charring Materials 6 D. Bianchi, A. Turchi, F. Nasuti, M. Onofri C.R.A.S. Sapienza University of Rome, Rome, Italy Sapienza Activity in ISP- Program 5// Pagina 5 th Ablation Workshop,

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Diffusion and reaction

More information

Premixed filtration combustion of micron and sub-micron particles in inert porous media: A theoretical analysis

Premixed filtration combustion of micron and sub-micron particles in inert porous media: A theoretical analysis Korean J. Chem. Eng., 8(), 461-469 (11) DOI: 1.17/s11814-1-371-8 INVITED REVIEW PAPER Premixed filtration combustion of micron and sub-micron particles in inert porous media: A theoretical analysis Mehdi

More information

Direct pore level simulation of premixed gas combustion in porous inert media using detailed chemical kinetics

Direct pore level simulation of premixed gas combustion in porous inert media using detailed chemical kinetics Direct pore level simulation of premixed gas combustion in porous inert media using detailed chemical kinetics Ilian Dinkov, Peter Habisreuther, Henning Bockhorn Karlsruhe Institute of Technology, Engler-Bunte-Institute,

More information

PYROLYSIS AND PARTIAL OXIDATION OF COAL PARTICLE IN SUPERCRITICAL WATER

PYROLYSIS AND PARTIAL OXIDATION OF COAL PARTICLE IN SUPERCRITICAL WATER PYROLYSIS AND PARTIAL OXIDATION OF COAL PARTICLE IN SUPERCRITICAL WATER Vostrikov A. A.*, Dubov D. Yu., Psarov S. A., Sokol M.Ya. Novosibirsk State University, Institute of Thermophysics SB RAS, Russia

More information

5. Diffusion/Reaction Application

5. Diffusion/Reaction Application 5. Diffusion/Reaction Application Diffusion of the reactants from the surface of the catalyst to the interior of its pores constitutes one of the resistances in a reaction system catalyzed by the solid

More information

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy.

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy. THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM Alberto Peña 1, Fernando Legarda 1, Harmut Wider 2, Johan Karlsson 2 1 University of the Basque Country Nuclear Engineering and

More information

Mass Transfer with Chemical Reactions in Porous Catalysts: A Discussion on the Criteria for the Internal and External Diffusion Limitations

Mass Transfer with Chemical Reactions in Porous Catalysts: A Discussion on the Criteria for the Internal and External Diffusion Limitations Defect and Diffusion Forum Online: 03-0-3 ISSN: 66-9507, Vols. 334-335, pp 79-83 doi:0.408/www.scientific.net/ddf.334-335.79 03 Trans Tech Publications, Switzerland Mass Transfer with Chemical Reactions

More information

Overview of Reacting Flow

Overview of Reacting Flow Overview of Reacting Flow Outline Various Applications Overview of available reacting flow models Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Chemical Process Industry

More information

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 32 Stefan Flow Model We are now familiar with

More information

Modeling of dispersed phase by Lagrangian approach in Fluent

Modeling of dispersed phase by Lagrangian approach in Fluent Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/

More information

SCR Catalyst Deactivation Mechanism for PRB-Firing Coal Utility Boilers

SCR Catalyst Deactivation Mechanism for PRB-Firing Coal Utility Boilers SCR Catalyst Deactivation Mechanism for PRB-Firing Coal Utility Boilers Christopher Bertole Jeremy Freeman Cormetech, Inc. Page 1 Presentation Outline SCR Design Approach for PRB Units Field Experiments

More information

DARS Digital Analysis of Reactive Systems

DARS Digital Analysis of Reactive Systems DARS Digital Analysis of Reactive Systems Introduction DARS is a complex chemical reaction analysis system, developed by DigAnaRS. Our latest version, DARS V2.0, was released in September 2008 and new

More information

Underground Coal Fire Extinction Model using Coupled Reactive Heat and Mass Transfer Model in Porous Media

Underground Coal Fire Extinction Model using Coupled Reactive Heat and Mass Transfer Model in Porous Media Excerpt from the Proceedings of the COMSOL Conference 009 Milan Underground Coal Fire Extinction Model using Coupled Reactive Heat and Mass Transfer Model in Porous Media Suhendra*, Martin Schmidt, Ulrich

More information

LECUTRE 31:Refractory and gas radiation

LECUTRE 31:Refractory and gas radiation LECUTRE 31:Refractory and gas radiation Key words: Radiation, View factor, Gas radiation, Convection Thermal role of refractory surface: Refractory surfaces play an important role in keeping the furnace

More information

UQ in Reacting Flows

UQ in Reacting Flows UQ in Reacting Flows Planetary Entry Simulations High-Temperature Reactive Flow During descent in the atmosphere vehicles experience extreme heating loads The design of the thermal protection system (TPS)

More information

The influence of the spectrum of jet turbulence on the. stability, NOx emissions and heat release profile of. pulverised coal flames. Ph.D.

The influence of the spectrum of jet turbulence on the. stability, NOx emissions and heat release profile of. pulverised coal flames. Ph.D. The influence of the spectrum of jet turbulence on the stability, NOx emissions and heat release profile of pulverised coal flames Ph.D. Thesis Neil Lincoln Smith " The University of Adelaide Qepartments

More information

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Keyvan Daneshvar *1, Alessandro Fantino 1, Cinzia Cristiani 1, Giovanni Dotelli 1, Renato Pelosato 1, Massimo Santarelli

More information

Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions

Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions 3-D CFD Model for Shell & Tube Exchanger with 7 Tubes Ender Ozden and Ilker Tari (2010) Multitubular

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Dr Panagiotis Kechagiopoulos. Lecturer in Chemical Engineering. School of Engineering

Dr Panagiotis Kechagiopoulos. Lecturer in Chemical Engineering. School of Engineering Catalytic reforming of biomass derived oxygenates for sustainable hydrogen production: Experimental investigations, microkinetic modelling and reactor design Dr Panagiotis Kechagiopoulos Lecturer in Chemical

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Combustion, multiphase flows Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské

More information

Investigation of radiative heat transfer in fixed bed biomass furnaces

Investigation of radiative heat transfer in fixed bed biomass furnaces Available online at www.sciencedirect.com Fuel 87 (2008) 2141 2153 www.fuelfirst.com Investigation of radiative heat transfer in fixed bed biomass furnaces T. Klason a, X.S. Bai a, *, M. Bahador b, T.K.

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Physical Chemistry Chapter 6 Chemical Kinetics

Physical Chemistry Chapter 6 Chemical Kinetics Physical Chemistry Chapter 6 Chemical Kinetics by Azizul Helmi Sofian Faculty of Chemical & Natural Resources Engineering azizulh@ump.edu.my Chapter Description Aims To define rate laws accordingly To

More information

Flame Spread and Extinction over Thermally Thick PMMA in Low Oxygen Concentration Flow

Flame Spread and Extinction over Thermally Thick PMMA in Low Oxygen Concentration Flow Flame Spread and Extinction over Thermally Thick PMMA in Low Oxygen Concentration Flow Y. KUDO, M. ITAKURA, Y. FUJITA, and A. ITO Faculty of Science and Technology Hirosaki University 3 Bunkyo-cho Hirosaki,

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information