Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions

Size: px
Start display at page:

Download "Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions"

Transcription

1 Diffusion and Reaction in Fe-Based Catalyst for Fischer- Tropsch Synthesis Using Micro Kinetic Rate Expressions 3-D CFD Model for Shell & Tube Exchanger with 7 Tubes Ender Ozden and Ilker Tari (2010) Multitubular Reactor Design for Low Temperature Fischer-Tropsch Arvind Nanduri & Patrick L. Mills * Department of Chemical & Natural Gas Engineering Texas A&M University-Kingsville Kingsville, TX USA * Patrick.Mills@tamuk.edu K Tubes Session: Transport Phenomena October 9, 2014

2 Presentation Outline Introduction Objectives F-T Chemistry, Kinetics & Thermo Multiphysics Model Equations Key Results Catalyst Performance Concentration Profiles Computational Difficulties Conclusions Weight percentage Anderson-Schulz-Flory (ASF) Product Distribution 0 C2-4 C1 C5-11 C Chain growth probability factor, α C20-n CO Dissociation Pathway M. Ojeda et al. (2008)

3 Introduction Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H 2 ) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude Gasification or oxidation CH 4 CO + H 2 (Syn Gas) FTS Paraffins Olefins Oxygenates Etc. Standard large-scale gas conversion Isolated Stranded gas conversion n CO + 2n H 2 -(CH 2 ) n - + n H 2 O David A. Wood, Chikezie Nwaoha, & Brian F. Towler, Journal of Natural Gas Science and Engineering (2012)

4 Objectives Model the Fischer-Tropsch (FT) reaction network Implement micro-kinetic rate expressions Assess the effect of process parameters on the FT product distribution i. Catalyst particle shape ii. Operating conditions (T, P) Incorporate Soave-Redlich-Kwong (SRK) equation of state (EOS) into the particle-scale transport-kinetics model to more accurately describe the vapor-liquid-equilibrium (VLE) behavior of the FT product distribution within the porous catalyst particle. Bulk gas phase Cylinder Sphere L p Reactants diffusing into the pores Catalyst pores filled with liquid wax Products diffusing into the bulk phase R p Ring/Hollow Cylinder R p L p R i R o

5 Key F-T Catalytic Reactions Main Reactions 1 Methane CO + 3H 2 CH 4 + H 2 O Conventional Names of F-T Products 2 Paraffins (2n+2) H 2 + n CO C n H 2n+2 + n H 2 O Name Composition 3 Olefins 2n H 2 + n CO C n H 2n + n H 2 O Fuel Gas C 1 -C 2 4 WGS (only on Fe catalyst) CO + H 2 O CO 2 + H 2 Side Reactions 5 Alcohols 2n H 2 + n CO C n H 2n+1 O + n H 2 O 6 Boudouard Reaction 2CO C + CO 2 Catalyst Modifications 7 Catalyst Oxidation/Reduction (a) M x O y + y H 2 y H 2 O + x M LPG C 3 -C 4 Gasoline C 5 -C 12 Naphtha C 8 -C 12 Kerosene C 11 -C 13 Diesel/Gasoil C 13 -C 17 F-T Wax C 20+ (b) M x O y + y CO y CO 2 + x M 8 Bulk Carbide Formation y C + x M M x C y David A. Wood, Chikezie Nwaoha, & Brian F. Towler, Journal of Natural Gas Science and Engineering (2012)

6 Fischer-Tropsch Micro-kinetic Rates Fe-Based Olefin Readsorption Microkinetic Model Syn Gas Paraffins (C n H 2n+2 ) Olefins (C n H 2n ) n = 2 to 20 Long Chain Paraffins (C n H 2n+2 ) Re-adsorption of Olefins Wang et al., Fuels (2003)

7 Thermodynamics of F-T Reaction Mixtures Soave-Redlich-Kwong (SRK) EOS Flash Calculations Rachford-Rice Objective Function Vapor-Liquid Equilibrium ^ ^ f L i = f V i i = 1 to 43 with 43 distinct roots Only the positive roots less than 1 are used for VLE calculations Catalyst Pore Hydrocarbons in Vapor Phase Wilson s Correlation Liquid Wax with Dissolved Hydrocarbons V F Wang et al., Fuels (1999) L

8 Catalyst Properties & Process Conditions Cylinder Sphere Ring/Hollow Cylinder L p L p R p R p R i Volume sphere = Volume cylinder = Volume ring R o (4/3) R 3 sphere = L cylinder R 2 cylinder= L ring (R 2 o-r 2 i) Dimensions of Cylinder and Ring for R sphere = 1.5 mm Catalyst Properties Cylinder Ring L = 3 mm & R = 1 mm L = 2 mm, R o =1.5 mm & R i =0.3 mm Density of pellet, ρ p 1.95 x 10 6 (gm/m 3 ) Porosity of pellet,ε 0.51 Tortuosity, τ 2.6 Dimensions of Cylinder and Ring for R sphere = 1 mm Cylinder L = 3 mm & R = 0.7 mm Ring L = 2 mm, R o =1.5 mm & R i =1 mm Operating Conditions Temperature, o K 493, 523 & 533 Pressure, bar 20, 25 & 30 H 2 /CO 2

9 Governing Multiphysics Model Equations 43 species and 43 reactions

10 Model Assumptions & Boundary Conditions Boundary Conditions Spherical Particle Cylindrical Particle At ξ = -1 and ξ = 1, C i = C i,bulk (CO 2,bulk = eps for convergence) At ξ = -1 and ξ = 1, C i = C i,bulk (CO 2,bulk = eps for convergence) Ring Particle At ξ = 0 and ξ = 1, C i = C i,bulk (CO 2,bulk = eps for convergence) Species Flux Independent of composition C i Dependent on local temperature T Future work: Use multicomponent flux transport models COMSOL Modules Transport of Diluted Species Coefficient Form PDE Solver Key Assumptions i. Concentration is a function of only the radial coordinate, i.e., C i = C i (r) ii. Steady-state iii. All catalyst particle shapes have the same material properties (ε, τ, ρ, k eff ) iv. Isothermal conditions (since ΔT is small) v. Bulk gas phase contains only H 2 and CO (Reactor entrance conditions)

11 Effectiveness Factor Concentration (mol/m 3 ) Various Catalyst Shapes: h & C i Profiles Effectiveness Factor Concentration (mol/m 3 ) Concentration (mol/m 3 ) Effectiveness Factor Cylinder Ring/Hollow Cylinder Sphere 493 K 513 K 533 K 493 K 513 K 533 K 493 K 513 K 533 K L p = 3 mm R o = 1.5 mm Ri = 0.3 mm L p = 2 mm R p = 1.5 mm Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p H 2 CO CO 2 H 2 O H 2 CO CO 2 H 2 O H 2 CO CO 2 H 2 O Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p

12 Methane based Intra-particle Diesel Selectivity Methane based Intra-particle Diesel Selectivity Methane based Intra-particle Diesel Selectivity L/V L/V L/V & & & L p = 3 mm R o = 1.5 mm Ri = 0.3 mm L p = 2 mm R p = 1.5 mm H 2 Concentration Profile H 2 Concentration Profile H 2 Concentration Profile R p = 1.5 mm δ = 1.2 mm R p = 0.7 mm δ = 0.5 mm Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p R p = 1.5 mm R p = 0.7 mm δ = 0.5 mm δ = 1.2 mm Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p

13 Computational Issues To avoid convergence issues, the radius of the particle was set to a very small number and the subsequent solution was stored to be used as initial conditions for higher radius. H 2 CO CO 2 H 2 O Numerical instabilities were encountered in the region where CO and CO 2 concentrations approached zero leading to convergence issues and unrealistic values. Region with numerical instabilities Once the convergence issue was solved the mesh was refined to get smooth curves. The convergence issues were solved by not letting CO and CO 2 concentrations approach zero by using CO=if(CO 0,eps,CO) and CO 2 =if(co 2 0,eps,CO).

14 Conclusions A 1-D catalyst pellet model can be used to analyze particle-level performance. Catalyst performance on a reactor-scale can be studied by coupling the pellet model to the tube & shell-side models for the MTFBR. The CO conversion, effectiveness factor, intra-particle liquid to vapor (L/V) fraction, catalyst strength and the diesel selectivity results suggest that the cylindrical and spherical catalyst particle shapes are preferred over hollow rings. The presence of more liquid in the spherical particle creates an advantage for the cylindrical catalyst shape due to diffusional limitations in the wax. Micro kinetic rate equations, when coupled with intraparticle transport effects and vapor-liquid equilibrium phenomena, captures the transportkinetic interactions and phase behavior for gas-phase FT catalysts. Convergence can be a major issue in fast reaction-diffusion systems. This can sometimes be easily resolved by using simple built-in operators, such as if () and eps, to avoid negative and other unrealistic values of dependent variables at the boundaries or interior and then refining the mesh in accordance with computational time.

15 Thank You

16

17 References

18 References (cont d)

19 Mole Fraction of Diesel in Liquid Phase Mole Fraction of Diesel in Liquid Phase Mole Fraction of Diesel in Liquid Phase Mole Fraction of Wax in Liquid Phase Mole Fraction of Wax in Liquid Phase Mole Fraction of Wax in Liquid Phase Mole Fraction of Wax & Diesel in Liquid Phase Cylinder Ring/Hollow Cylinder Sphere R p = 0.7 mm δ = 1.2 mm δ = 0.5 mm R p = 1.5 mm Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p R p = 0.7 mm δ = 1.2 mm δ = 0.5 mm R p = 1.5 mm Dimensionless Radial Coordinate, ξ = r/r p Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) Dimensionless Radial Coordinate, ξ = r/r p

20 Mole Fraction of Fuel Gas in Vapor Phase Mole Fraction of Fuel Gas in Vapor Phase Mole Fraction of Fuel Gas in Vapor Phase Mole Fraction of Fuel Gas in Vapor Phase Cylinder Ring/Hollow Cylinder Sphere δ = 1.2 mm R p = 1.5 mm 533 K 533 K 533 K 513 K 493 K Dimensionless Radial Coordinate, ξ = r/r p 513 K 493 K Dimensionless Radial Coordinate, ξ = (r-r i ) /(R o -R i ) 513 K 493 K Dimensionless Radial Coordinate, ξ = r/r p

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. # 26 Problem solving : Heterogeneous reactions Friends, in last few

More information

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol A. G. Dixon *,1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic

More information

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Songjun Liu; Ana Obradović; Joris W. Thybaut; Guy B. Marin Laboratory

More information

Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet

Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet Modeling of the Unsteady State Methanol Synthesis at the Level of Catalyst Pellet IONUT BANU, IOANA STOICA, GHEORGHE BUMBAC, GRIGORE BOZGA* University Politehnica of Bucharest, Department of Chemical and

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

5. Diffusion/Reaction Application

5. Diffusion/Reaction Application 5. Diffusion/Reaction Application Diffusion of the reactants from the surface of the catalyst to the interior of its pores constitutes one of the resistances in a reaction system catalyzed by the solid

More information

PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS

PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS A. M. BARBOSA NETO 1, A. C. BANNWART 1 1 University of Campinas, Mechanical Engineering Faculty, Energy Department

More information

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al o 3 Catalyst Tejas Bhatelia 1, Wenping Ma, Burtron Davis, Gary Jacobs and Dragomir Bukur 1* 1 Department of Chemical Engineering, Texas

More information

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol A. Dixon 1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic Institute,

More information

CHAPTER TWO. Reviews on Chemistry of Fischer-Tropsch Synthesis

CHAPTER TWO. Reviews on Chemistry of Fischer-Tropsch Synthesis CHATER TWO Reviews on Chemistry of Fischer-Tropsch Synthesis.0 Introduction It is envisaged that catalyst design for enhanced economy of the process can be pursued by tailoring the synthesis to high value

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

CFD Modeling of Hollow Fiber Membrane Contactor for Post-Combustion CO 2 Capture

CFD Modeling of Hollow Fiber Membrane Contactor for Post-Combustion CO 2 Capture 1 CFD Modeling of Hollow Fiber Membrane Contactor for Post-Combustion CO 2 Capture Muhammad Saeed, Liyuan Deng* Membrane Research Group (Memfo), Department of Chemical Engineering, Norwegian University

More information

Mathematical Modeling of Oil Shale Pyrolysis

Mathematical Modeling of Oil Shale Pyrolysis October, 19 th, 2011 Mathematical Modeling of Oil Shale Pyrolysis Pankaj Tiwari Jacob Bauman Milind Deo Department of Chemical Engineering University of Utah, Salt Lake City, Utah http://from50000feet.wordpress.com

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Excerpt from the Proceedings of the COMSOL Conference 8 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan *,, Hamid Mehdizadeh

More information

Analysis and Characterization of Fischer-Tropsch Products through Thermodynamic Equilibrium using Global Optimization Techniques

Analysis and Characterization of Fischer-Tropsch Products through Thermodynamic Equilibrium using Global Optimization Techniques 1669 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Fixed-Bed Catalytic Reactors I

Fixed-Bed Catalytic Reactors I 1 / 160 Fixed-Bed Catalytic Reactors I Copyright c 2018 by Nob Hill Publishing, LLC In a fixed-bed reactor the catalyst pellets are held in place and do not move with respect to a fixed reference frame.

More information

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale

Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Dynamic Simulation Using COMSOL Multiphysics for Heterogeneous Catalysis at Particle Scale Ameer Khan Patan *1, Mallaiah Mekala 2, Sunil Kumar Thamida 3 Department of Chemical Engineering, National Institute

More information

A STUDY OF RADIAL HEAT TRANSFER IN FIXED BED FISCHER-TROPSCH SYNTHESIS REACTORS X ZHU

A STUDY OF RADIAL HEAT TRANSFER IN FIXED BED FISCHER-TROPSCH SYNTHESIS REACTORS X ZHU A STUDY OF RADIAL HEAT TRANSFER IN FIXED BED FISCHER-TROPSCH SYNTHESIS REACTORS X ZHU A STUDY OF RADIAL HEAT TRANSFER IN FIXED BED FISCHER-TROPSCH SYNTHESIS REACTORS By Xiaowei Zhu A thesis submitted to

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Presented at the COMSOL Conference 2008 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan Norwegian University of Science and

More information

Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor

Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor Conference topics: cr11 TIChE International Conference 11 Two-dimensional mathematical modeling of oxidative coupling of methane in a membrane reactor Salamah Manundawee 1, Suttichai Assabumrungrat 1,

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

CFD Simulation of Flashing and Boiling Flows Using FLUENT

CFD Simulation of Flashing and Boiling Flows Using FLUENT CFD Simulation of Flashing and Boiling Flows Using FLUENT Hua Bai and Paul Gillis The Dow Chemical Company FLUENT UGM 2004 Liquid/Gas Phase Change found in many industrial chemical processes involves complex

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE V. P. de MATOS MARTINS 1, A. M. BARBOSA NETO 1, A. C. BANNWART 1 1 University of Campinas, Mechanical

More information

An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics An Introduction to Chemical Kinetics Michel Soustelle WWILEY Table of Contents Preface xvii PART 1. BASIC CONCEPTS OF CHEMICAL KINETICS 1 Chapter 1. Chemical Reaction and Kinetic Quantities 3 1.1. The

More information

Preventing Thermal Runaways of LENR Reactors. Jacques Ruer sfsnmc

Preventing Thermal Runaways of LENR Reactors. Jacques Ruer sfsnmc Preventing Thermal Runaways of LENR Reactors Jacques Ruer sfsnmc 1 Temperature activated reactions Several authors report that the LENR power increases with the temperature. 2 Temperature activated reactions

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

VI. Porous Media. Lecture 34: Transport in Porous Media

VI. Porous Media. Lecture 34: Transport in Porous Media VI. Porous Media Lecture 34: Transport in Porous Media 4/29/20 (corrected 5/4/2 MZB) Notes by MIT Student. Conduction In the previous lecture, we considered conduction of electricity (or heat conduction

More information

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS Olaf Deutschmann 1, Lanny D. Schmidt 2, Jürgen Warnatz 1 1 Interdiziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg Im Neuenheimer

More information

SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants

SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Published in: Journal of Power Sources DOI: 10.1016/j.jpowsour.01.1.1

More information

MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER

MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER Latin American Applied Research 36:89-9 (6) MODELING AND SIMULATION OF AN AUTOTHERMAL REFORMER J. PIÑA and D. O. BORIO PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7. (8) Bahía Blanca, Argentina. julianap@plapiqui.edu.ar

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Diffusion and reaction

More information

Overview of Reacting Flow

Overview of Reacting Flow Overview of Reacting Flow Outline Various Applications Overview of available reacting flow models Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Chemical Process Industry

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

Fixed-Bed Catalytic Reactors

Fixed-Bed Catalytic Reactors Fixed-Bed Catalytic Reactors Copyright c 2015 by Nob Hill Publishing, LLC In a fixed-bed reactor the catalyst pellets are held in place and do not move with respect to a fixed reference frame. Material

More information

Fixed-Bed Catalytic Reactors

Fixed-Bed Catalytic Reactors Fixed-Bed Catalytic Reactors Copyright c 2015 by Nob Hill Publishing, LLC In a fixed-bed reactor the catalyst pellets are held in place and do not move with respect to a fixed reference frame. Material

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs

Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs Numerical Study of Flux Models for CO 2 : Enhanced Natural Gas Recovery and Potential CO 2 Storage in Shale Gas Reservoirs Nilay J. Prajapati and Patrick L. Mills * Department of Chemical and Natural Gas

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis

Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis 4/26/207 Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis Abbas J. Sultan, Laith S. Sabri, and Muthanna H. Al-Dahhan

More information

= k 2 [CH 3 *][CH 3 CHO] (1.1)

= k 2 [CH 3 *][CH 3 CHO] (1.1) Answers to Exercises Last update: Tuesday 29 th September, 205. Comments and suggestions can be sent to i.a.w.filot@tue.nl Exercise d[ch 4 ] = k 2 [CH 3 *][CH 3 CHO].) The target is to express short-lived

More information

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz,

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, rherz@ucsd.edu For isothermal n-th order reactions where n >= 0, the catalyst effectiveness factor value

More information

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Center for Sustainable Technologies Indian Institute of Science Bangalore IDF presentation

More information

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer Diffusion 051333 Unit operation in gro-industry III Department of Biotechnology, Faculty of gro-industry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of

More information

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry AP Chemistry A. Allan Chapter Six Notes - Thermochemistry 6.1 The Nature of Energy A. Definition 1. Energy is the capacity to do work (or to produce heat*) a. Work is a force acting over a distance (moving

More information

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor E. YASARI et al., Modeling, Simulation and Control of a Tubular Fixed-bed, Chem. Biochem. Eng. Q. 24 (4) 415 423 (2010) 415 Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information Bi Doped CeO 2 Oxide Supported Gold Nanoparticle Catalysts for the Aerobic

More information

Selective Deposition of Platinum by Strong Electrostatic Adsorption onto Cobalt- and Ironbased Catalysts for Fischer-Tropsch Synthesis

Selective Deposition of Platinum by Strong Electrostatic Adsorption onto Cobalt- and Ironbased Catalysts for Fischer-Tropsch Synthesis University of South Carolina Scholar Commons Theses and Dissertations 2018 Selective Deposition of Platinum by Strong Electrostatic Adsorption onto Cobalt- and Ironbased Catalysts for Fischer-Tropsch Synthesis

More information

Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis van der Laan, Gerard Pieter

Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis van der Laan, Gerard Pieter University of Groningen Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis van der Laan, Gerard Pieter IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Keyvan Daneshvar *1, Alessandro Fantino 1, Cinzia Cristiani 1, Giovanni Dotelli 1, Renato Pelosato 1, Massimo Santarelli

More information

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 1 Department of Process Engineering,

More information

Application of CFD Techniques for Prediction of NH 3. Transport Through Porous Membranes

Application of CFD Techniques for Prediction of NH 3. Transport Through Porous Membranes Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 67-72 Application

More information

Modeling of Fischer-Tropsch Product Distribution over Fe-based Catalyst

Modeling of Fischer-Tropsch Product Distribution over Fe-based Catalyst 793 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments Unit 12. Performing Kinetics Experiments Overview Generating a valid rate expression for a reaction requires both a reactor and and an accurate mathematical model for that reactor. Unit 11 introduced the

More information

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan m WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xi

More information

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 38(2). pp. 137-141 (2010) DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS GY. RÁDI, T. VARGA, T. CHOVÁN Department

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

Methanation of carbon dioxide by hydrogen reduction a thermodynamic analysis

Methanation of carbon dioxide by hydrogen reduction a thermodynamic analysis E3S Web of Conferences 17 1 17 DOI: 1.11/ e3sconf/1711 Energy and Fuels 16 Methanation of carbon dioxide by hydrogen reduction a thermodynamic analysis Robert Kaczmarczyk1* Agata Mlonka-Mędrala1 and Sebastian

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

Aspen Dr. Ziad Abuelrub

Aspen Dr. Ziad Abuelrub Aspen Plus Lab Pharmaceutical Plant Design Aspen Dr. Ziad Abuelrub OUTLINE 1. Introduction 2. Getting Started 3. Thermodynamic Models & Physical Properties 4. Pressure Changers 5. Heat Exchangers 6. Flowsheet

More information

Manganese promotion in cobalt-based Fischer-Tropsch catalysis

Manganese promotion in cobalt-based Fischer-Tropsch catalysis Manganese promotion in cobalt-based Fischer-Tropsch catalysis F. Morales Cano, O.L.J. Gijzeman, F.M.F. de Groot and B.M. Weckhuysen Department of Inorganic Chemistry and Catalysis, Debye Institute, Utrecht

More information

Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit

Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 SUPPLEMENTARY INFORMATION Theta-1 zeolite catalyst for increasing the yield

More information

Supplementary Information. The role of copper particle size in low pressure methanol synthesis via CO 2 hydrogenation over Cu/ZnO catalysts

Supplementary Information. The role of copper particle size in low pressure methanol synthesis via CO 2 hydrogenation over Cu/ZnO catalysts Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 Supplementary Information The role of copper particle size in low pressure

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

FISCHER-TROPSCH STUDIES WITH ACETYLENIC COMPOUNDS AS PROBES. Li Hou. B.S. in Chemical Engineering, Hefei University of Technology, China, 1997

FISCHER-TROPSCH STUDIES WITH ACETYLENIC COMPOUNDS AS PROBES. Li Hou. B.S. in Chemical Engineering, Hefei University of Technology, China, 1997 FISCHER-TROPSCH STUDIES WITH ACETYLENIC COMPOUNDS AS PROBES by Li Hou B.S. in Chemical Engineering, Hefei University of Technology, China, 1997 M.S. in Chemical Engineering, Hefei University of Technology,

More information

Methane Oxidation Reactions

Methane Oxidation Reactions Methane Oxidation Reactions CH 4 + 2 O -> CO 2 2 + 2 H 2 O Total Oxidation (Combustion) CH 4 + 0.5 O -> CO 2 + 2 H 2 CO + 0.5 O -> CO 2 2 H 2 + 0.5 O -> H 2 2 O CH 4 + H 2 O->CO + 3 H 2 Partial Oxidation

More information

TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN

TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN Laurence A. Belfiore Department of Chemical Engineering Colorado State University Fort Collins, CO A JOHN WILEY & SONS, INC., PUBLICATION TRANSPORT PHENOMENA

More information

Deep Desulfurization of Diesel using a Single-Phase Micro-reactor

Deep Desulfurization of Diesel using a Single-Phase Micro-reactor Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Deep Desulfurization of Diesel using a Single-Phase Micro-reactor Jake Jones, 1 Alex Yokochi, 1 and Goran Jovanovic *1 1 School of Chemical,

More information

12-1. Phlogiston. Chapter 12 Chemical Reactions The Mole 4/7/2011. Fig

12-1. Phlogiston. Chapter 12 Chemical Reactions The Mole 4/7/2011. Fig Chapter 12 Chemical Reactions 12-1. Phlogiston 12-2. Oxygen 12-3. The Mole 12-4. Formula Units 12-5. Exothermic and Endothermic Reactions 12-6. Chemical Energy and Stability 12-7. Activation Energy 12-8.

More information

The Seeding of Methane Oxidation

The Seeding of Methane Oxidation The Seeding of Methane Oxidation M. B. DAVIS and L. D. SCHMIDT* Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA Mixtures of light alkanes and

More information

Deuterium Tracer Study Of The Mechanism Of Iron Catalyzed Fischer-Tropsch Synthesis

Deuterium Tracer Study Of The Mechanism Of Iron Catalyzed Fischer-Tropsch Synthesis Eastern Kentucky University Encompass Online Theses and Dissertations Student Scholarship January 2014 Deuterium Tracer Study Of The Mechanism Of Iron Catalyzed Fischer-Tropsch Synthesis Yunxin Liao Eastern

More information

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms

Numerical Modeling of Laminar, Reactive Flows with Detailed Kinetic Mechanisms Department of Chemistry, Materials, and Chemical Engineering G. Natta Politecnico di Milano (Italy) A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi Numerical Modeling of Laminar, Reactive Flows with

More information

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Presented at the COMSOL Conference 2008 Boston Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Jarrod Schiffbauer *,1, Josh Fernandez 2,

More information

Experimental investigation of Methane Partial Oxidation for Hydrogen Production

Experimental investigation of Methane Partial Oxidation for Hydrogen Production Research Article Journal of Energy Management and Technology (JEMT) Vol. 2, Issue 1 20 Experimental investigation of Methane Partial Oxidation for Hydrogen Production HAMID REZA LARI 1 AND MOHAMMAD REZA

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Modeling Vapor Liquid Equilibrium of Binary and Ternary Systems of CO 2 + Hydrocarbons at High-Pressure Conditions

Modeling Vapor Liquid Equilibrium of Binary and Ternary Systems of CO 2 + Hydrocarbons at High-Pressure Conditions A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Design and Manufacturing of Catalytic Membrane Reactors by Developing New Nano-architectured Catalytic and Selective Membrane Materials

Design and Manufacturing of Catalytic Membrane Reactors by Developing New Nano-architectured Catalytic and Selective Membrane Materials Design and Manufacturing of Catalytic Membrane Reactors by Developing New Nano-architectured Catalytic and Selective Membrane Materials This project is supported by the European Community s Seventh Framework

More information

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Hydrogenation of

More information

Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles

Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles pubs.acs.org/iecr Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles Panagiotis N. Kechagiopoulos, Joris W. Thybaut,* and Guy

More information

CFD Simulation of Catalytic Combustion of Benzene

CFD Simulation of Catalytic Combustion of Benzene Iranian Journal of Chemical Engineering Vol. 6, No. 4 (Autumn), 9, IAChE CFD Simulation of Catalytic Combustion of Benzene A. Niaei 1, D. Salari, S. A. Hosseini 3 1- Associate Professor of Chemical Engineering,

More information

Section 1: What is a Chemical Reaction

Section 1: What is a Chemical Reaction Section 1: What is a Chemical Reaction I can describe and give examples of physical and chemical changes. I can identify reactants and products. I can explain what happens to molecules in chemical reactions

More information

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'. : s / ; '.... ;. : : ^.'-'. Catalytic Chemistry Bruce C. Gates University of Delaware John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Contents List of Notation xix 1 INTRODUCTION

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

GATE question papers: Chemical Engineering 009 (CH) GATE question papers: Chemical Engineering 009 (CH) Q. Q. 0 carry one mark each.. The direction of largest increase of the function xy 3 x at the point

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres

COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres A G. Dixon *1 1 Department of Chemical Engineering, Worcester Polytechnic Institute Worcester, MA, USA *Corresponding

More information

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES ALICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES L. A. ETROV SABIC Chair in Heterogeneous Catalysis Chemical and Materials Engineering Department College of Engineering, King Abdulaziz

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Rodrigo Suárez París Supervisors: Magali Boutonnet, Sven Järås Division of Chemical Technology, KTH OUTLINE Introduction and objective Experimental

More information

Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt

Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Grading the amount of electrochemcial active sites along the main flow direction of an SOFC Andersson, Martin; Yuan, Jinliang; Sundén, Bengt Published in: Journal of the Electrochemical Society DOI: 10.1149/2.026301jes

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information