Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ

Size: px
Start display at page:

Download "Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ"

Transcription

1 Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ Choong Jeon and Sung Ho Yeom Department of Environmental & Applied Chemical Engineering, Kangnung National University, Kangwondo , Korea Received October 7, 200; Accepted February 23, 2006 Abstract: To efficiently remove heavy metals from contaminated soils around an abandoned mine, new magnetically modified alginic acid and XYZ samples were prepared. The Kahak mine, which is located in KwangMyung City in Korea, was chosen to provide a model contaminated soil. Among the heavy metals in this contaminated soil, the concentration of Zn 2+ was the highest (ca. 00 mg/l); the concentrations of Pb 2+, Cu 2+,andCd 2+ were 300, 4, and mg/l, respectively. In the case of alginic acid containing carboxyl groups only, the removal efficiencies of Pb 2+ and Cu 2+ were high ( and 8 %, respectively), but those of Cd 2+ and Zn 2+ were low (ca. 40 %). Meanwhile, most of these heavy metals could be completely removed when the XYZ adsorbent, including amine and xanthate functional groups, was used. The sorption mechanism involves chelating the heavy metals to S and N atoms of a variety of functional groups. Heavy metals could be removed within 30 sec with no reelution. Therefore, this process seems to be a very safe method for removing heavy metals from the contaminated soils of the Kahak mine. Keywords: heavy metals, contaminated soils, adsorption, alginic acid, abandoned mine Introduction 1) The increased contamination of soils by means of toxic heavy metals is a very serious problem. Especially, concerns about contaminated metals in farmlands around abandoned mines has been increased greatly because of their toxicity and other adverse effects. The metals can be adsorbed onto the soil, discharged into rivers or lakes, and leached into the groundwater, which is an important source of drinking water. Exposure to toxic metals through drinking water and food can lead to their accumulation in animals, plants, and human. According to the literature, remediation techniques for soil contaminated with toxic metals include chemical treatment [1,2], electrokinetics [3], biochemical processing [4], and phytoremediation []. However, chemicals used in the chemical methods may destroy the soil structure and result in secondary pollution. Cline and Reed [6] reported that soil contaminated by heavy metals is effectively leached by EDTA, but this approach To whom all correspondence should be addressed. ( metaljeon@kangnung.ac.kr) destroyed the soil structure. Although phytoremediation takes a long time to remove heavy metals, it is a very simple and cheap process. Machenbrock [7] mentioned that it is more economical and competitive to remove heavy metals from leaching solutions by using a biosorption process. Therefore, in this study, among all of the biological methods, the biosorption process was chosen to treat leaching solutions containing heavy metals. Alginic acid is a linear, binary copolymer of 1,4linked αlguluronic acid and βdmannuronic acid units. It is usually isolated from brown algae, but it is also present in some species of bacteria. It is well known that alginic acid is a very useful material for removing heavy metals; its carboxyl groups play a very important role [8]. On the other hand, to investigate the effect of functional groups on the removal efficiency of heavy metals leached from contaminated soils, the XYZ adsorbent, which was supplied by a Korean company, was also used. It is a kind of polymer that contains two functional groups: i.e., dithiocarbamic acid (NHCS 2 Na) and thiol (SNa) groups. A serious problem often encountered in adsorption

2 Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ 363 treatment systems is the presence of suspended solids. For this reason, magnetic carrier methods are widely used in processes such as the separation of biological cells, the treatment of wastewater, coal desulphurizations, and mineral processing []. Magnetite has been used a carrier in precipitationadsorptioncoagulation schemes for the treatment of wastewater containing PO 4,Cu 2+, and Hg [10]. We previously studied heavy metal removal in metal solutions using magnetically modified alginic acid (MMA) and obtained satisfactory results [11]. In this study, MMA and MMXYZ were applied to heavy metal solutions (Pb, Cu, Cd, Zn) leached from contaminated farmland around an abandoned mine. was ca. 1.2 T. The equilibrium metal concentration was measured using an Atomic Absorption Spectrometer (PerkinElmer, U.S.A). All sorption experiments were performed three times; average values are shown. The uptake capacity of heavy metals was calculated using following equation: Q=(C i V i C f V f )/M where Q is the metal uptake capacity (mg/g), C i is the initial metal concentration (mg/l), V i is the initial volume (L), C f is the final metal concentration (mg/l), V f is the final volume (L), and M is the initial MMA loading (g). Materials and Methods Alginic acid was obtained from Alfa Aesar; XYZ was supplied by a Korean company. All reagents were of analytical grade and distilled waster was used to prepare all solutions. Soil Leaching The soil was sampled from farmland around an abandoned mine and dried in air. The soil was then sieved through a Taylor s standard sieve mesh to constant size (<1 mm). To extract the heavy metals in the soil, the standard operation test method using 00 ml of 0.1 N HCl and 100 g of soil was used. The soil leaching time was fixed at 1 hr and the agitation rate was set at 200 rpm. Extracted metal solutions were stored at room temperature. Preparation of Magnetically Modified Alginic Acid and XYZ Alginic acid or XYZ ( g) was mixed with 1.0 g of iron oxide powder (Bayferrox, Bayer) in 1.0 g of urethane (UT78, Kumgang Korea Chemical Co.) and 1 4 ml of distilled water for 1 h. The sample was then placed in a vacuum oven dryer 0 o C for 3 hrs and then it was ground for use as an adsorbent for heavy metals. Adsorption Experiments All sorption experiments were performed through batchtype operation using 100 ml of a metal solution extracted from contaminated soils in a shaking incubator at room temperature for 1 hr. To control the ph of the metal solutions, HNO 3 and NH 4 OH were used. When the adsorption of the metal solutions approached an equilibrium state, the magnetically modified adsorbents were separated from the metal solutions by using a permanent magnet. The magnetic field strength used in this study Results and Discussions Analysis of Sample Soils (Kahak Mine) The concentrations of heavy metal ions extracted from contaminated soils around the Kahak mine were measured by means of ICP (Inductively Coupled Plasma). As shown in Table 1, the concentration of Zn 2+ was the highest (ca. 00 mg/l); the concentrations of Pb 2+,Cu 2+, and Cd 2+ were 300, 4, and mg/l, respectively. In the case of Ni 2+, the concentration as (0. mg/l) was very low in the contaminated soils. Therefore, Ni 2+ was excluded from our present study. Treatment of Heavy Metals Using Magnetically Modified Alginic Acid (MMA) To test the feasibility of using magnetically modified alginic acid, comparisons with commercial adsorbents, such as ion exchange resin (Amberlite IR 120 plus) and activated carbon, were performed. Figure 1 shows the uptake capacities of heavy metal ions for each adsorbent. In the case of MMA, the uptake capacity of Pb 2+ (ca. 0.7 mmol/g) was much higher than those of the ion exchange resin (0.14 mmol/g) and activated carbon (0.10 mmol/g). For Cu 2+ ions, however, the uptake capacity of the ion exchange resin was the highest. On the other hand, adsorbents could adsorb Cd 2+ ions at all. The Zn 2+ ions were removed relatively well by the activated carbon, although its uptake capacity was very low. The selectivity order of MMA toward heavy metal ions was as follows: Pb > Cu >> Cd, Zn In general, among the various functional groups, it is well known that the carboxyl groups, which are a major component of alginic acid, have excellent selectivity toward Pb 2+ ions [12]. The effect of the MMA dosage on the removal effi

3 364 ChoongJeonandSungHoYeom Table 1. Heavy Metal Concentrations of the Sample Soil (Kahak Mine) Unit : mg/l Analysis Method Zn Pb Cu Cd Ni Standard operation test 00 ± ± 6. 4 ± 1.8 ± ± 0.02 Table 2. Effect of StepBy Step Addition of MMA on the Removal Efficiencies of Heavy Metal Ions Second step 0.2 g 0.4 g 0.6 g 0.8 g First step : 0.2 g First step : 0.4 g First step : 0.6 g First step : 0.8 g Pb Cu Cd Zn Pb Cu Cd Zn Pb Cu Cd Zn Pb Cu Cd Zn Figure 1. Uptake capacities of heavy metal ions extracted from soils with MMA, ion exchange resin, and activated carbon (equilibrium ph: 4.0). Figure 2. Effect of amount of MMA added on the removal efficiencies of heavy metal ions extracted from contaminated soils (working volume: 0 ml) ciencies of heavy metal ions was investigated. As shown in Figure 2, Pb 2+ ions were removed over 80 % when 0.4 g of MMA was added into the metal solutions. In Figure 3. Uptake capacity of heavy metal ions extracted from soils using a cosorbent of MMA and activated carbon (equilibrium ph of metal solution: 4.0). contrast, Cu 2+, Cd 2+, and Zn 2+ ions showed very low removal efficiencies (below 70, 20, and 23 %, respectively), even when 4.0 g of MMA was added. We believe that the differences in the removal efficiencies of these heavy metal ions is due to the selectivity of each metal toward carboxyl groups. To decrease the selectivity of Pb 2+ ion and, at the same time, to increase the removal efficiencies of the other metal ions, a stepbystep addition process was applied to the system. The Pb 2+ ions were removed preferentially in the first step and then, in the second step, some new amount of MMA was added to the remaining metal solutions. The total amount of MMA added was set at 1.0 g. The results are shown in Table 2; the removal efficiency of each heavy metal ion was almost the same as that in Figure 2. Therefore, this stepbystep process had no effect on reducing the selectivity of Pb 2+ ions. Generally, there are many kinds of organic materials found in wastewater extracted from contaminated soils; the adsorption of heavy metal ions by means of MMA can be interfered accordingly. To decrease any interfer

4 Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ 36 (a) (b) Figure 4. Removal efficiencies of heavies metals extracted from soils using various amounts of MMA (equilibrium ph of metal solution: 4.0; working volume: 100 ml). ence from organic materials on MMA and, simultaneously, to increase the adsorption capacity of heavy metals, especially Cd 2+ and Zn 2+, activated carbon was applied to the system. Activated carbon is used widely as a good adsorbent of many organic materials [13]. No additional cost is necessary to setup an activated carbon system because the removal of organic materials using activated carbon is also an adsorption process. As mentioned above, the selectivity toward Zn 2+ on activated carbon was much higher than that of MMA. Therefore, coadsorbent containing a 1: 1 ratio of MMA and activated carbon was used; the results are shown in Figure 3. The adsorption capacity of each heavy metal was very low. Especially, in the case of Cd 2+ and Zn 2+, no adsorption capacity was observed on the coadsorbent. Therefore, the effect of activated carbon on heavy metal removal was slight. As mentioned above, heavy metal ions were adsorbed Figure. Uptake capacity and removal efficiency of heavy metals in synthetic wastewater using magnetically modified XYZ (adding amount: 0.1 g/100 ml; initial concentration of heavy metals: 100 ppm). mainly by the carboxyl groups of alginic acid. Therefore, among the components of MMA, the content of alginic acid was increased. Figures 4(a) and (b) show the removal efficiencies of the heavy metal ions when using MMA samples including 0 and 66.7 % of alginic acid, respectively. In the case of MMA (0 %), the removal efficiency for each heavy metal ions was higher than that of MMA (33.3 %). Especially, the removal efficiencies of Cd 2+ and Zn 2+ (ca. 40 and 30 %, respectively) much higher than those of MMA (33.3 %). However, there was almost no improvement in these removal efficiencies when MMA (66.7 %) was used as the adsorbent. The Treatment of Heavy Metals Using Magnetically Modified XYZ When magnetically modified alginic acid was used to remove heavy metals ions extracted from contaminated soils, the economics efficiency was not satisfactory because of the high loading of MMA required, causing concern of soils contamination. Therefore, a study of the removal of heavy metals using XYZ as a new adsorbent was performed. As mentioned in the Materials and Methods section, XYZ was supplied by a Korean company; it has two functional groups with amino and xanthate units. The adsorption mechanism inrolves chelating the heavy metals by means of the S and N functional groups. The XYZ was also magnetized and its content was fixed at 0 %. Firstly, the uptake capacities and removal efficiencies of each heavy metal ion in synthetic wastewater on magnetically modified XYZ were investigated; the results are shown in Figure. Among these heavy metal ions, the uptake capacity of Zn 2+ was the highest (ca. 1.2 mmol/gdry mass); its removal efficiency was also ca. %. The removal efficiencies of Pb 2+ and Cu 2+ were

5 366 ChoongJeonandSungHoYeom (a) Figure 7. Effect of time on the removal efficiency of heavy metals extracted from soils using magnetically modified XYZ (content of adsorbent XYZ: 0 %; adding amount: 1.0 g/100 ml). Therefore, all of the heavy metals leached from contaminated soils could be removed completely with 1.0 g of chemically modified XYZ. It is very important to investigate the effect of time on the removal efficiency of heavy metals in the batch process. As shown in Figure 7, all of the heavy metals were removed completely within 30 sec. Consequently, the efficiency of the magnetically modified XYZ with its amino and xanthate functional groups was much higher than that of the magnetically modified alginic acid, containing carboxyl groups only, for the removal of heavy metals from contaminated soils. (b) Figure 6. (a) Uptake capacity and (b) removal efficiency of heavy metals extracted from contaminated soils using magnetically modified XYZ (content of XYZ: 0 %; working volume: 100 ml). also very high (ca. % each). Magnetically modified XYZ was also applied to the heavy metal solution extracted from contaminated soils around the Kahak mine. Figures 6(a) and (b) show the uptake capacity and removal efficiency of heavy metals on magnetically modified XYZ. For Pb 2+ and Cd 2+, as expected, the uptake capacities decreased as the amount of adsorbent added increased [14]. However, in the case of Zn 2+,the uptake capacity increased greatly when the added amount increased. These results can be explained by considering the different selectivities among the heavy metals toward magnetically modified XYZ. In the case of the removal efficiency, Pb 2+,Cu 2+,andZn 2+ could be removed almost completely with 0.3 g of chemically modified XYZ. Zn 2+ could be removed completely with 1.0 g of adsorbent. Conclusions To remove heavy metals efficiently from contaminated soils around an abandoned mine, two new adsorbents (magnetiteimmobilized alginic acid and XYZ) were tested. In the case of alginic acid (containing carboxyl groups only), the removal efficiencies of Pb 2+ and Cu 2+ were as high as and 8 %, respectively. However, the removal efficiency of Cd 2+ and Zn 2+ was low (ca. 40 %). On the other hand, most of these heavy metals could be removed completely when a very small amount of the XYZ sorbent (containing amino and xanthate functional groups) was used. The heavy metals could be removed within 30 sec; there was no reelution of there heavy metals. References 1. C. R. Evanko and D. A. Dzombak, Remediation of metalscontaminated soils and groundwater, Tech

6 Treatment of Heavy Metals in Contaminated Soils Around an Abandoned Mine Using Magnetically Modified Alginic Acid and XYZ 367 nology evaluation report. Groundwater remediations technologies analysis center, Pittsburgh (17). 2. R. G. Robins, Arsenic chemistry in relation to the disposal and stability of metallurgical wastes. Arsenic and mercuryworkshop on removal, recovery, treatment and disposal, Alexandria, Virginia, 4 (12). 3. Y. B. Acar and R. J Gale, J. Hazard. Mater., 40, 117 (1). 4. C. N. Mulligan, R. N. Yong, and B. F. Gibbs, J. Soil. Contam., 8, 231 (1).. A. J. M. Baker, R. D. Reeves, and S. P. McGrath, In situ bioreclamation, RE, Hinchey, R.F. Offenbach (Eds.), Butterworth Heinemann, Boston, pp (11). 6. S. R. Cline and B. E. Reed, J. Environ. Eng., (1). 7. K. Mackenbrock, Treatment of contaminated soils by a combination of suitable, proven technologies contaminated soil, Kluwer Academic Publishers, Netherlands (13). 8. C. Jeon, J. Y. Park, and Y. J. Yoo, Water Res., 36, (2002).. P. Parsonage, Colloid Chem. Miner. Process., (12). 10. M. Benjamin, J. Water Pollut. Control Fed., 4, 1472 (182). 11. C. Jeon, I. W. Nah, and K. Y. Hwang, Water Res. (200). 12. C. Jeon, Y. D. Kwon, and K. H. Park, J. Ind. Eng. Chem., 11, 1 (200). 13. V. Gaur, A. Sharma, and N. Verma, Chem. Eng. Process., 4, 1 (200). 14. B. D. Honeyman and A. H. Santschi, Environ. Sci. Technol., 22, 862 (188).

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 2 ABSTRACT Calcium alginate beads generated from alginic acid sodium salt from brown algae were 3 used to explore the adsorption

More information

Current World Environment Vol. 4(2), (2009)

Current World Environment Vol. 4(2), (2009) Current World Environment Vol. 4(2), 413-417 (2009) Removal of divalent manganese from water by adsorption using gac loaded with Ethylene Di-amine Tetra Acetic acid (EDTA) and Nitrilo Tri-acetic Acid (NTA)

More information

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA) Oriental Journal of Chemistry Vol. 25(3), 799-803 (2009) Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

More information

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

Removal of Copper (II) from Aqueous Solutions using Chalk Powder Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (2): Pg. 713-717 Removal

More information

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Korean J. Chem. Eng., 18(5), 692-697 (2001) Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent Hak Sung Lee and Jung Ho Suh* Department of Chemical Engineering, *Department of

More information

Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust

Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust Korean J. Chem. Eng., 29(12), 1730-1734 (2012) DOI: 10.1007/s11814-012-0069-1 INVITED REVIEW PAPER Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust Taik-Nam

More information

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum Iranian J Env Health Sci Eng, 24, Vol.1, Barkhordar No.2, pp.58-64 B and Ghiasseddin M: Comparing of Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum * B Barkhordar

More information

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal 5.1 Introduction Different contaminants are released to water bodies due to the rapid industrialization of human society, including heavy metal

More information

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Nikazar, M.*, Davarpanah, L., Vahabzadeh, F. * Professor of Department of Chemical Engineering, Amirkabir University

More information

Novel polymer-based nanocomposites for application in heavy metal pollution remediation. Emerging Researcher Symposium

Novel polymer-based nanocomposites for application in heavy metal pollution remediation. Emerging Researcher Symposium Novel polymer-based nanocomposites for application in heavy metal pollution remediation Emerging Researcher Symposium Lara Kotzé-Jacobs 10 October 2012 Introduction: SA s water problem SA is a water scarce

More information

AMMONIA ADSORPTION FROM AQUEOUS SOLUTION USING NATURAL ZEOLITES. Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 31490, Thailand

AMMONIA ADSORPTION FROM AQUEOUS SOLUTION USING NATURAL ZEOLITES. Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 31490, Thailand AMMONIA ADSORPTION FROM AQUEOUS SOLUTION USING NATURAL ZEOLITES Paradorn Sopa, Pornpan Pungpo * Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 31490, Thailand * e-mail: pornpan_ubu@yahoo.com

More information

Journal of Biological and Chemical Research. Synthesis, Characterization and Analytical Application of New Resin CMAHPE-TKP.

Journal of Biological and Chemical Research. Synthesis, Characterization and Analytical Application of New Resin CMAHPE-TKP. Synthesis, Characterization and Analytical Application of New Resin CMAHPE-TKP By Manisha Sharma ISSN 0970-4973 (Print) ISSN 2319-3077 (Online/Electronic) Volume 28 No. 1 & 2 (2011) J. Biol. Chem. Research

More information

Potential Alternative Utilization of Manganese Nodules

Potential Alternative Utilization of Manganese Nodules UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE Potential Alternative Utilization of Manganese Nodules Ng. Hong VU Utilization of leaching residues as sorbents Reductive leaching: - 90 o C, l/s= 10:1, ~

More information

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX Dinesh Kumar a, Sambi S. S. a, Sharma S. K. a, Kumar, V. b a University School of Chemical Technology, GGS IPU, Delhi - 110006,

More information

Removal of lead from aqueous solutions by spent tea leaves

Removal of lead from aqueous solutions by spent tea leaves Removal of lead from aqueous solutions by spent tea leaves Roberto Lavecchia, Alessio Pugliese and Antonio Zuorro Department of Chemical Engineering, Materials & Environment Sapienza University Via Eudossiana,

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.7, pp 3095-3099, 2015 ICEWEST-2015 [05 th - 06 th Feb 2015] International Conference on Energy, Water and Environmental

More information

Sorptive treatment of explosives and heavy metals in water using biochar

Sorptive treatment of explosives and heavy metals in water using biochar 2013 US Biochar Conference U. Mass, Amherst, MA, USA October 14, 2013 Sorptive treatment of explosives and heavy metals in water using biochar Seok-Young Oh 1*, Yong-Deuk Seo 1, Hyun-Su Yoon 1, Myong-Keun

More information

Application of Selenium Speciation Analysis to Elucidate Limitations with Accepted Total Selenium Methods

Application of Selenium Speciation Analysis to Elucidate Limitations with Accepted Total Selenium Methods Application of Selenium Speciation Analysis to Elucidate Limitations with Accepted Total Selenium Methods Russell Gerads (russ@appliedspeciation.com) 2013 National Environmental Monitoring Conference info@appliedspeciation.com

More information

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Universities Research Journal 2011, Vol. 4, No. 3 Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Aye Aye Myat 1, Kyaw Naing 2 and San San Myint 1 Abstract

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes Portugaliae Electrochimica Acta 2010, 28(2), 125-133 DOI: 10.4152/pea.201002125 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous

More information

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS Int. J. Chem. Sci.: 12(4), 2014, 1550-1556 ISSN 0972-768X www.sadgurupublications.com STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS AMITA SHARMA * Chemistry Department,

More information

Adsorption of metal ions by pecan shell-based granular activated carbons

Adsorption of metal ions by pecan shell-based granular activated carbons Bioresource Technology 89 (23) 115 119 Adsorption of metal ions by pecan shell-based granular activated carbons R.R. Bansode a, J.N. Losso a, W.E. Marshall b, R.M. Rao a, *, R.J. Portier c a Department

More information

Uranium biosorption by Spatoglossum asperum J. Agardh:

Uranium biosorption by Spatoglossum asperum J. Agardh: Chapter 6 Uranium biosorption by Spatoglossum asperum J. Agardh: 76 Chapter 6. Uranium biosorption by Spatoglossum asperum J. Agardh: Characterization and equilibrium studies. 6.1. Materials 6.1.1. Collection

More information

Chapter 7 Adsorption thermodynamics and recovery of uranium

Chapter 7 Adsorption thermodynamics and recovery of uranium Chapter 7 Adsorption thermodynamics and recovery of uranium 99 Chapter 7. Adsorption thermodynamics and recovery of uranium from aqueous solutions by Spatoglossum 7.1. Materials 7.1.1. Preparation of sorbent

More information

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution Ahmad Ashfaq* and Mohd Kaifiyan Civil Engineering Section, Faculty of Engineering & Technology, Aligarh

More information

ELIMINATION OF NICKEL (I) FROM SYNTHETIC WASTE WATER USING BAGASSE PITH WITH COLUMN STUDIES

ELIMINATION OF NICKEL (I) FROM SYNTHETIC WASTE WATER USING BAGASSE PITH WITH COLUMN STUDIES ELIMINATION OF NICKEL (I) FROM SYNTHETIC WASTE WATER USING BAGASSE PITH WITH COLUMN STUDIES M Murali Naik¹, P Akhila Swathanthra 2 1,2 Department of Chemical Engineering, SVUCE, Tirupati, 517502 (India)

More information

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads

Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Universities Research Journal 2011, Vol. 4, No. 3 Removal of Some Toxic Heavy Metals by means of Adsorption onto Biosorbent Composite (Coconut Shell Charcoal - Calcium Alginate) Beads Chaw Su Hlaing, 1

More information

Removal of Arsenic Using Mango, Java Plum and Neem Tree Barks

Removal of Arsenic Using Mango, Java Plum and Neem Tree Barks INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY Research Article Removal of Arsenic Using Mango, Java Plum and Neem Tree Barks S. Mumtazuddin * and AK. Azad University Department of

More information

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Anoop Raj J R Anil K Das Aishwarya B S Sruthi Suresh Abstract- Batch sorption experiments

More information

Comparision studies on Adsorbants for removal of Hardness from Water by using newly Prepared Zeolite

Comparision studies on Adsorbants for removal of Hardness from Water by using newly Prepared Zeolite INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY Research Article Comparision studies on Adsorbants for removal of Hardness from Water by using newly Prepared Zeolite R. Viswanath Goud

More information

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal Wint Myat Shwe 1, Dr. Mya Mya Oo 2, Dr. Su Su Hlaing 3 Abstract-- To overcome arsenic toxicity; which has become

More information

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Adsorption of chromium from aqueous solution by activated alumina and activated charcoal Suman Mor a,b*, Khaiwal Ravindra c and N. R. Bishnoi b a Department of Energy and Environmental Science, Chaudhary

More information

Simultaneous Adsorption and Biodegradation of Phenol and Cyanide in Multicomponent System

Simultaneous Adsorption and Biodegradation of Phenol and Cyanide in Multicomponent System International Journal of Environmental Engineering and Management. ISSN 2231-1319, Volume 4, Number 3 (2013), pp. 233-238 Research India Publications http://www.ripublication.com/ ijeem.htm Simultaneous

More information

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal Wint Myat Shwe 1, Su Su Hlaing 2, Mya Mya Oo 3 Abstract-- This paper was studied about a simple and efficient

More information

Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous Solutions by Using Hebba Clay and Activated Carbon

Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous Solutions by Using Hebba Clay and Activated Carbon Portugaliae Electrochimica Acta 21, 28(4), 231-239 DOI: 1.4152/pea.214231 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Removal of Heavy Metals (Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ ) from Aqueous

More information

IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS

IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS IJRRAS 4 (1) July 21 IMO LATERITIC SOIL AS A SORBENT FOR HEAVY METALS Felix F. Udoeyo 1, Robert Brooks 2, Hilary Inyang 3 & Sunyoung Bae 4. 1 Assistant Professor, Temple University, Dept. of Civil and

More information

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL Engineering Postgraduate Conference (EPC) 2008 ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL R. Rosli 1, A. T. A Karim 1, A. A. A. Latiff 1 and M. R. Taha 2 Faculty

More information

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski ADSORPTION OF CADMIUM IONS ON CHITOSAN MEMBRANES: KINETICS AND EQUILIBRIUM STUDIES Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski Chair of Nuclear and Radiation Chemistry Faculty of

More information

A FEW WORDS ABOUT OULU

A FEW WORDS ABOUT OULU 1 NITRATE REMOVAL BY MODIFIED LIGNOCELLULOSE M.Sc. (Tech.) Anni Keränen, Dr. Tiina Leiviskä, Prof. Osmo Hormi, Prof. Juha Tanskanen University of Oulu, FINLAND 2 A FEW WORDS ABOUT OULU located 500 km (310

More information

Remediation of heavy metals by microalgae: Productivity impact and end fate of contaminants

Remediation of heavy metals by microalgae: Productivity impact and end fate of contaminants Remediation of heavy metals by microalgae: Productivity impact and end fate of contaminants Eric Torres, Derek Hess, Brian McNeil, Jason C. Quinn Mechanical & Aerospace Engineering Utah State University

More information

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(12):78-83 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Removal of toxic metal chromium(vi) from industrial

More information

Hexavalent Chromium Removal by Quaternized Poly(4-Vinylpyridine) Coated Activated Carbon From Aqueous Solution

Hexavalent Chromium Removal by Quaternized Poly(4-Vinylpyridine) Coated Activated Carbon From Aqueous Solution Hexavalent Chromium Removal by Quaternized Poly(4-Vinylpyridine) Coated Activated Carbon From Aqueous Solution Ravi Kumar Kadari 1, Baolin Deng 2 Dianchen Gang 1 1 West Virginia University Institute of

More information

Comparison studies for copper and cadmium removal from industrial effluents and synthetic solutions using mixed adsorbent in batch mode

Comparison studies for copper and cadmium removal from industrial effluents and synthetic solutions using mixed adsorbent in batch mode International Journal of ChemTech Research CODEN(USA): IJCRGG, ISSN: 0974-4290, Comparison studies for copper and cadmium removal from industrial effluents and synthetic solutions using mixed adsorbent

More information

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017 Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel Sundus Saleh Nehaba Al-Qasim Green University / College of Agriculture Snasna71@yahoo.com Abstract This study

More information

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT Shashikant.R.Mise 1, Ravindra P. Amale 2, Rejendra K.Lamkhade 3 1 Professor, Department of Civil Engineering, PDA College

More information

Removal of Cadmium from Wastewater using low cost Natural Adsorbents

Removal of Cadmium from Wastewater using low cost Natural Adsorbents Abstract International Research Journal of Environment Sciences ISSN 2319 1414 Removal of Cadmium from Wastewater using low cost Natural Adsorbents Ali F.*, Mussa T., Abdulla A., Alwan A. and Salih D.

More information

Phytoremediation of Cu(II) by Calotropis Procera Roots

Phytoremediation of Cu(II) by Calotropis Procera Roots Phytoremediation of Cu(II) by Calotropis Procera Roots Hifsa Mubeen 1 Ismat Naeem *1 and Abida Taskeen 1 1. Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Pakistan. Email:

More information

Shirley E. Clark, Ph.D., P.E., D. WRE Robert E. Pitt, Ph.D., P.E., BCEE, D. WRE

Shirley E. Clark, Ph.D., P.E., D. WRE Robert E. Pitt, Ph.D., P.E., BCEE, D. WRE Shirley E. Clark, Ph.D., P.E., D. WRE Robert E. Pitt, Ph.D., P.E., BCEE, D. WRE Current PA Guidance Many guidance documents apply expected pollutant removals based on literature. However, typically presented

More information

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE EXPERIMENTAL PROCEDURE The present experimentation is carried out on biosorption of chromium and lead from aqueous solutions by biosorbents Ageratum conyzoides leaf and Anacardium occidentale testa powder.

More information

Removal of Cu 2+ from Aqueous Solution using Fly Ash

Removal of Cu 2+ from Aqueous Solution using Fly Ash Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.6, pp.561-571, 2011 jmmce.org Printed in the USA. All rights reserved Removal of Cu 2+ from Aqueous Solution using Fly Ash Jinjing

More information

Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water. Carla Calderon, Wolfgang H.

Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water. Carla Calderon, Wolfgang H. X 2008 Synthesis and Application of Manganese Dioxide Coated Magnetite for Removal of Trace Contaminants from Water Carla Calderon, Wolfgang H. Höll Institute for Technical Chemistry, Water and Geotechnology

More information

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER PROJECT REFERENCE NO. : 37S1399 COLLEGE : DAYANANDA SAGAR COLLEGE OF ENGINEERING, BANGALORE BRANCH :

More information

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups Manuscript for Supporting Information A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups Daisuke Nagai*, Megumi Yoshida, Takuya

More information

REMOVAL OF METAL IONS FROM ACIDIC SOLUTIONS USING PEAT A LOW COST SORBENT

REMOVAL OF METAL IONS FROM ACIDIC SOLUTIONS USING PEAT A LOW COST SORBENT Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 REMOVAL OF METAL IONS FROM ACIDIC SOLUTIONS USING PEAT A LOW COST SORBENT MARIAN

More information

Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions

Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions Zhen Liu, Haisong Wang*, Chao Liu, Yijun Jiang, Guang Yu, Xindong Mu* and Xiaoyan

More information

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient

More information

THE INFLUENCE OF WATER QUALITY ON THE FLOTATION OF THE ROSH PINAH COMPLEX LEAD-ZINC SULFIDES.

THE INFLUENCE OF WATER QUALITY ON THE FLOTATION OF THE ROSH PINAH COMPLEX LEAD-ZINC SULFIDES. THE INFLUENCE OF WATER QUALITY ON THE FLOTATION OF THE ROSH PINAH COMPLEX LEAD-ZINC SULFIDES. Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria, South Africa.

More information

http://www.diva-portal.org This is the published version of a paper presented at 16th International Conference on Heavy Metals in the Environment (ICHMET), SEP 23-27, 2012, Rome, ITALY. Citation for the

More information

KINETICS AND EQUILIBRIUM STUDY OF ADSORPTION OF PHENOL RED ON TEFF (Eragrostis teff) HUSK ACTIVATED CARBON

KINETICS AND EQUILIBRIUM STUDY OF ADSORPTION OF PHENOL RED ON TEFF (Eragrostis teff) HUSK ACTIVATED CARBON International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 471-476 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent Removal of copper and cadmium using industrial effluents in continuous column studies by mixed adsorbent Srinivas Tadepalli 1*, Masresha Temeselew Letik 2 1* Lecturer, Department of Chemical Engineering,

More information

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS Seventh International Water Technology Conference Egypt 1-3 April 23 879 REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS H. BENAISSA* and M.A. ELOUCHDI * Laboratory of Sorbent

More information

International Conference on Manufacturing Science and Engineering (ICMSE 2015)

International Conference on Manufacturing Science and Engineering (ICMSE 2015) International Conference on Manufacturing Science and Engineering (ICMSE 2015) Enhancement of the adsorption of cadmium by modified orange peel with sodium hydroxide and ethyl alcohol Jing Gaoa, Shiyu

More information

Sorption of Water Pollutants

Sorption of Water Pollutants Sorption of Water Pollutants Prepared by Kimberly Hetrick and Ljiljana Rajic Objective The overall goal of this session is to learn about sustainable ways to deal with water contamination while specific

More information

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Removal Of Copper From Waste Water Using Low Cost Adsorbent IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 3, Issue 6 (Jan. Feb. 2013), PP 51-55 Removal Of Copper From Waste Water Using Low Cost Adsorbent Jubraj Khamari* Sanjeet Kumar Tiwari**

More information

SM/EB-20. A. Behjat 1, S. Dadfarnia 2, M. Parsaeian 3, A. M. Salmanzadeh 2, F. Anvari 3, and M. Kheirkhah 3.

SM/EB-20. A. Behjat 1, S. Dadfarnia 2, M. Parsaeian 3, A. M. Salmanzadeh 2, F. Anvari 3, and M. Kheirkhah 3. SM/EB Study of the Effects of Electron Beam on Heavy Metals in Presence of Scavengers for Decontamination and Purification of the Municipal and Industrial Wastewater A. Behjat, S. Dadfarnia, M. Parsaeian,

More information

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment Performance evaluation of industrial by-product phosphog in the sorptive removal of nickel(ii) from aqueous environment M.M. EL-Tyeb & S.R.Zeedan Sanitary and Environmental Engineering Department, Housing&

More information

Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns

Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns Removal Efficiency of Cesium and Strontium in Seawater by Zeolite Fixed-Bed Columns Waruntara Tannkam, Mahidol University, Thailand Naowarut Charoenca, Mahidol University, Thailand Nipapun Kungskulniti,

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies

Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies http://www.e-journals.net ISSN: 973-4945; ODEN EJHAO E- hemistry 29, 6(S1), S153-S158 Removal of hromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies TARIQ

More information

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water International Journal of Applied Chemistry. ISSN 0973-1792 Volume 13, Number 3 (2017) pp. 453-460 Research India Publications http://www.ripublication.com Developing a Low Cost Activated Carbon from Agricultural

More information

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution ISSN : 0974-746X Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution Zahra Abbasi 1 *, Mohammad Alikarami 2, Ali Homafar 1 1 Department of Chemistry, Eyvan-e-Gharb Branch,

More information

Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera

Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera ORIGINAL ARTICLE Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera Ronbanchob Apiratikul 1, Taha F. Marhaba 2, Suraphong Wattanachira 1,3, and Prasert Pavasant 1,4

More information

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon

Adsorption Kinetics and Intraparticulate Diffusivity of Aniline Blue Dye onto Activated Plantain Peels Carbon Chem Sci Trans., 2013, 2(1), 294-300 Chemical Science Transactions DOI:10.7598/cst2013.200 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Adsorption Kinetics and Intraparticulate Diffusivity of Aniline

More information

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia 1 Microorganisms Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia Species makeup: f(t, O 2, ph, nutrients, etc.) Indicators & pathogens Dissolved inorganics

More information

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell International Journal of Environmental Engineering and Management ISSN 2231-1319, Volume 4, Number 4 (213), pp. 273-28 Research India Publications http://www.ripublication.com/ ijeem.htm Removal of Cd

More information

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho Polish Journal of Environmental Studies Vol. 1, No. 1 (26), 81-86 Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods Department of Environmental

More information

Journal of Applicable Chemistry 2014, 3 (1): (International Peer Reviewed Journal)

Journal of Applicable Chemistry 2014, 3 (1): (International Peer Reviewed Journal) Available online at www.joac.info ISSN: 2278-862 Journal of Applicable Chemistry 204, 3 (): 302-309 (International Peer Reviewed Journal) Cerium (IV) Arsenovanadate A Reusable And Highly Efficient Ion

More information

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System 265 Journal of Pharmaceutical, Chemical and Biological Sciences ISSN: 2348-7658 Impact Factor (SJIF): 2.092 December 2014-February 2015; 2(4):265-269 Available online at http://www.jpcbs.info Online published

More information

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment Chin-Ya Kuo, Hsiao-Han Liu * Department of Biological Science & Technology, I-Shou University, Kaohsiung 824, Taiwan, ROC

More information

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent International Journal of Scientific and Research Publications, Volume 4, Issue 10, October 2014 1 Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

More information

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T G.Burmaa 1, O.Nasantogtokh 1, N.Narantsogt 2, A.Perlee-Oidov 1 1 Institut of Chemistry and Chemical Technology,

More information

Adsorption of Copper, Zinc and Nickel Ions from Single and Binary Metal Ion Mixtures on to Chicken Feathers

Adsorption of Copper, Zinc and Nickel Ions from Single and Binary Metal Ion Mixtures on to Chicken Feathers 849 Adsorption of Copper, Zinc and Nickel Ions from Single and Binary Metal Ion Mixtures on to Chicken Feathers Sameer Al-Asheh*, Fawzi Banat and Dheaya Al-Rousan Department of Chemical Engineering, Jordan

More information

Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent

Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent 22 International Conference on Future Environment and Energy IPCBEE vol.28(22) (22)IACSIT Press, Singapoore Kinetic Parameters And Evaluation Performance for Decolorization Using Low Cost Adsorbent Vikrant

More information

Lecture 15: Adsorption; Soil Acidity

Lecture 15: Adsorption; Soil Acidity Lecture 15: Adsorption; Soil Acidity Surface Complexation (Your textbook calls this adsorption ) Surface Complexation Both cations and anions can bind to sites on the external surfaces of soil minerals

More information

Research Article. Removal of nickel(ii) using lotus stem powder as adsorbent

Research Article. Removal of nickel(ii) using lotus stem powder as adsorbent Available online wwwjocprcom Journal of Chemical and Pharmaceutical Research, 2015, 7(10):621-625 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Removal of nickel(ii) using lotus stem powder as

More information

Vol. 3, No. 4 December 2002 pp

Vol. 3, No. 4 December 2002 pp Carbon Science Vol. 3, No. 4 December 2002 pp. 219-225 Effect of Two-step Surface Modification of Activated Carbon on the Adsorption Characteristics of Metal Ions in Wastewater I. Equilibrium and Batch

More information

Isotherm studies of removal of Cr (III) and Ni (II) by. Spirulina algae

Isotherm studies of removal of Cr (III) and Ni (II) by. Spirulina algae INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY Research Article Isotherm studies of removal of Cr (III) and Ni (II) by Spirulina algae Engy Elhaddad 1 and Abeer M. A. Mahmoud 2. 1

More information

Characterisation of natural Zeolite and the feasibility of cations and anions removal from water

Characterisation of natural Zeolite and the feasibility of cations and anions removal from water Computational Methods and Experiments in Materials Characterisation IV 7 Characterisation of natural Zeolite and the feasibility of cations and anions removal from water G. Badalians Gholikandi 1, H. R.

More information

Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments

Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments Engineering Geology 85 (2006) 19 25 www.elsevier.com/locate/enggeo Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments Cynthia A. Coles a,, Raymond

More information

Uranium from water sample

Uranium from water sample Uranium from water sample Analysis of uranium from water sample Determination of uranium is based on radiochemical separation and alpha spectrometric measurements. Detailed description is presented below.

More information

Boron Treatment Technology for CCR Wastewater, Ash Leachate, and Groundwater

Boron Treatment Technology for CCR Wastewater, Ash Leachate, and Groundwater 2017 World of Coal Ash (WOCA) Conference in Lexington, KY - May 9-11, 2017 http://www.flyash.info/ Boron Treatment Technology for CCR Wastewater, Ash Leachate, and Groundwater Allison Kreinberg 1, Bruce

More information

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS Environment Protection Engineering Vol. 3 No. 3 4 KATARZYNA JAROS*, WŁADYSŁAW KAMIŃSKI*, JADWIGA ALBIŃSKA**, URSZULA NOWAK* REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN

More information

Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent

Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent Hind Hamed Al-Riyami, Shah Jahan, and Priy Brat Dwivedi Abstract The release of heavy metals into the environment is a worldwide

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 22 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #23 Drinking Water Treatment: Ion Exchange, Adsorption & Arsenic Reading: Chapter 7, pp.262-266 David Reckhow CEE 371

More information

Removal of Metal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration

Removal of Metal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Removal of Metal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration To cite this article: S Mulyati et al

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (4):283-290 ISSN: 0976-8610 CODEN (USA): AASRFC Removal of Basic Dyes from Aqueous Solutions by Sugar Can

More information

SORPTION OF COPPER AND ZINC BY GOETHITE AND HEMATITE

SORPTION OF COPPER AND ZINC BY GOETHITE AND HEMATITE Original scientific paper UDC: 502.51:504.5:669.35 DOI: 10.7251/afts.2015.0712.059B COBISS. RS-ID 4988952 SORPTION OF COPPER AND ZINC BY GOETHITE AND HEMATITE Bekényiová Alexandra 1, Štyriaková Iveta 1,

More information

Effects of Activating Chemicals on the Adsorption Capacity of Activated Carbons Prepared from Palm Kernel Shells.

Effects of Activating Chemicals on the Adsorption Capacity of Activated Carbons Prepared from Palm Kernel Shells. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 319-40,p- ISSN: 319-399.Volume 11, Issue 1 Ver. II (Jan. 017), PP 60-64 www.iosrjournals.org Effects of Activating

More information