3 - Ice and crystalline water

Size: px
Start display at page:

Download "3 - Ice and crystalline water"

Transcription

1 3 - Ice and crystalline water All ice is not crystalline not all crystalline water is ice H 2 O solid phases (From Savage)

2 Some general comments on the phase diagram All crystalline ice is tetrahedrically coordinated, and the polymorphs differ primarily in H-bond angles and next-nearest neighbour separations. Ice II, VIII and IX cannot be obtained directly from liquid water. Only ice I has a lower density than liquid water. The rich phase diagram is a consequence of the pressure sensitivity following from the open tetrahedral structure of water.

3 Growth of ice from vapour - A function of temperature and supersaturation (From Hallett, Proc. R. Soc. Lond. A247, 440 (1958))

4 Ice Ih ordinary ice Atomic arrangement in ice Ih. H2 positions are half occupied, and H1 positions (filled) indicate positions in the bent hydrogen model. (From Kuhs) Ice Ih is a thoroughly disordered crystalline material, whose translational symmetry is not retained at the unit cell-level. In a time- and space-averaged sense however, the symmetry of ice Ih is very high. Although the oxygen atoms on average forms a regular lattice, this is not the case for the H atoms. Along each O O-axis, there are two equivalent sites, resulting in proton disorder. Averaged molecular geometry (at 223 K for ice) O H O O H O H O O O ρ (Å) (Å) (deg) (deg) (g/cm 3 ) Ice Ih Liquid

5 Proton order and configurational degeneracy Bernal & Fowler (1933) and Pauling (1935) argued that the similarites between ice and water esp. the vibrational spectrum is evidence that H 2 O molecules are intact in ice. This implies the Bernal and Fowler conditions on the arrangement of hydrogen atoms: (1) Each O O line has one and only one H atom. (2) Each O has two H at about 1 Å from its center, and two at about 1.76 Å. Out of the 16 possible ways of arranging H atoms near one particular O atom, there are only 6 consistent with these conditions. The five possible arrangements of hydrogens around a given oxygen. Numbers in brackets indicate the degeneracy. (Adapted from Ben-Naim) Assuming all arrangements are equally likely, how many configurations are there in ice containing N water molecules?

6 The residual entropy With N water molecules, there are N oxygens, 2N hydrogens and 2N O O bonds. Ignoring condition (2), each hydrogen may be placed at either of two sites in each O O bond, thus 2 2N possible arrangements. Some of these are inconsistent with (2); for each oxygen, there is a 6/16 probability of finding an acceptable arrangement, so the total number of possible configurations is Ω = 6 N 2 2N = (3/2) N 16 This can be used to calculate the residual entropy of ice: S 0 = k ln Ω = 3.38 J/mol K in good agreement with the observed 3.41 J/mol K. A classical example of a successful prediction based on an elementary statistical argument! Proton order in ice Ih and disorder in ice VIII. (From Savage)

7 Vibrational constants for water and ice (cm 1 ) Symmetric Asymmetric stretch, ν 1 stretch, ν 2 Bend, ν 3 H 2 O (g) H 2 O (l) Ice Ih Ice II Ice VIII Denser ice forms become liquidlike? Loss of the robust tetrahedral hydrogen bonding (relative to Ih) partially recovers the water-like vibrational nature in denser (high pressure) forms of ice. H-bonded Closest non- ρ O O O Ice O O H-bonded O O (g/cm 3 ) angles Ih II (9) VIII (5)

8 The crystalline ice polymorphs H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered Ic Disordered II (9) Ordered III (1) Disordered IV (9) Disordered V (7) Disordered VI (17) Disordered VII (4) Disordered VIII (5) Ordered IX (1) Ordered X Properties largely unknown (Adapted from Robinson and Savage) All forms have 4 H-bonded nearest neighbours Although denser, most structures have longer nearestneighbour O O distances than ice Ih, due to weakening of the hydrogen bonds. Reduced (non-h-bonded) second-neighbour O O distances cause the density differences. A structural relationship between the phases allow transformations over relatively small energy barriers, which take place primarily by bending, not breaking, H-bonds. X Forms at 440 kbar. Believed to contain symmetric H-bonds with ionic character. Structure uncertain.

9 Ice Ih and ice Ic Ih (left) and Ic (right), perpendicular to c-axis (top) and along the c-axis (bottom). (From Savage) Ice Ic is metastable, and irreversibly converts to ice Ih. Both forms contain similar layers of hexagonal rings, but differs in the way these layers are connected.

10 Temperature dependence Lattice constants for the a and c axes of ice Ih. (From Kuhs)

11 Ice Ih and ice II Ih (top) and II (bottom). The hexagonal rings in ice II are flat, and half the hexagonal tunnel structures along the c- axis are collapsed. The protons in ice II are fully ordered, so the Pauling entropy is absent. (From Savage) H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered II (9) Ordered Without the (proton) ordering, ice II is only slightly less energetically stable than Ih, so that absence of Pauling entropy would likely have led to freezing to the dense II form in the depths of many waters...

12 Ice IX / III Ice IX / III, viewed along the c-axis. Filled bonds show the 5-membered ring in a unit cell. (From Savage) IX and III have the same structure, but H is fully orientationally ordered in IX and fully disordered in III. Contains 5- and 7-membered rings, but no hexagonal rings. H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered III (1) Disordered IX (1) Ordered

13 Ice IV and V O positions in ice IV, filled bonds represent a structural unit (Left). Ice V with the structural unit comprising 4- and 5-membered rings shown separately (Right). (From Savage) IV is a metastable form in the V region of the phase diagram, forming an H-bond through a hexagonal ring. Ice V consists of 4-, 5- and 6-membered rings, with disordered proton structure. H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered IV (9) Disordered V (7) Disordered

14 Ice VI One of the two interpenetrating lattices, with a structural unit marked with filled bonds (left). Both lattices along the c axis of the unit cell (right). (From Savage) The first phase to form two interpenetrating lattices as the pressure is increased. H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered VI (17) Disordered

15 Ice VII and ice VIII VII (left) and VIII (right). (Adapted from Savage) Ices VII and VIII comprise two interpenetrating (ice Ic) lattices with all O O O bond angles close to the tetrahedral value. VIII is fully proton ordered, while VII is disordered. VII has 8 nearest-neighbours at 2.90 Å, of which only 4 are H-bonded. If the H-bonds were not extended, the density of VII would be twice that of Ih. H-bonded Closest non- ρ O O O Hydrogen Ice O O H-bonded O O (g/cm 3 ) angles order Ih Disordered VII (4) Disordered VIII (5) Ordered

16 Amorphous ice I Oxygen-oxygen partial radial distribution functions of lowdensity amorphous ice (LDA), high-density amorphous ice) HDA, liquid water, and ice Ih. HDA appears compressed in a way similar to the way water is collapsed from ice. (From Finney, PRL 88, (2002)). Phase diagram indicating the LDA and HDA regions. (From Science 297, 1289 (2002)).

17 Amorphous ice II Distribution of neighbour water molecules Spatial density functions showing the distribution of neighbour water molecules. Figures in brackets indicate contour levels g(r, Ω). (From Finney, PRL 88, (2002)). LDA has 3.9 nearest neighbours, while HDA has 5; compare with 4 for ice Ih and for liquid water...!

18 Non-solid crystalline water Water structure in coenzyme (Vitamin) B 12 (From Savage)

19 Primary references H. Savage, Water structure in crystalline solids, in Water Science Reviews 2, F. Franks (ed.), Cambridge: CUP G. Wilse Robinson et al., Water in biology, chemistry and physics, Singapore: World Scientific F. W. Kuhs and M. S. Lehmann, The structure of Ice-Ih, in Water Science Reviews 2, F. Franks (ed.), Cambridge: CUP D. Eisenberg and W. Kauzmann, The structure and properties of water, Oxford: OUP A. Ben-Naim, Water and aqueous solutions, New York: Plenum E. Whalley (ed.), Physics and chemistry of ice : papers presented at the symposium on the physics and chemistry of ice held in Ottawa, Canada, August 1972, Ottawa: Royal Society of Canada 1973.

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1 (1933) 515-548. Ice-I h : a = 7.82 Å ; c = 7.36 Å P6 3 cm

More information

Frustration and ice. Similarities with the crystal structure of ice I h : the notion of spin ice.

Frustration and ice. Similarities with the crystal structure of ice I h : the notion of spin ice. Frustration and ice The cubic (Fd-3m) structure of pyrochlore (CaNa)Nb 2 O 6 F [A 2 B 2 O 7 or A 2 B 2 O 6 Oʹ] The A site often has lone-pair cations (Pb 2+ or Bi 3+ ). Polar materials in this structure

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Lone pairs in the solid state: Frustration

Lone pairs in the solid state: Frustration Lone pairs in the solid state: Frustration Bi 2 Ti 2 O 6 O, the pyrochlore analogue of perovskite PbTiO 3, is cubic down to 2 K. [Hector, Wiggin, J. Solid State Chem. 177 (2004) 139] Question: Is the absence

More information

arxiv: v1 [physics.chem-ph] 23 Jun 2014

arxiv: v1 [physics.chem-ph] 23 Jun 2014 Configurational entropy of hydrogen-disordered ice polymorphs Carlos P. Herrero and Rafael Ramírez Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC),

More information

The Chemical Basis of Animal Life. Chapter 2

The Chemical Basis of Animal Life. Chapter 2 The Chemical Basis of Animal Life Chapter 2 Chemistry The branch of science dealing with composition of substances and reactions among these substances. A knowledge of chemistry is essential for understanding

More information

Water and Aqueous Systems

Water and Aqueous Systems Water and Aqueous Systems Chemistry CP http://www.sumanasinc.com/webcontent/animations/content/ propertiesofwater/water.html The Water Molecule Bent Two lone electron pairs Polar molecule Considered to

More information

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Ch 9 Liquids & Solids (IMF) Masterson & Hurley Ch 9 Liquids & Solids (IMF) Masterson & Hurley Intra- and Intermolecular AP Questions: 2005 Q. 7, 2005 (Form B) Q. 8, 2006 Q. 6, 2007 Q. 2 (d) and (c), Periodic Trends AP Questions: 2001 Q. 8, 2002 Q.

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Proton ordering dynamics of H 2 O ice

Proton ordering dynamics of H 2 O ice Proton ordering dynamics of H 2 O ice Fei Yen, 1,2* and Zhenhua Chi 1,2 1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Solid State Physics, Chinese Academy

More information

COOPERATIVE ORIGIN OF LOW-DENSITY DOMAINS IN LIQUID WATER. Jeffrey R. Errington, Pablo G. Debenedetti *, and Salvatore Torquato

COOPERATIVE ORIGIN OF LOW-DENSITY DOMAINS IN LIQUID WATER. Jeffrey R. Errington, Pablo G. Debenedetti *, and Salvatore Torquato 6/18/02 COOPERATIVE ORIGIN OF LOW-DENSITY DOMAINS IN LIQUID WATER by Jeffrey R. Errington, Pablo G. Debenedetti *, and Salvatore Torquato Department of Chemical Engineering, Princeton University, Princeton,

More information

cp final review part 2

cp final review part 2 Name: Class: Date: cp final review part 2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Standard conditions when working with gases are

More information

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure.

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Pressure - the vapor pressure at the critical temperature. Properties

More information

The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase

The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Progress toward a Monte Carlo Simulation of the Ice VI-VII Phase Transition

Progress toward a Monte Carlo Simulation of the Ice VI-VII Phase Transition Progress toward a Monte Carlo Simulation of the Ice VI-VII Phase Transition Christina Gower 2010 NSF/REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman August 6, 2010

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state States of Matter; Liquids and Solids Phase transitions - a change in substance from one state to another Melting - change from a solid to a liquid state Freezing - change of a liquid to the solid state

More information

ICE PHYSICS. Martin Truffer University of Alaska Fairbanks. Spring Semester 2013

ICE PHYSICS. Martin Truffer University of Alaska Fairbanks. Spring Semester 2013 ICE PHYSICS Martin Truffer University of Alaska Fairbanks Spring Semester 2013 Contents Contents 3 List of Figures 6 List of Tables 8 1 Introduction 9 1.1 Why study ice and water?.....................

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

1051-3rd Chem Exam_ (A)

1051-3rd Chem Exam_ (A) 1051-3rd Chem Exam_1060111(A) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The molecular-orbital model for Ge shows it to be A) a conductor,

More information

1051-3rd Chem Exam_ (B)

1051-3rd Chem Exam_ (B) 1051-3rd Chem Exam_1060111(B) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In liquids, the attractive intermolecular forces are. A) strong enough

More information

1051-3rd Chem Exam_ (C)

1051-3rd Chem Exam_ (C) 1051-3rd Chem Exam_1060111(C) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The hybridizations of iodine in IF3 and IF5 are and, respectively.

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

TOPIC 4 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 IONIC BONDING

TOPIC 4 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 IONIC BONDING TOPIC 4 ANSWERS & MARK SCEMES QUESTIONSEET 1 IONIC BONDING a) A bond formed by the complete transfer of one or more electrons from one atom to another to form ions of opposite charge which attract each

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12)

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12) INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PASE CANGES (Silberberg, Chapter 12) Intermolecular interactions Ideal gas molecules act independently PV=nRT Real gas molecules attract/repulse one another 2 n

More information

Energetics in Ice VI

Energetics in Ice VI Energetics in Ice VI Nishanth Sasankan 2011 NSF / REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman Abstract There are many different phases of Ice, which exist in different

More information

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d )

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d ) hemistry 6330 Problem Set 4 Answers (1) (a) B 4 - tetrahedral (T d ) B T d E 8 3 3 2 6S 4 6s d G xyz 3 0-1 -1 1 G unmoved atoms 5 2 1 1 3 G total 15 0-1 -1 3 If we reduce G total we find that: G total

More information

CHAPTER 4. Crystal Structure

CHAPTER 4. Crystal Structure CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms

More information

AB-INITIO STUDY OF STRUCTURE AND DYNAMICAL PROPERTIES OF CRYSTALLINE ICE

AB-INITIO STUDY OF STRUCTURE AND DYNAMICAL PROPERTIES OF CRYSTALLINE ICE AB-INITIO STUDY OF STRUCTURE AND DYNAMICAL PROPERTIES OF CRYSTALLINE ICE W. A. ADEAGBO, A. ZAYAK and P. ENTEL Institute of Physics, University of Duisburg-Essen, Duisburg campus, 4748 Duisburg, Germany

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

15.1 Water and Its Properties > Chapter 15 Water and Aqueous Systems Water and Its Properties Homogeneous Aqueous Systems

15.1 Water and Its Properties > Chapter 15 Water and Aqueous Systems Water and Its Properties Homogeneous Aqueous Systems Chapter 15 Water and Aqueous Systems 15.1 Water and Its Properties 15.2 Homogeneous Aqueous Systems 15.3 Heterogeneous Aqueous Systems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

Non-independence in Statistical Tests for Discrete Cross-species Data

Non-independence in Statistical Tests for Discrete Cross-species Data J. theor. Biol. (1997) 188, 507514 Non-independence in Statistical Tests for Discrete Cross-species Data ALAN GRAFEN* AND MARK RIDLEY * St. John s College, Oxford OX1 3JP, and the Department of Zoology,

More information

The samples used in these calculations were arranged as perfect diamond crystal of

The samples used in these calculations were arranged as perfect diamond crystal of Chapter 5 Results 5.1 Hydrogen Diffusion 5.1.1 Computational Details The samples used in these calculations were arranged as perfect diamond crystal of a2 2 2 unit cells, i.e. 64 carbon atoms. The effect

More information

Some properties of water

Some properties of water Some properties of water Hydrogen bond network Solvation under the microscope 1 Water solutions Oil and water does not mix at equilibrium essentially due to entropy Substances that does not mix with water

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

Chapter 8 notes. 8.1 Matter. 8.1 objectives. Earth Chemistry

Chapter 8 notes. 8.1 Matter. 8.1 objectives. Earth Chemistry Chapter 8 notes Earth Chemistry 8.1 Matter 8.1 objectives Compare chemical properties and physical properties of matter. Describe the basic structure of an atom. Compare atomic number, mass number, and

More information

Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order.

Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order. Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order Zhenyu Yan, Sergey V. Buldyrev,, Pradeep Kumar, Nicolas Giovambattista 3, Pablo

More information

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation)

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation) Liquids and Solids Phase Transitions All elements and compounds undergo some sort of phase transition as their temperature is increase from 0 K. The points at which these phase transitions occur depend

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance 1 (a) (i) HI, HBr, HCl, HF 1 (a) (ii) CF 4, CH 3 I, CH 2 Br 2, CHCl 2 F 1 (b) (i) CO 2 and HCN: linear H 2 O and SCl 2 : non-linear BF 3 and SO 3 : trigonal planar NH 3 and H 3 O + : pyramidal AlCl 4 and

More information

Atoms, Molecules, and Life

Atoms, Molecules, and Life 1 Atoms, Molecules, and Life The Nature of Matter: Atoms and Molecules Elements All matter is composed of chemical elements, substances that cannot be broken down to other substances by ordinary chemical

More information

A covalent bond is a shared pair of electrons between atoms of two non-metal elements.

A covalent bond is a shared pair of electrons between atoms of two non-metal elements. Bonding, Structure and properties Atoms can be held together by chemical bonds. When atoms form bonds, they can achieve a stable electron arrangement (full outer electron shell). To achieve a stable electron

More information

Week 11/Th: Lecture Units 28 & 29

Week 11/Th: Lecture Units 28 & 29 Week 11/Th: Lecture Units 28 & 29 Unit 27: Real Gases Unit 28: Intermolecular forces -- types of forces between molecules -- examples Unit 29: Crystal Structure -- lattice types -- unit cells -- simple

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of phase without change of chemical composition. In this chapter

More information

Atomic Arrangement. Primer in Materials Spring

Atomic Arrangement. Primer in Materials Spring Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to

More information

M02M.1 Particle in a Cone

M02M.1 Particle in a Cone Part I Mechanics M02M.1 Particle in a Cone M02M.1 Particle in a Cone A small particle of mass m is constrained to slide, without friction, on the inside of a circular cone whose vertex is at the origin

More information

10 Chemical reactions in aqueous solutions

10 Chemical reactions in aqueous solutions The Physics and Chemistry of Water 10 Chemical reactions in aqueous solutions Effects of water in reactions Hydration of reactants cause steric barriers Increases attraction between nonpolar reactants

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 6a BONDING AND SURFACES 3.091 Introduction to Solid State Chemistry Lecture Notes No. 6a BONDING AND SURFACES 1. INTRODUCTION Surfaces have increasing importance in technology today. Surfaces become more important as the size

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

2. Calculation.Methods The MD simulations have been performed by using a modified central force potential [14] and

2. Calculation.Methods The MD simulations have been performed by using a modified central force potential [14] and T he E ffect o f P re ssu re on th e H y d ro g e n B o n d S tru c tu re o f Liquid W a te r G. Pálinkás Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest. Hungary

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Atomic Arrangement. Primer Materials For Science Teaching Spring

Atomic Arrangement. Primer Materials For Science Teaching Spring Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 1 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

Gases and States of Matter: Unit 8

Gases and States of Matter: Unit 8 Gases and States of Matter: Unit 8 States of Matter There are three states (also called phases) of matter. The picture represents the same chemical substance, just in different states. There are three

More information

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces)

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement,

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE CRYSTALLINE AND AMORPHOUS SOLIDS Crystalline solids have an ordered arrangement. The long range order comes about from an underlying

More information

The particles in a solid hold relatively fixed positions.

The particles in a solid hold relatively fixed positions. Section 3 Solids Key Terms crystalline solid melting crystal structure crystal melting point unit cell amorphous solid supercooled liquid The common expression solid as a rock suggests something that is

More information

Chapter 2: Chemical Basis of Life

Chapter 2: Chemical Basis of Life Chapter 2: Chemical Basis of Life Honors Biology 2011 1 Chemistry of Life Living organisms are composed of about 25 chemical elements Matter - anything that occupies space and has mass Matter is composed

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

What is Matter? How can matter be classified? Every sample of matter is either an element, a compound, or a mixture.

What is Matter? How can matter be classified? Every sample of matter is either an element, a compound, or a mixture. Matter Section 1 What is Matter? How can matter be classified? Every sample of matter is either an element, a compound, or a mixture. matter: anything that has mass and takes up space Matter Section 1

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13 AP* Chapter 10 Liquids and Solids AP Learning Objectives LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses

More information

Solids / Crystal Structure

Solids / Crystal Structure The first crystal analysis proved that in the typical inorganic salt, NaCl, there is no molecular grouping. The inference that the structure consists of alternate ions of sodium and chlorine was an obvious

More information

Problem Set # 1 Solutions CHAPTERS 2 & 3 ATOMIC STRUCTURE AND INTERATOMIC BONDING and THE STRUCTURE OF CRYSTALLINE SOLIDS

Problem Set # 1 Solutions CHAPTERS 2 & 3 ATOMIC STRUCTURE AND INTERATOMIC BONDING and THE STRUCTURE OF CRYSTALLINE SOLIDS Problem Set # Solutions CHAPTERS & ATOMIC STRUCTURE AND INTERATOMIC BONDING and THE STRUCTURE OF CRYSTALLINE SOLIDS Assigned:.7(a),.9,.,.6,.8,.7(a),.7,.9,. (graded problems indicated in bold).7 (a) The

More information

Magnetic Monopoles in Spin Ice

Magnetic Monopoles in Spin Ice Magnetic Monopoles in Spin Ice Claudio Castelnovo University of Oxford Roderich Moessner Max Planck Institut Shivaji Sondhi Princeton University Nature 451, 42 (2008) 25 th International Conference on

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter.

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter. CHAPTER 3 MATTER Matter- Anything that takes up space (volume) and has mass. Matter Combining Matter States of Matter Atom- basic unit of matter. Subatomic particles- protons, neutrons, and electrons.

More information

A potential model for the study of ices and amorphous water: TIP4P/Ice

A potential model for the study of ices and amorphous water: TIP4P/Ice THE JOURNAL OF CHEMICAL PHYSICS 122, 234511 2005 A potential model for the study of ices and amorphous water: TIP4P/Ice J. L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega Departamento de Química

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards C2 Quick Revision Questions Question 1... of 50 What are the 3 main types of chemical bond? Answer 1... of 50 Ionic, Covalent & Metallic. Question 2... of 50 What force bonds atoms in an ionic bond? Answer

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

The lattice model of polymer solutions

The lattice model of polymer solutions The lattice model of polymer solutions Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 25, 2009 1 The lattice model of polymer solutions In the last note, we

More information

2m dx 2. The particle in a one dimensional box (of size L) energy levels are

2m dx 2. The particle in a one dimensional box (of size L) energy levels are Name: Chem 3322 test #1 solutions, out of 40 marks I want complete, detailed answers to the questions. Show all your work to get full credit. indefinite integral : sin 2 (ax)dx = x 2 sin(2ax) 4a (1) with

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons.

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons. Topic review Using scientific language Design and construct a crossword using the following words: atom; proton; molecule; ion; lattice; shell; element; compound; bond; conductor; insulator; electrolysis;

More information