Activation and Coupling: First Principles. Selectivity of the Catalyst

Size: px
Start display at page:

Download "Activation and Coupling: First Principles. Selectivity of the Catalyst"

Transcription

1 Supporting Information Subsurface Boron Doped Copper for Methane Activation and Coupling: First Principles Investigation of the Structure, Activity and Selectivity of the Catalyst Quang Thang Trinh, 1 Arghya Banerjee, 2 Yanhui Yang, 1,2 Samir H. Mushrif 1,2,* 1 Cambridge Centre for Advanced Research and Education in Singapore (CARES), Nanyang Technological University, 1 Create Way, Singapore , Singapore. 2 School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore , Singapore. Corresponding Author * address: SHMushrif@ntu.edu.sg (SHM) S1

2 Figure S1. F4 and B5 step sites on a model of p(4 8) Cu(111) unit cell with three missing rows on the top layer S2

3 Table T1. Free energy for the diffusion from on-surface site to sub-surface site of single B atom at temperature of 500 K and 1363 K. Metal Temperature (K) E (kj/mol) ZPE (kj/mol) H cor (kj/mol) T S (kj/mol) G (kj/mol) Cu Ni Pd Co S3

4 Figure S2. Transition states and diffusion barrier for the diffusion of Boron inside Cu(111) lattice: a) diffusion of B from on-surface to sub-surface octahedral site. b) Diffusion of B from first sub-surface octahedral site to deeper second sub-surface octahedral site. c) Horizontal diffusion from sub-surface octahedral sites within the first sub-surface layer. Dash circles illustrate Boron atoms at the beginning and end positions and the arrows indicate the diffusion direction. S4

5 Table T2. Average binding energy (kj/mol) of subsurface B at different coverages relative to the binding energy of 1/16 ML B subsurface obtained from PBE and optb88-vdw functionals Functional 1/16 B subsurface 2/16 ML B subsurface 4/16 ML B subsurface 1ML B Far Near Far Near subsurface PBE optb88-vdw S5

6 Figure S3. Diffusion of B from 1ML subsurface layer to the 2 nd subsurface layer. The diffusing atom is highlighted with yellow color. S6

7 Stability of different structures of Boron in Cu at different coverages. Actually at different dosage of B and at different temperatures (the influence of pressure is not considered and taken the value of 1atm in our study), the most stable structure might be different. To evaluate this, we computed the stabilities of different structures of B on Cu(111) surface as the free energy per Boron atom referenced to the clean Cu slab and B 2 H 6 (diborane) from the reaction: This procedure is widely used to evaluate the stabilities of different structures of B when doped with other transition metals such as Ni-B (Xu et al., The Journal of Physical Chemistry C 2009, 113, 4099), Co-B (Tan et al., Journal of Catalysis 2011, 280, 50) and Pd-B (Yoo et al., ACS Catalysis 2015, 5, 6579). The usage of B 2 H 6 as the source of B is due to the fact that B 2 H 6 is usually more stable than H 3 BO 3 under the reaction conditions (Tan et al., Journal of Catalysis 2011, 280, 50). Different structures of B in Cu slab were evaluated include the on-surface structures and sub-surface structures at different coverages of 0.25 ML, 0.5 ML, 0.75 ML and 1 ML. For those structures, p(2 2 4) slab of Cu(111) was used. At 0.5 ML, another structure was also considered include the reconstructed p4g clock Copper boride and the structure of p(2 8) unit cell of Cu with two missing rows on the top layer was used (similar to the model illustrated in Figure S1, Supporting Information). Those structures are presented in Figure S3. Figure S4. Different structures of B doped with Cu at different B coverages. a) 0.25 ML onsurface B; b) 0.5 ML on-surface B; c) 0.75 ML on-surface B; d) 1 ML on-surface B; e) p4g clock boride; f) 0.25 ML subsurface B; g) 0.5 ML subsurface B; h) 0.75 ML subsurface B and i) 1 ML subsurface B. The unit cell of p(2 2) was also indicated in Figs. S6a-d and S6f-i. Similarly to the calculations of stabilities of surface intermediates, all the thermodynamics properties was computed involve the Zero point energies (ZPEs), entropy and enthalpy correction. The harmonic vibrational simulations was conducted for the top layer of Cu and all B atoms in the structures are allowed to be relaxed. For the gas components (B 2 H 6 and H 2 ), all those properties are obtained from the standard thermodynamics NIST-JANAF table. We have also calculated the stabilities of all different structures of B in Cu at three temperature conditions of the reaction, 1223K, 1323K and 1363 K. S7

8 Figure S5. Optimized adsorption site and structures of intermediates forming on the surface of B-Cu catalyst during methane activation process. S8

9 Figure S6. Transition state and activation barrier of C-H activations processed at a Cu 2 u site of B-Cu catalyst: a) CH 3 CH 2 + H and b) CH 2 CH + H. Those barriers are much higher than the corresponding barriers computed at the Cu 4 u site of B-Cu catalyst as presented in the main text. S9

10 Figure S7. Transition state and activation barrier for the C-C coupling of CH 2 and CH 3 fragments forming C 2 H 5 processed at Cu 2 u site of B-Cu catalyst. This barrier is also much higher than the corresponding barrier computed at Cu 4 u site of B-Cu catalyst (129 kj/mol) as presented in the main text S10

11 Figure S8. a) Activation of methane nearby existing CH 3 fragment on a Cu 4 u and b) on a Cu 2 u site. C) Activation of methane nearby existing CH2 fragment on a Cu 4 u and d) on a Cu 2 u site. S11

12 Figure S9. Transition states and activation barriers for the dehydrogenation of a) C 2 H 5 C 2 H 4 + H and b) C 2 H 4 C 2 H 3 + H on the surface of B-Cu. S12

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol Supporting Information Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol Yan Jiao 1,, Yao Zheng 1,, Ping Chen 1,2,, Mietek

More information

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Andrew A. Peterson 1,3, Jens K. Nørskov 1,2 SUNCAT Center for Interface Science and Catalysis,

More information

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys Catalyst structure and C-O activation during FTS: new ideas from computational catalysis Mark Saeys Laboratory for Chemical Technology, Ghent University Laboratory for Chemical http://www.lct.ugent.be

More information

Supplementary information for How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

Supplementary information for How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels for How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels Andrew A. Peterson, Frank Abild-Pedersen, Felix Studt, Jan Rossmeisl, Jens K. Nørskov Center for Atomic-scale Materials

More information

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Heterostructures of MXene and N-doped graphene as highly active bifunctional

More information

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Supporting Information DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Kai Li, 1 Cong Yin, 2 Yi Zheng, 3 Feng He, 1 Ying Wang, 1 Menggai Jiao, 1 Hao Tang, 2,* Zhijian Wu 1,* 1 State

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL The fhi-aims code [1] was employed for the DFT calculations. The repeated slab method was used to model all the systems with the size of the vacuum gap chosen between 16 and 25 Å.

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Supporting Information for PbTiO 3

Supporting Information for PbTiO 3 Supporting Information for PbTiO 3 (001) Capped with ZnO(11 20): An Ab-Initio Study of Effect of Substrate Polarization on Interface Composition and CO 2 Dissociation Babatunde O. Alawode and Alexie M.

More information

Arghya Bhowmik, Dr. Heine Anton Hansen and Prof. Dr. Tejs Vegge*

Arghya Bhowmik, Dr. Heine Anton Hansen and Prof. Dr. Tejs Vegge* Supplementary Information for The Role of CO* as a Spectator in CO 2 Electro-reduction on RuO 2 Arghya Bhowmik, Dr. Heine Anton Hansen and Prof. Dr. Tejs Vegge* Department of Energy Conversion and Storage,

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

C-C Coupling on Single-Atom-Based Heterogeneous Catalyst

C-C Coupling on Single-Atom-Based Heterogeneous Catalyst Supporting Information C-C Coupling on Single-Atom-Based Heterogeneous Catalyst Xiaoyan Zhang,,, Zaicheng Sun, Bin Wang, ǁ Yu Tang, Luan Nguyen, Yuting Li and Franklin Feng Tao*, Department of Chemical

More information

CO Adsorption Site Preference on Platinum: Charge Is the Essence

CO Adsorption Site Preference on Platinum: Charge Is the Essence Supporting Information CO Adsorption Site Preference on Platinum: Charge Is the Essence G.T. Kasun Kalhara Gunasooriya, and Mark Saeys *, Laboratory for Chemical Technology, Ghent University, Technologiepark

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

Supporting Information: Ethene Oligomerization in Ni-containing Zeolites: Theoretical Discrimination of Reaction. Mechanisms

Supporting Information: Ethene Oligomerization in Ni-containing Zeolites: Theoretical Discrimination of Reaction. Mechanisms Supporting Information: Ethene Oligomerization in Ni-containing Zeolites: Theoretical Discrimination of Reaction Mechanisms Rasmus Y. Brogaard and Unni Olsbye Department of Chemistry, Centre for Materials

More information

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation 1 1 First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation Maarten K. Sabbe, Gonzalo Canduela, Marie- Françoise Reyniers, Guy B. Marin Introduction: benzene hydrogenation

More information

) 3 2. The nuclear and electronic partition functions are both neglected, and the total partition function q can be written as below:

) 3 2. The nuclear and electronic partition functions are both neglected, and the total partition function q can be written as below: Supporting Information Stable Pd-Doped Ceria Structures for CH 4 Activation and CO Oxidation Ya-Qiong Su, Ivo A.W. Filot, Jin-Xun Liu, and Emiel J.M. Hensen* Laboratory of Inorganic Materials Chemistry,

More information

Supporting Information. Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports

Supporting Information. Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports Supporting Information Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports Salai Cheettu Ammal and Andreas Heyden * Department of Chemical

More information

Supporting Information

Supporting Information Supporting Information Conversion of multilayer graphene into continuous ultrathin sp 3 - bonded carbon films on metal surfaces Dorj Odkhuu 1, Dongbin Shin 2, Rodney S. Ruoff 3, and Noejung Park 1,2 1

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110)

Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110) Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110) Yunhao Lu, *,, Wentao Xu, Mingang Zeng, Guanggeng Yao, Lei Shen, Ming Yang, Ziyu Luo,

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

Supporting Information: Surface Polarons Reducing Overpotentials in. the Oxygen Evolution Reaction

Supporting Information: Surface Polarons Reducing Overpotentials in. the Oxygen Evolution Reaction Supporting Information: Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction Patrick Gono Julia Wiktor Francesco Ambrosio and Alfredo Pasquarello Chaire de Simulation à l Echelle Atomique

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes Transition State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of n-alkanes David W. Flaherty, Enrique Iglesia * Department of Chemical Engineering, University of California

More information

Module 16. Diffusion in solids II. Lecture 16. Diffusion in solids II

Module 16. Diffusion in solids II. Lecture 16. Diffusion in solids II Module 16 Diffusion in solids II Lecture 16 Diffusion in solids II 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering Keywords: Micro mechanisms of diffusion,

More information

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS I. (80 points) From the literature... A. The synthesis and properties of copper(ii) complexes with ligands containing phenanthroline

More information

Supporting Information. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic

Supporting Information. Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Supporting Information Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO2 Support: A DFT Study Dong Wang,, Zhi-Pan Liu,*, Wei-Min Yang*, State Key Laboratory

More information

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation Supporting Information for: Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation Weifeng Tu, 1 Mireille Ghoussoub, Chandra Veer Singh,,3** and Ya-Huei (Cathy) Chin 1,*

More information

Supporting Information

Supporting Information Supporting Information Structure of the Clean and Oxygen-covered Cu(100) Surface at Room Temperature in the Presence of Methanol Vapor in the 10 to 200 mtorr Pressure Range Baran Eren,, Heath Kersell,,

More information

HC- Kinetics and Thermodynamics Test Review Stations

HC- Kinetics and Thermodynamics Test Review Stations HC- Kinetics and Thermodynamics Test Review Stations Station 1- Collision Theory and Factors Affecting Reaction Rate 1. Explain the collision theory of reactions. 2. Fill out the following table to review

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Periodic Trends in Properties of Homonuclear

Periodic Trends in Properties of Homonuclear Chapter 8 Periodic Trends in Properties of Homonuclear Diatomic Molecules Up to now, we have discussed various physical properties of nanostructures, namely, two-dimensional - graphene-like structures:

More information

Insights into Different Products of Nitrosobenzene and Nitrobenzene. Hydrogenation on Pd(111) under the Realistic Reaction Condition

Insights into Different Products of Nitrosobenzene and Nitrobenzene. Hydrogenation on Pd(111) under the Realistic Reaction Condition Insights into Different Products of Nitrosobenzene and Nitrobenzene Hydrogenation on Pd(111) under the Realistic Reaction Condition Lidong Zhang a, Zheng-Jiang Shao a, Xiao-Ming Cao a,*, and P. Hu a,b,*

More information

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Efficient Synthesis of Ethanol from CH 4 and Syngas on Efficient Synthesis of Ethanol from CH 4 and Syngas on a Cu-Co/TiO 2 Catalyst Using a Stepwise Reactor Zhi-Jun Zuo 1, Fen Peng 1,2, Wei Huang 1,* 1 Key Laboratory of Coal Science and Technology of Ministry

More information

OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 121

OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 121 Name (Print) Surname Given Names Student Number Centre OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 2 Professor: Nigel Eggers, Renee Van Poppelen, Stephen McNeil April 5, 2004 Duration: 3 hours

More information

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Catalytic Activity of IrO 2 (110) Surface: A DFT study Catalytic Activity of IrO 2 (110) Surface: A DFT study Jyh-Chiang Jiang Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST) NCTS-NCKU 9/7, 2010 Computational

More information

Carnegie Mellon University Carnegie Institute of Technology

Carnegie Mellon University Carnegie Institute of Technology Carnegie Mellon University Carnegie Institute of Technology THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy TITLE ATOMIC-LEVEL MODELING OF THE EARLY STAGES

More information

Reconstruction and intermixing in thin Ge layers on Si 001

Reconstruction and intermixing in thin Ge layers on Si 001 Reconstruction and intermixing in thin Ge layers on Si 001 L. Nurminen, 1 F. Tavazza, 2 D. P. Landau, 1,2 A. Kuronen, 1 and K. Kaski 1 1 Laboratory of Computational Engineering, Helsinki University of

More information

Electroreduction of N 2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V A DFT guide for experiments

Electroreduction of N 2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V A DFT guide for experiments Electronic Supplementary Information Electroreduction of N to ammonia at ambient conditions on mononitrides of Zr, Nb, r, and V DFT guide for experiments Younes bghoui a, nna L. Garden b, Jakob G. Howalt

More information

Methanol-Selective Oxidation Pathways on Au Surfaces: A First- Principles Study

Methanol-Selective Oxidation Pathways on Au Surfaces: A First- Principles Study pubs.acs.org/jpcc Methanol-Selective Oxidation Pathways on Au Surfaces: A First- Principles Study Lei Wang,, Chaozheng He, Wenhua Zhang,*,, Zhenyu Li,, and Jinlong Yang*,,, Key Lab of Materials for Energy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

(E) half as fast as methane.

(E) half as fast as methane. Name AP Chem / / AP Chem Practice Exam #2 Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the BLUE SIDE of your scantron for each of the following.

More information

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study Supplementary Information Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study A. Rajkamal, 1,# E. Mathan Kumar, 2,# V. Kathirvel 1, Noejung Park**, 3 and Ranjit Thapa*

More information

Stability, Composition and Function of Palladium Surfaces in Oxidizing Environments: A First-Principles Statistical Mechanics Approach

Stability, Composition and Function of Palladium Surfaces in Oxidizing Environments: A First-Principles Statistical Mechanics Approach Stability, Composition and Function of Palladium Surfaces in Oxidizing Environments: A First-Principles Statistical Mechanics Approach von Diplom-Chemikerin Jutta Rogal im Fachbereich Physik der Freien

More information

EXAM OF SCIENTIFIC CULTURE MAJOR CHEMISTRY. CO 2 hydrogenation

EXAM OF SCIENTIFIC CULTURE MAJOR CHEMISTRY. CO 2 hydrogenation EXAM OF SCIETIFIC CULTURE MAJOR CHEMISTRY CO 2 hydrogenation One possibility to limit CO 2 imprint on the global warming is to reduce CO 2 to more usable forms such as hydrocarbons. These can serve as

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

Chemistry 112 Name Exam III Form A Section November 13,

Chemistry 112 Name Exam III Form A Section November 13, Chemistry 112 Name Exam III Form A Section November 13, 2012 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Structure sensitivity of the methanation reaction: H 2 -induced CO dissociation on nickel surfaces

Structure sensitivity of the methanation reaction: H 2 -induced CO dissociation on nickel surfaces Journal of Catalysis 255 (2008) 6 19 www.elsevier.com/locate/jcat Structure sensitivity of the methanation reaction: H 2 -induced CO dissociation on nickel surfaces M.P. Andersson a,f.abild-pedersen a,i.n.remediakis

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

DISSOLUTION OF OXYGEN REDUCTION ELECTROCATALYSTS IN ACIDIC ENVIRONMENT. A Dissertation ZHIHUI GU

DISSOLUTION OF OXYGEN REDUCTION ELECTROCATALYSTS IN ACIDIC ENVIRONMENT. A Dissertation ZHIHUI GU DISSOLUTION OF OXYGEN REDUCTION ELECTROCATALYSTS IN ACIDIC ENVIRONMENT A Dissertation by ZHIHUI GU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

chemical reactions two basic questions: 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed?

chemical reactions two basic questions: 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed? chemical reactions two basic questions: + + 1) What is the driving force behind a chemical reaction? 2) How fast does a chemical reaction proceed? Chemical thermodynamics - What drives a chemical reaction?

More information

Au-C Au-Au. g(r) r/a. Supplementary Figures

Au-C Au-Au. g(r) r/a. Supplementary Figures g(r) Supplementary Figures 60 50 40 30 20 10 0 Au-C Au-Au 2 4 r/a 6 8 Supplementary Figure 1 Radial bond distributions for Au-C and Au-Au bond. The zero density regime between the first two peaks in g

More information

Supplemental Information

Supplemental Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics Supplemental Information Hydrogen reactivity on highly-hydroxylated TiO 2 (110) surface prepared via carboxylic acid adsorption

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Supporting Online Material (1)

Supporting Online Material (1) Supporting Online Material The density functional theory (DFT) calculations were carried out using the dacapo code (http://www.fysik.dtu.dk/campos), and the RPBE (1) generalized gradient correction (GGA)

More information

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Equilibrium Electrochemistry

More information

Supplementary Information. Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells

Supplementary Information. Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells Supplementary Information Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells Yu Hou, Dong Wang, Xiao Hua Yang, Wen Qi Fang, Bo Zhang, Hai Feng Wang, Guan Zhong Lu, P. Hu, Hui

More information

Electronic structure simulations of water solid interfaces

Electronic structure simulations of water solid interfaces Electronic structure simulations of water solid interfaces Angelos Michaelides London Centre for Nanotechnology & Department of Chemistry, University College London www.chem.ucl.ac.uk/ice Main co-workers:

More information

Thermodynamics of Borax Dissolution

Thermodynamics of Borax Dissolution Thermodynamics of Borax Dissolution Introduction In this experiment, you will determine the values of H, G and S for the reaction which occurs when borax (sodium tetraborate octahydrate) dissolves in water.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

THE CHEMICAL PHYSICS OF SOLID SURFACES

THE CHEMICAL PHYSICS OF SOLID SURFACES THE CHEMICAL PHYSICS OF SOLID SURFACES EDITED BY D.A.KING B.Sc, Ph.D. (Rand), Sc.D. (East Anglia), F.R.S. 1920 Professor of Physical Chemistry, University of Cambridge AND D.P.WOODRUFF B.Sc. (Bristol),

More information

A. MP2 - Inclusion of counterpoise in the optimisation step

A. MP2 - Inclusion of counterpoise in the optimisation step A. MP2 - Inclusion of counterpoise in the optimisation step Figure S1. Top and side views of the M_FS_SF_A and M_FS_SF_R IP-dimer structures computed at the MP2 level with (orange) and without (blue) counterpoise

More information

Joseph H. Montoya, Monica Garcia-Mota, Jens K. Nørskov, Aleksandra Vojvodic

Joseph H. Montoya, Monica Garcia-Mota, Jens K. Nørskov, Aleksandra Vojvodic Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplemental info to Theoretical evaluation of the surface electrochemistry of

More information

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond Zhijun Zuo, a Pedro J. Ramírez, b Sanjaya Senanayake, a Ping Liu c,* and José

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Co-existing honeycomb and Kagome characteristics. in the electronic band structure of molecular. graphene: Supporting Information

Co-existing honeycomb and Kagome characteristics. in the electronic band structure of molecular. graphene: Supporting Information Co-existing honeycomb and Kagome characteristics in the electronic band structure of molecular graphene: Supporting Information Sami Paavilainen,, Matti Ropo,, Jouko Nieminen, Jaakko Akola,, and Esa Räsänen

More information

Surface Complexes in Catalysis

Surface Complexes in Catalysis Surface Complexes in Catalysis David Karhánek Ústav organické technologie, VŠCHT Praha Institut für Materialphysik, Universität Wien XXXVII Symposium on Catalysis, Prague, October 7-8, 2005. Research Methodologies:

More information

Chemical reactions as network of rare events: Kinetic MonteCarlo

Chemical reactions as network of rare events: Kinetic MonteCarlo Chemical reactions as network of rare events: Kinetic MonteCarlo Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the Atom

More information

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules (4-bromo-1-ethyl-2-fluorobenzene) are dosed on a Cu(111) surface and annealed to 80

More information

Hydrogen termination following Cu deposition on Si(001)

Hydrogen termination following Cu deposition on Si(001) Hydrogen termination following Cu deposition on Si(001) L. A. Baker, A. R. Laracuente,* and L. J. Whitman Naval Research Laboratory, Washington, DC 20375-5342, USA Received 9 September 2004; published

More information

1 Adsorption of NO 2 on Pd(100) Juan M. Lorenzi, Sebastian Matera, and Karsten Reuter,

1 Adsorption of NO 2 on Pd(100) Juan M. Lorenzi, Sebastian Matera, and Karsten Reuter, Supporting information: Synergistic inhibition of oxide formation in oxidation catalysis: A first-principles kinetic Monte Carlo study of NO+CO oxidation at Pd(100) Juan M. Lorenzi, Sebastian Matera, and

More information

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles Andrew Goudy Delaware State University 2 N. Dupont Highway Dover, DE 99 Phone: (32) 857-6534 Email: agoudy@desu.edu DOE Managers Ned Stetson

More information

Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures

Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures Cong Liu a,, Bing Yang a,, Eric Tyo a, Soenke Seifert b, Janae DeBartolo b, Bernd von Issendorff c, Peter Zapol a,

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

The energy associated with electrostatic interactions is governed by Coulomb s law:

The energy associated with electrostatic interactions is governed by Coulomb s law: Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Movie 1 Description: This movie

More information

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located?

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located? Directions: Answer the following questions. Periodic Table Concepts 1. In what family are the most active metals located? 2. In what family are the most active non-metals located? 3. What family on the

More information

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes 1.8 Thermodynamics Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound is formed from

More information

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions

More information

1 What is energy?

1 What is energy? http://www.intothecool.com/ 1 What is energy? the capacity to do work? (Greek: en-, in; + ergon, work) the capacity to cause change to produce an effect? a certain quantity that does not change in the

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

LECTURE #12 Thurs., Oct.13, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2,

LECTURE #12 Thurs., Oct.13, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, CHEM 221 section 01 LECTURE #12 Thurs., Oct.13, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSIGNED READINGS: TODAY S CLASS: 3.6 How alkenes react: curved arrows to show

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Importance of Interfacial Adsorption in the Biphasic Hydroformylation of Higher Olefins Promoted by Cyclodextrins:

More information

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before conversion. Most of the graphene sample was folded after

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Systematic Structure-Property Relationship Studies in Palladium- Catalyzed Methane Complete Combustion

Systematic Structure-Property Relationship Studies in Palladium- Catalyzed Methane Complete Combustion Supporting Information Systematic Structure-Property Relationship Studies in Palladium- Catalyzed Methane Complete Combustion Joshua J. Willis, Alessandro Gallo,, Dimosthenis Sokaras, Hassan Aljama, Stanislaw

More information

CHEM 231 Final Exam Review Challenge Program

CHEM 231 Final Exam Review Challenge Program CHEM 231 Final Exam Review Challenge Program Directions: Read these!! Conversions: 1 ml = 1 cm 3 1 gallon=3.785 Liter 1 pound(lb) = 454 g 760 torr = 1 atm T(in K) = T(in C) + 273 Avagadro s number: 6.022

More information

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University,

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University, Supplementary Information to Solubility of Boron, Carbon and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations Xiaohui Hu, 1,2 Torbjörn Björkman 2,3, Harri Lipsanen

More information

= k 2 [CH 3 *][CH 3 CHO] (1.1)

= k 2 [CH 3 *][CH 3 CHO] (1.1) Answers to Exercises Last update: Tuesday 29 th September, 205. Comments and suggestions can be sent to i.a.w.filot@tue.nl Exercise d[ch 4 ] = k 2 [CH 3 *][CH 3 CHO].) The target is to express short-lived

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Reading: Ch 17, sections 1 9 Homework: Chapter 17: 27, 31, 37*, 39*, 41*, 43, 47, 49, 51*, 55, 57*, 59, 63, 71 * = important homework question The Second Law of Thermodynamics -

More information