Supporting Information for:

Size: px
Start display at page:

Download "Supporting Information for:"

Transcription

1 Supporting Information for: Molecular interpretation of preferential interactions in protein solvation: a solvent-shell perspective by means of minimum-distance distribution functions Leandro Martínez 1 and Seishi Shimizu 2 1 Institute of hemistry and enter for omputational ngineering & Science, University of ampinas. ampinas, SP, razil. leandro@iqm.unicamp.br 2 York Structural iology Laboratory, epartment of hemistry, University of York. Heslington, York, UK. seishi.shimizu@york.ac.uk Table S1: ompositions of the solvents simulated. Urea TMO /mol L 1 N urea N water N T MO N water GN 1,2 K 3 atom ɛ/kcal mol 1 σ/nm q/e q/e O N H Table S2: Non-bonded parameters for urea for the force-fields used. The charges of the K model were used 3 in combination with the other parameters of the GN model, particularly because σ combination rules are different. The results obtained for the molar volume of urea and preferential interaction parameters were completely satisfactory and supported this adaptation of the force-field. 1

2 K GN g(r) g(r) g md (r) g md (r) φ u φ u g md (r) and atomic contributions g md (r) and atomic contributions g md (r) g md (r) igure S1: omparison of radial distribution functions (g(r)) and minimum-distance distribution functions (g md (r)) and associated K-integrals for urea models. 1 3 igures and the g(r) (computed between the urea carbon atom and the water atom) and the g md (r) distributions. igures and display the K-integrals computed using the standard integration of the g(r) or the minimum distance count, as described in the main text. igures and show the atomic contributions to the minimum distance distribution of water in each case. The dashed line in igures and indicate the experimental limiting molar volume of urea ( φ u = cm 3 mol 1 ), 4 which is slightly underestimated by the GN model and precisely predicted by the K model. 2

3 GN 1,2 OptKast Osmotic 6 atom ɛ/kcal mol 1 σ/nm q/e ɛ/kcal mol 1 σ/nm q/e ɛ/kcal mol 1 σ/nm q/e O N H Table S3: Non-bonded parameters for TMO for the force-fields used. The Optimized-Kast and Osmotic 6 models are modifications of the Kast model 7 aiming the improved reproduction of peptide transfer free energies and osmotic pressure measurements, respectively. In both cases, it was found that the Kast model overestimated TMO-TMO interactions. Thus, in particular, the polarity of the NO bond was increased to strengthen the interactions with water. The original Kast model has a partial charges for of.6e and for nitrogen of +.44e. 7 s we show in igure S2, a collateral effect of the increased water-tmo interactions is the underestimated limiting molar volume of TMO. The densitydependence of aqueous TMO solutions pointed to this limitation, as noted in the development of the OptKast model. 3

4 Osmotic OptKast GN g md (r) g(r) g md (r) g(r) g md (r) g(r) G φ u φ u φ u H g md (r) and atomic contributions g md (r) and atomic contributions g md (r) and atomic contributions g md (r) g md (r).6 g md (r) I igure S2: omparison of radial distribution functions (g(r)) and minimum-distance distribution functions (g md (r)) and associated K-integrals for TMO models. 1,2,,6 igures,, and G display the g(r) (computed between the central TMO carbon atom and the water atom) and the g md (r) distributions. igures,, and H display the K-integrals computed using the standard integration of the g(r) or the minimum distance count, as described in the main text. igures,, and I show the atomic contributions to the water minimum distance distribution in each case. The dashed line in igures, and H indicate the experimental limiting molar volume of TMO ( φ u = cm 3 mol 1 ), 8 which is underestimated by all models. 4

5 urea - GN g uw md (r) 2.2 g uc md (r) TMO - GN g uw md (r) g uc md (r).2 TMO - OptKast g uw md (r) g uc md (r).2 igure S3: Minimum-distance distribution functions computed for with the GN force field for urea: () water and () urea. () and (): g md (r) distributions computed for water and TMO using the GN 1,2 model for TMO. () and (): g md (r) distributions computed for water and TMO using the OptKast model for TMO. quivalent plots for the K model 3 of urea and for the Osmotic model 6 of TMO are shown in the main text.

6 urea - GN TMO - GN TMO - OptKast N/ - total g md (r).2 - total g md (r).2 - total g md (r) (r) and atomic contributions g us md Total Total N/ Total igure S4: ecomposition of the g md us (r) into atomic contributions. Plots (), (), and () are insets of (), (), and () focused on the first and second solvation layers. () and () Urea with GN 1,2 model. () and () TMO with GN model. () and () TMO with OptKast model. quivalent plots for the K model 3 of urea and for the Osmotic model 6 of TMO are shown in the main text. 6

7 Table S4: Kirwood-uff integrals computed from aqueous solutions of urea the simulations with the GN 1,2 and K 3 models in L mol 1. The deviations reported are the standard error of the means of the 34 simulations performed for each system. GN 1,2 K 3 G uw G uc G uw G uc -7.9±1 1.39± ±17 -± ± ± ±16-3± ± ± ±29 -±.31 Table S: Kirwood-uff integrals computed from aqueous solutions of TMO the simulations with the GN 1,2, OptKast and Osmotic 6 models in L mol 1. The deviations reported are the standard error of the means of the 34 simulations performed for each system. GN 1,2 OptKast Osmotic 6 G uw G uc G uw G uc G uw G uc ±9-8.2± ±8-8.87± ±8-64± ±11-8.9± ±14-16± ±1-11± ± ± ± ± ±13-1±.286 7

8 urea - GN Guw(r) / L mol 1 1 φ u 1 Guc(r) / L mol TMO - GN Guw(r) / L mol φ u.2 Guc(r) / L mol TMO - OptKast Guw(r) / L mol φ u.2 Guc(r) / L mol igure S: Kirkwood-uff integrals computed for with the GN force field for urea: () water and () urea. () and (): K integrals computed for water and TMO using the GN 1,2 model for TMO. () and (): K integrals computed for water and TMO using the OptKast model for TMO. The φ u in plots,, and indicate the limiting molar volume of the protein in pure water. 9 quivalent plots for the K model 3 of urea and for the Osmotic model 6 of TMO are shown in the main text. 8

9 References [1] Vanommeslaeghe, K.; Hatcher,.; charya,.; Kundu, S.; Zhong, S.; Shim, J.; arian,.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell,.. HRMM General orce ield: orce ield for ruglike Molecules ompatible with the HRMM ll-tom dditive iological orce ields. J. omput. hem. 29, N N. [2] Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell,.. xtension of the HRMM General orce ield to Sulfonyl-ontaining ompounds and Its Utility in iomolecular Simulations. J. omput. hem. 212, 33 (31), [3] Weerasinghe, S.; Smith, P.. Kirkwood-uff erived orce ield for Mixtures of Urea and Water. J. Phys. hem. 23, 17(16), [4] Hamilton,.; Stokes, R. H.. Hamilton, R. H. Stokes, pparent Molar Volumes of Urea in Several Solvents as unctions of Temperature and oncentration. J. Solut. hem. 1972, 1, [] Scheck,.; Horinek,.; Netz, R. R. Insight into the Molecular Mechanisms of Protein Stabilizing Osmolytes from Global orce-ield Variations. J. Phys. hem. 213, 117(28), [6] anchi,. R.; Jayasimha, P.; Rau,..; Makhatadze, G. I.; Garcia,.. Molecular Mechanism for the Preferential xclusion of TMO from Protein Surfaces. J. Phys. hem. 212, 116(4), [7] Kast, K. M.; rickman, J; Kast, S. M.; erry, S. inary Phases of liphatic N-Oxides and Water: orce ield evelopment and Molecular ynamics Simulation J. Phys. hem. 23, 17(27), [8] Makarov,. M.; gorov, G. I.; Kolker,. M. ensity and Volumetric Properties of queous Solutions of Trimethylamine N -Oxide in the Temperature Range from (278.1 to 323.1) K and at Pressures up to 1 MPa. J. hem. ng. ata 21, 6 (), [9] Lin, T. Y.; Timasheff, S. N. Why o Some Organisms Use a Urea-Methylamine Mixture as Osmolyte? Thermodynamic ompensation of Urea and Trimethylamine N-Oxide Interactions with Protein. iochemistry 1994, 33 (42),

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Supporting Information for Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Shuntaro Chiba, 1* Tadaomi Furuta, 2 and Seishi

More information

On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study

On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study Wynand Dednam and André E. Botha Department of Physics, University of South Africa, P.O.

More information

Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced. Interface Fluctuations: The Hydrophobic Nature of Ions?

Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced. Interface Fluctuations: The Hydrophobic Nature of Ions? Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced Interface

More information

Chemical Potential Derivatives and Preferential Interaction Parameters in Biological Systems from Kirkwood-Buff Theory

Chemical Potential Derivatives and Preferential Interaction Parameters in Biological Systems from Kirkwood-Buff Theory Biophysical Journal Volume 91 August 2006 849 856 849 Chemical Potential Derivatives and Preferential Interaction Parameters in Biological Systems from Kirkwood-Buff Theory Paul E. Smith Department of

More information

Supporting Information. How Different are the Characteristics of Aqueous Solutions of tert-

Supporting Information. How Different are the Characteristics of Aqueous Solutions of tert- Supporting Information How Different are the Characteristics of Aqueous Solutions of tert- Butyl Alcohol and Trimethylamine--oxide? A Molecular Dynamics Simulation Study Dibyendu Bandyopadhyay, 1 Yash

More information

Supporting Information

Supporting Information Supporting Information Constant ph molecular dynamics reveals ph-modulated binding of two small-molecule BACE1 inhibitors Christopher R. Ellis 1,, Cheng-Chieh Tsai 1,, Xinjun Hou 2, and Jana Shen 1, 1

More information

Recent applications of Kirkwood Buff theory to biological systems

Recent applications of Kirkwood Buff theory to biological systems This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Recent

More information

MOLECULAR DYNAMICS SIMULATIONS OF SOLUTION MIXTURES AND SOLUTION/VAPOR INTERFACES FENG CHEN

MOLECULAR DYNAMICS SIMULATIONS OF SOLUTION MIXTURES AND SOLUTION/VAPOR INTERFACES FENG CHEN MOLECULAR DYNAMICS SIMULATIONS OF SOLUTION MIXTURES AND SOLUTION/VAPOR INTERFACES by FENG CHEN B.S., SiChuan University, China, 1999 M.S., Kansas State University, USA, 2003 AN ABSTRACT OF A DISSERTATION

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

Preferential interaction parameters in biological systems by Kirkwood Buff theory and computer simulation

Preferential interaction parameters in biological systems by Kirkwood Buff theory and computer simulation This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Preferential

More information

Supplemntary Infomation: The nanostructure of. a lithium glyme solvate ionic liquid at electrified. interfaces

Supplemntary Infomation: The nanostructure of. a lithium glyme solvate ionic liquid at electrified. interfaces Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 207 Supplemntary Infomation: The nanostructure of a lithium glyme solvate ionic liquid

More information

Lattice protein models

Lattice protein models Lattice protein models Marc R. Roussel epartment of Chemistry and Biochemistry University of Lethbridge March 5, 2009 1 Model and assumptions The ideas developed in the last few lectures can be applied

More information

An analysis of the molecular origin of osmolyte-dependent protein stability

An analysis of the molecular origin of osmolyte-dependent protein stability An analysis of the molecular origin of osmolyte-dependent protein stability JÖRG RÖSGEN, 1 B. MONTGOMERY PETTITT, 2 AND DAVID WAYNE BOLEN 1 1 Department of Human Biological Chemistry and Genetics, University

More information

THE DEVELOPMENT OF ACCURATE FORCE FIELDS FOR PROTEIN SIMULATION YUANFANG JIAO. B.S., Tianjin University, China, 2007 AN ABSTRACT OF A DISSERTATION

THE DEVELOPMENT OF ACCURATE FORCE FIELDS FOR PROTEIN SIMULATION YUANFANG JIAO. B.S., Tianjin University, China, 2007 AN ABSTRACT OF A DISSERTATION THE DEVELOPMENT OF ACCURATE FORCE FIELDS FOR PROTEIN SIMULATION by YUANFANG JIAO B.S., Tianjin University, China, 2007 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements

More information

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate A. Arslanargin, A. Powers, S. Rick, T. Pollard, T. Beck Univ Cincinnati Chemistry Support: NSF, OSC TSRC 2016 November 2, 2016 A. Arslanargin,

More information

When does TMAO fold a polymer chain and urea unfold it?

When does TMAO fold a polymer chain and urea unfold it? When does TMAO fold a polymer chain and urea unfold it? Jagannath Mondal, Guillaume Stirnemann, and B. J. Berne Department of Chemistry, Columbia University, New York, NY 7 (Dated: March 1, 1) Other studies

More information

Structural Characterization of α-amino Acid Complexes of Molybdates: a Spectroscopic and DFT Study SUPPORTING INFORMATION

Structural Characterization of α-amino Acid Complexes of Molybdates: a Spectroscopic and DFT Study SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for RS Advances. This journal is The Royal Society of hemistry 2014 Structural haracterization of α-amino Acid omplexes of Molybdates: a Spectroscopic and DFT Study

More information

Supporting Information for Kinetics and. Mechanism of the Oxidation of Thiourea Dioxide. by Iodine in a Slightly Acidic Medium

Supporting Information for Kinetics and. Mechanism of the Oxidation of Thiourea Dioxide. by Iodine in a Slightly Acidic Medium Supporting Information for Kinetics and Mechanism of the Oxidation of Thiourea ioxide by Iodine in a Slightly cidic Medium Li Xu, László Valkai, lena. Kuznetsova, Sergei V. Makarov, and ttila K. Horváth,

More information

Faculty Teaching Qualifications Table

Faculty Teaching Qualifications Table aculty Table ollege: uthement ollege of s Subject: griculture ducation Last Updated: Spring 2013 in ield Related ields in which May e cceptable ertifications Ph. in Reproductive Physiology airy griculture

More information

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(3):1619-1624 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Studies on ion association and solvation of multi-charged

More information

Chemistry 006 Practice Final. 6. What is the predominant intermolecular force in carbon tetrachloride, CCl4?

Chemistry 006 Practice Final. 6. What is the predominant intermolecular force in carbon tetrachloride, CCl4? hemistry 00 Practice Final 1. The boiling point of l(l) is higher than the boiling point of Ar(l) as a result of hydrogen bonding higher formula mass stronger London forces permanent dipole forces ion-ion

More information

Structure and Interaction in Aqueous Urea-Trimethylamine-N-oxide Solutions

Structure and Interaction in Aqueous Urea-Trimethylamine-N-oxide Solutions Published on Web 03/21/2007 Structure and Interaction in Aqueous Urea-Trimethylamine-N-oxide Solutions Sandip Paul and Grenfell N. Patey* Contribution from the Department of Chemistry, UniVersity of British

More information

Supporting Information. for. Influence of Cononsolvency on the. Aggregation of Tertiary Butyl Alcohol in. Methanol-Water Mixtures

Supporting Information. for. Influence of Cononsolvency on the. Aggregation of Tertiary Butyl Alcohol in. Methanol-Water Mixtures Supporting Information for Influence of Cononsolvency on the Aggregation of Tertiary Butyl Alcohol in Methanol-Water Mixtures Kenji Mochizuki,, Shannon R. Pattenaude, and Dor Ben-Amotz Research Institute

More information

Linking electronic and molecular structure: Insight into aqueous chloride solvation. Supplementary Information

Linking electronic and molecular structure: Insight into aqueous chloride solvation. Supplementary Information Linking electronic and molecular structure: Insight into aqueous chloride solvation Ling Ge, Leonardo Bernasconi, and Patricia Hunt Department of Chemistry, Imperial College London, London SW7 2AZ, United

More information

Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects

Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects Supporting Information Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects Ngai Yin Yip *,, Doriano Brogioli, Hubertus V. M. Hamelers, and Kitty Nijmeijer Department of Earth and

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. If heat is added to ice and liquid water in a closed container and, after the addition of the heat, ice and liquid water

More information

Water-Mediated Interactions Between. Trimethylamine-N-Oxide and Urea

Water-Mediated Interactions Between. Trimethylamine-N-Oxide and Urea Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 214 Water-Mediated Interactions Between Trimethylamine-N-Oxide and Urea Johannes Hunger,,

More information

On the Role of Solute Solvation and Excluded-Volume Interactions in Coupled Diffusion

On the Role of Solute Solvation and Excluded-Volume Interactions in Coupled Diffusion 11968 J. Phys. Chem. B 2008, 112, 11968 11975 On the Role of Solute Solvation and Excluded-Volume Interactions in Coupled Diffusion Onofrio Annunziata* Department of Chemistry, Texas Christian UniVersity,

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

Electronic Supplementary Information Effective lead optimization targeted for displacing bridging water molecule

Electronic Supplementary Information Effective lead optimization targeted for displacing bridging water molecule Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supplementary Information Effective lead optimization targeted for displacing

More information

Introduction to Chemical Bonding Chemical Bond

Introduction to Chemical Bonding Chemical Bond Introduction to Chemical Bonding Chemical Bond Mutual attraction between the and electrons of different atoms that binds the atoms together. Ionic Bond o that results from the attraction between large

More information

1. All the solutions have the same molality. 2. All the solutions have the same molarity.

1. All the solutions have the same molality. 2. All the solutions have the same molarity. I. (41 points) A. (12 points) Write your answers on the blanks provided. 1. Which of the following solutes would be more soluble in water? a. CH 3 OH or C 17 H 35 OH b. C 2 H 5 Cl or NaCl c. CHCl 3 or

More information

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions.

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions. 1 of 7 Thermodynamics and Equilibrium Chemical thermodynamics is concerned with energy relationships in chemical reactions. In addition to enthalpy (H), we must consider the change in randomness or disorder

More information

CHAPTER 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF GLYCINE IN AQUEOUS SOLUTIONS OF SODIUM CARBONATE AT DIFFERENT TEMPERATURES

CHAPTER 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF GLYCINE IN AQUEOUS SOLUTIONS OF SODIUM CARBONATE AT DIFFERENT TEMPERATURES 198 CHAPTER 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF GLYCINE IN AQUEOUS SOLUTIONS OF SODIUM CARBONATE AT DIFFERENT TEMPERATURES 6.1 INTRODUCTION The characterization of thermodynamical properties of

More information

Effect of solute solvent interactions on protein stability and ligand binding. Ikbae Son

Effect of solute solvent interactions on protein stability and ligand binding. Ikbae Son Effect of solute solvent interactions on protein stability and ligand binding by Ikbae Son A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Due by 3:00 PM Tuesday, June 26 NO LATE PAPERS ACCEPTED!

Due by 3:00 PM Tuesday, June 26 NO LATE PAPERS ACCEPTED! HEM 100 Name Exam 3 Summer 2011 Due by 3:00 PM Tuesday, June 26 N LATE PAPERS AEPTED! Follow instructions on the attached exam. learly mark your answers. YU MUST SHW YUR WRK T REEIVE REDIT. Instructions

More information

Q.1 Draw structures for all amines of molecular formula C 4 H 11 N. Classify them as primary, secondary or tertiary amines.

Q.1 Draw structures for all amines of molecular formula C 4 H 11 N. Classify them as primary, secondary or tertiary amines. 1 AMIES Structure ontain the 2 group. lassification primary (1 ) amines secondary (2 ) amines tertiary (3 ) amines quarternary (4 ) ammonium salts + 1 2 3 4 Aliphatic Aromatic methylamine, ethylamine,

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 48 CHAPTER 3 PARTIAL MOLAL VOLUME, PARTIAL MOLAL COMPRESSIBILITY AND VISCOSITY B-COEFFICIENT OF FOUR HOMOLOGOUS -AMINO ACIDS IN AQUEOUS SODIUM FLUORIDE SOLUTIONS AT DIFFERENT TEMPERATURES 3.1 INTRODUCTION

More information

Quiz QSAR QSAR. The Hammett Equation. Hammett s Standard Reference Reaction. Substituent Effects on Equilibria

Quiz QSAR QSAR. The Hammett Equation. Hammett s Standard Reference Reaction. Substituent Effects on Equilibria Quiz Select a method you are using for your project and write ~1/2 page discussing the method. Address: What does it do? How does it work? What assumptions are made? Are there particular situations in

More information

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures Indian Journal of Chemistry Vol. 35A, March 1996, pp. 188-194 Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures UN Dash & B K Mohantv Department

More information

Kirkwood Buff derived force field for mixtures of acetone and water

Kirkwood Buff derived force field for mixtures of acetone and water JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 23 15 JUNE 2003 Kirkwood Buff derived force field for mixtures of acetone and water Samantha Weerasinghe a) and Paul E. Smith b) Department of Biochemistry,

More information

Chemistry *P45045A0128* Pearson Edexcel P45045A

Chemistry *P45045A0128* Pearson Edexcel P45045A Write your name here Surname ther names Pearson Edexcel International Advanced Level entre Number andidate Number hemistry Advanced Unit 5: General Principles of hemistry II Transition Metals and rganic

More information

Molecule Dynamics Simulation of Epoxy Resin System

Molecule Dynamics Simulation of Epoxy Resin System Molecule Dynamics Simulation of Epoxy Resin System Wu, Peilin Department of Physics, City University of Hong Kong. Lam, Tran Department of Biology, University of Pennsylvania. (RECSEM-2017, Joint Institute

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 52 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Molecular Origin of Hydration Heat Capacity Changes of Hydrophobic Solutes: Perturbation of Water Structure around Alkanes

Molecular Origin of Hydration Heat Capacity Changes of Hydrophobic Solutes: Perturbation of Water Structure around Alkanes J. Phys. Chem. B 1997, 101, 11237-11242 11237 Molecular Origin of Hydration Heat Capacity Changes of Hydrophobic Solutes: Perturbation of Water Structure around Alkanes Bhupinder Madan and Kim Sharp* The

More information

Supporting Information. Toshiyuki Takamuku a,*, Yasuhito Higuma a, Masaru Matsugami b, Takahiro To a, and. Tatsuya Umecky a

Supporting Information. Toshiyuki Takamuku a,*, Yasuhito Higuma a, Masaru Matsugami b, Takahiro To a, and. Tatsuya Umecky a Supporting Information Solvation Structure of,3-butanediol in Aqueous Binary Solvents with Acetonitrile,,4-Dioxane, and Dimethyl Sulfoxide Studied by IR, NMR, and Molecular Dynamics Simulation Toshiyuki

More information

Lower critical solution temperature (LCST) phase. behaviour of an ionic liquid and its control by. supramolecular host-guest interactions

Lower critical solution temperature (LCST) phase. behaviour of an ionic liquid and its control by. supramolecular host-guest interactions Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its control by

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

Due by 3:00 PM Tuesday, June 26 NO LATE PAPERS ACCEPTED!

Due by 3:00 PM Tuesday, June 26 NO LATE PAPERS ACCEPTED! HEM 100 Name Exam 3 Summer 2011 Due by 3:00 PM Tuesday, June 26 N LATE PAPERS AEPTED! Follow instructions on the attached exam. learly mark your answers. YU MUST SHW YUR WRK T REEIVE REDIT. Instructions

More information

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005 hemistry 122 (Tyvoll) ANSWERS T PRATIE EXAMINATIN I Fall 2005 1. Which statement is not correct? 1) A volatile liquid has a high boiling point. 2. Which of the following compounds is predicted to have

More information

1 Which of the following compounds has the lowest solubility in water? (4 pts)

1 Which of the following compounds has the lowest solubility in water? (4 pts) version: 516 Exam 1 - Sparks This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

Synergy in Protein Osmolyte Mixtures

Synergy in Protein Osmolyte Mixtures This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/jpcb Synergy

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

UNIT 2 SOLUTION. Q. 1. The vapour pressure of deliquescent substance is less or more than that of water vapours in air?

UNIT 2 SOLUTION. Q. 1. The vapour pressure of deliquescent substance is less or more than that of water vapours in air? UNIT 2 SOLUTION 1 MARK QUESTIONS Q. 1. The vapour pressure of deliquescent substance is less or more than that of water vapours in air? Ans. Less than that of water vapours in air. Q. 2. If is the degree

More information

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures Journal of Physical Science, ol. 22(1), 131 141, 211 SHORT COMMUNICATION Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures R. Palani*, S. Balakrishnan and G. Arumugam

More information

State one advantage and one disadvantage of using chlorine in water treatment. advantage: disadvantage: [2]

State one advantage and one disadvantage of using chlorine in water treatment. advantage: disadvantage: [2] 1 Chlorine and bromine are elements in Group 7 of the Periodic Table. (a) Chlorine is used in water treatment. State one advantage and one disadvantage of using chlorine in water treatment. advantage:...

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Organic Chemistry I (CHE ) Examination I S ep t ember 2 9, KEY Name (PRINT LEGIBLY):

Organic Chemistry I (CHE ) Examination I S ep t ember 2 9, KEY Name (PRINT LEGIBLY): Organic hemistry I (E 2 3 0-001 ) Examination I S ep t ember 2 9, 2 0 0 4 KEY Name (PRINT LEGIBLY): Please provide clear and concise answers to all of the following questions. Use equations and/or drawings

More information

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2 EXAM 2 PRACTICE QUESTIONS NOTE- THIS IS ONLY A SELECTION OF POSSIBLE TYPES OF QUESTIONS: REFER TO THE EXAM 2 REVIEW GUIDELINES FOR THE LIST OF LEARNING TARGETS. There will likely be other questions on

More information

Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1

Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1 Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1 1 Department of Chemistry 2 Department of Air, Land and Water Resources UC Davis Ice surface in climate modeling: sea water ice polar

More information

SOLUTIONS. General Chemistry I CHAPTER

SOLUTIONS. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

Welcome to Chemistry 106 John Keller

Welcome to Chemistry 106  John Keller Welcome to hemistry 106 http://chem.uaf.edu/keller/ourses/106sp11/ John Keller www.uaf.edu/chem/faculty/jkeller/ Syllabus: Text, clickers, OWL, grading, help ourse coverage Fall 2010 hem 105: ow did it

More information

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces The Chemistry of Water and the Nature of Liquids Chapter 11 CHAPTER OUTLINE 11.2 I. The Structure of Water: An Introduction to Intermolecular Forces II. A Closer Look at Intermolecular lar Forces A. London

More information

Chapter 5: The Water We Drink

Chapter 5: The Water We Drink Chapter 5: The Water We Drink Water 70% of the Earth s surface is covered by water The human body is 50-75% water The human brain is 75% water Blood is 83% water Lungs are 90% water Bones (!) are 22% water

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Chapter 10: CHM 2045 (Dr. Capps)

Chapter 10: CHM 2045 (Dr. Capps) Phase Diagram Phase diagrams for CO 2 and H 2 O Chapter 13. Solutions and Their Physical Properties Shows pressures and temperatures at which gaseous, liquid, and solid phases can exist. Allows us to predict

More information

General Entropy Trends

General Entropy Trends General Entropy Trends The following generally show an in entropy: 1. Phase changes from solid to liquid, or liquid to gas or a solid to a gas. SOLID LIQUID GAS low entropy high entropy 2. Chemical reactions

More information

Wave Properties of Electrons. Chapter 2 Structure and Properties of Organic Molecules. Wave Interactions. Sigma Bonding

Wave Properties of Electrons. Chapter 2 Structure and Properties of Organic Molecules. Wave Interactions. Sigma Bonding rganic hemistry, 5 th Edition L. G. Wade, Jr. hapter 2 Structure and Properties of rganic Molecules Jo Blackburn Richland ollege, Dallas, TX Dallas ounty ommunity ollege District 2003, Prentice all Wave

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Effects of Trimethylamine N oxide (TMAO) on Hydrophobic and Charged Interactions

Effects of Trimethylamine N oxide (TMAO) on Hydrophobic and Charged Interactions Cite This: pubs.acs.org/jpcb Effects of Trimethylamine N oxide (TMAO) on Hydrophobic and Charged Interactions Zhaoqian Su, Gopal Ravindhran, and Cristiano L. Dias* Department of Physics, New Jersey Institute

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry 1 hapter 3 Stoichiometry 2 Atomic Mass Avogadro s Number and Molar Mass 3 Atomic Mass: Mass of 1 atom in atomic mass units 1 amu = 1/12 of the mass of 1-12 atom = 1.661X10-24 g Naturally occurring carbon

More information

A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures

A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures J. Chem. Sci., Vol. 116, No. 1, January 2004, pp. 33 38. Indian Academy of Sciences. A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at

More information

Love and fear of water: Water dynamics around charged and apolar solutes van der Post, S.T.

Love and fear of water: Water dynamics around charged and apolar solutes van der Post, S.T. UvA-DARE (Digital Academic Repository) Love and fear of water: Water dynamics around charged and apolar solutes van der Post, S.T. Link to publication Citation for published version (APA): van der Post,

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces

Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces Yinghua Qiu, Jian Ma and Yunfei Chen* Jiangsu Key Laboratory for Design and Manufacture

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY National Quali cations SPEIMEN NLY SQ07//02 hemistry Section 1 Questions ate Not applicable uration 2 hours and 0 minutes Reference may be made to the hemistry igher and dvanced igher ata ooklet. Instructions

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions Chapter 4 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Titrations In

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

Factors that Effect the Rate of Solvation

Factors that Effect the Rate of Solvation Factors that Effect the Rate of Solvation Rate of Solvation there are three ways to increase collisions between the solvent and the solute. agitating the mixture increasing the surface area of the solute

More information

Properties of Aqueous Solutions

Properties of Aqueous Solutions Properties of Aqueous Solutions Definitions A solution is a homogeneous mixture of two or more substances. The substance present in smaller amount is called the solute. The substance present in larger

More information

Some Basic Concepts of Chemistry

Some Basic Concepts of Chemistry 0 Some Basic Concepts of Chemistry Chapter 0: Some Basic Concept of Chemistry Mass of solute 000. Molarity (M) Molar mass volume(ml).4 000 40 500 0. mol L 3. (A) g atom of nitrogen 8 g (B) 6.03 0 3 atoms

More information

BIOB111_CHBIO - Tutorial activity for Session 10. Conceptual multiple choice questions:

BIOB111_CHBIO - Tutorial activity for Session 10. Conceptual multiple choice questions: BIOB111_CHBIO - Tutorial activity for Session 10 General Topics for Session 10 Week 5 Properties of the functional groups and examples. Amines, amides and Esters Physical properties and chemical reactions:

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 A

Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 A Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 A Optical and Acoustical Methods in Science and Technology Effects of Solvation of 2-Methylpyridine and 2,6-Dimethylpyridine in Dilute Solutions in Water and

More information

GCE MARKING SCHEME CHEMISTRY AS/Advanced JANUARY 2013

GCE MARKING SCHEME  CHEMISTRY AS/Advanced JANUARY 2013 GCE MARK KING SCHEME CHEMISTRY AS/ /Advanced JANUARY 2013 GCE CHEMISTRY - CH1 JANUARY 2013 MARK SCHEME SECTION A Q.1 39 [1] Q.2 C [1] Q.3 A r = (12.0 6) + (88.0 7) (1) = 72.0 + 616.0 = 6.88 (1) [2] 100

More information

Interactions between compound 11 and -glucocerebrosidase 2

Interactions between compound 11 and -glucocerebrosidase 2 Supporting Information luorinated haperone -yclodextrin ormulations for -Glucocerebrosidase Activity Enhancement in euronopathic Gaucher Disease M. Isabel García-Moreno,,# Mario de la Mata,,# Elena M.

More information

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function. Lecture #5 1 Lecture 5 Objectives: 1. Identify athermal and residual terms from the van der Waals mixture partition function.. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture

More information

Acoustic Response with Theoretical Evaluation of Ultrasonic Velocity in Ternary Mixtures of DMSO, Benzene, and Toluene at Different Temperatures.

Acoustic Response with Theoretical Evaluation of Ultrasonic Velocity in Ternary Mixtures of DMSO, Benzene, and Toluene at Different Temperatures. Research Article Acoustic Response with Theoretical Evaluation of ltrasonic Velocity in Ternary Mixtures of DMSO, Benzene, and Toluene at Different Temperatures. Manaswini Mishra 1*, pendra Nath Dash 1,

More information

Chemistry 2000 Fall 2017 Final Examination

Chemistry 2000 Fall 2017 Final Examination Time: 3 hours hemistry 2000 Fall 2017 Final Examination Total marks: 105 Aids permitted: calculator (wireless communication capabilities OFF), molecular model kit. Significant figures: I will specifically

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

The Magnetic Force. x x x x x x. x x x x x x. x x x x x x q. q F = 0. q F. Phys 122 Lecture 17. Comment: What just happened...?

The Magnetic Force. x x x x x x. x x x x x x. x x x x x x q. q F = 0. q F. Phys 122 Lecture 17. Comment: What just happened...? The Magnetic orce Comment: I LOVE MAGNETISM q = qe + q q Comment: What just happened...? q = 0 Phys 122 Lecture 17 x x x x x x q G. Rybka Magnetic Phenomenon ar magnet... two poles: N and S Like poles

More information

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity Osmolarity, Tonicity, and Equivalents Study Guide & Practice 1. Osmolarity Recall that the osmotic pressure of a solution is created by solutes dissolved in a solvent, and the dissolved solutes create

More information