Distribution of Hydroxy Succinic Acid Between Water and Organic Solutions of Aliphatic Tertiary Amines

Size: px
Start display at page:

Download "Distribution of Hydroxy Succinic Acid Between Water and Organic Solutions of Aliphatic Tertiary Amines"

Transcription

1 Journal of Scientific & Indu strial Research Vo l 6 1 April 22, pp istribution of Hydroxy Succinic Acid Between Water and Organic Solutions of Aliphatic Tertiary Amines Ismail Inci Universi ty of istanbul Engineering Faculty, Chemi cal Engi neering epartment, 3485, istanbul, Turkcy Recei ved : 12 Novamber 2 I; accepted :8 January 22 The extracti on of hydroxy succinic acid from an aqueous solutions into solu tions of tri-ii -octylamine and Alamine 336 in single so lvents are hexane, cyclohexane, isooctane toluene and methyli sobutyl ketone (MIBK ) is investigated Formation of acid amine compl exes is a dominating factor in the system under consideration iluents are chosen fro m different chemical classes - po lar and nonpolar- so as to examine the effect of diluents compl ex interacti ons The distribution coefficients and loadi ng factors are calcu lated and interpreted from ex perimental results - Introduction Aliphatic terti ary ammes di ssolved m an organic solvent are powerful extractants for carboxylic aci ds 1-7 The amine binds the ac id in the organic ph ase thourgh reversible complexation Often, water takes part in complex formation, thus having a strong influence on the liquid-liquid equilibrium Several workers have in vesti gated the exraction of carboxylic ac id by amines dissolved in organtc so I vents It has been found that diluents, especially those with functional groups, can affect the extracti on behaviour of amine significantl y The stoichiometry of solute:amine complex, loadi ng of amine as well as the third phase formati on are influenced by the diluent The effect of diluent can be understood in terms of ability to so lvate to organic phase species Therefore, it is necessary to di stinguish between general solvati on from electrostatic, di spersion or other forces and specific so lvation due to hydrogen bonding I' The extraction process can be described by the reactions: H2A+ R,N = H2AR, N, H2A + 2 R1N = H2AR, N2 The resulting ac id :amine supposed to be stabili ied due b on d mg Wit I 1 th e d'l l uent 14 " IS compl exes are to the hydrogen The structure of acid:amine complexes in diluents were determined by Barrow and Yerger 16 They proposed that the first ac id interacts directly with the amine to form an ion pair and the OH of the carboxyl of the second acid forms a hydrogen bonding with the conjugated CO of the carboxylate of the first acid to form a complex 161\Figure I ) O,\ / C-CH3 /O-----H-O CH -C" 3 '\', '\ - + O H NR3 Figure I - The structure of acid-amine complex In thi s work, experimental res ults for liquidliquid equilibrium in vo lved in the reacti ve extraction of hydroxy succinic ac id with tri-il-octylamine and Alamine 336 di ssolved in single so lvents hexane, cyclohexane, isooctane, toluene, and methyl isobutyl ketone (MIBK) at 25 C are presented Theoretical An equilibrium description of acid-amine system can be written by a set of reacti ons of p ac id A, molecules and q amine B, molecules to form vari ous (p,q) complexes with corresponding equilibrium constants, K pqlfue

2 29 J SCIIN RES VOL 61 APRIL 22 pa +qb = A pb'l' ( 1) " (2) where the spec ie;; activities are denoted by brackets and the organic phase species are denoted by bar From application point of view the activities of the organic phase species are assumed to be proportional to the concentrations of the species, with the constants of the proportionality considered in the equilibrium constant The apparent equilibrium constant for the overall reaction can be written as: " (3) where species concentrations are denoted by square brackets and are expressed in molar terms The loading of the extractant, Z is defined as the total conce ntration of acid in th e organic phase, divided by the total concentration of amine in organic phase l 8 With appropriate materi a l balance, Z is determined for a g iven set of stoichi ometries as : PI-I ll Z = CAII}g = LPKptf!A! B CIJrIl{ C BTo/ " (4) istribution coeffi c ients fo r hydroxy SUCCIl1IC acid, extracted from water into organi c phase were determined as, [Acid concentration in orgallic phase ] = -i :::'-----'-~ [Acid concentration in aqueous phase ] Experimental Procedure " (5) Tri-Il-octylamine, hydroxy SUCCIl1 IC acid, and solvents were purchased from Merck Company Alamine 336, a commercial product (Henkel Co) W,L used as mixture of straight-chain tertiary amines with seven to nine carbon atoms per chain containing 275 mollkg of active amines (M = 363, 3 g/mol ) Ali chemicals were used as such Hydroxy succinic acid was dissolved in water to prepare the solutions with initial cone of acid 1 per cent w/w The initial organic phases were prepared by the dissolution tri-ii-octylamine and alamine 336 in the diluents to produce solutions with approximately constant conc (1,8 molll, 1,4 molll, 1, 1 molll,,7 mol/l, 4 molll reslpecti vel y) For distribution experiments equal volumes of an aqueous hydroxy succinic acid solution and an organic solution of amine were stirred in glass flasks in a shaker bath at 25 C for 2 h Pre liminary tests demonstrated that there was sufficient time for equ ilibration Thereafter the mixture was kept in a bath for another 6-8 h to complete separation The concentration of the acid in the aqueous phase was determined by titration with aqueous sodium hydroxide (relative uncertainity: I per cent)1 9 Acid analysis was checked against a material balance In most cases the deviation between the amount of acid analyed and the amount of ac id known by preparing the solutions by weighing did not exceed 3 per cent The solubilities of amine salts and diluents in the aqueous phase were negli gible in the range of variables investi gated Results and iscussion Table I and 2 present results of the experimental investi gati on The concentrati ons of amines in solvents were between 4 molll and 18 molll The hydroxy succinic acid concentration in the initial aqlleous phase was 1 mass per cent The equilibrium data on th e d istribution of hydroxy succini c acid between water and aliphatic amines (tri-il-octylamine and alamine 336) di ssolved in hexane, cyclohexane, isooctane, toluene, methyl isobtyl ketone are presented in Table I and Table 2 Figure 2 demonstrates the influence of the organic solvent on hydroxy succini c ac id di stirbution bet we e ~ water and tri-il-octylamine It can be seen that th e extraction powe r of tri-n-octylamine - diluent mi xture changes with increasin g initial concentrati on of tri-n-octylamine in th e organic phase According to Tabl e I and F igure 2, for tri-noctylamine extraction the order was as fo llows: MIB K> Tol uene> Hex ane>cyclohexane> Isooctane This fact can be explained by the formation of two or more acid: amine complexes, which are effected by the diluents in different ways i

3 INC I: ISTRIBUTIO OF HYROXY SUCCINIC AC I Table 1- Experimental result s of the extraction of hydroxy succi ni c aci d wi th tri-il-octylamine in dilut ing solvcnts iluent Hexane Isooctane Cyclohexanc Toluene MIBK C TOA (mo l l L ) A U~O lao 11 7 OA8 61 OA '57 58 OA OA AO IA I Solvation of the complex by the diluent t S a critical factor In the ex tract ion of acid The interaction s between the complex and di luent can be divided into general solvati on and specifi c interactions of the diluent with the complex Inert diluents - hexane, c),clohexane isooctane - give a very low distribution of the acid into the sol vent phase Alkanes being nonpolar provide very low solvation of the polar complexes Aromatic dilu en t (toluene) give higher distribution which has been rat ionalied as solvation due to interacti on of the aromatic fl - electron with complex MJBK is palm and can promote extraction by plovid ilig a good so lvating media foi the ion pail Table 2 - Experimental result s of thc extraction of hydroxy succinic acid with alaminc 336 in diluti ng solvents iluen t Hexane Isooctane CyclohexJne To lucne MIBK C A31!, (moll L ) OA5 OA ::< <) OAI In Figure 3 the effect of tri-f/-octylamine concentrati on on load ing is shown The loading curve is a plot of Z vs <Im ine concentration Overloading (load ing> I) indicates that complexes with morc than one acid per amine have bee n fo rmed With MJBK, overl oading can be observed at low tri-f/ octylamine concentration, (Figure ~) System) that incl ude the di luent specifically in the comple ' stoichiometr show decrease loading with increa:e in amine concentration With all of the solvents al tri-ll-octylailline, extlaction load ing decreases thereby ind icating that complexes include the diluent spec ifically (Fiellre 3) ystem_ that exhibit aggregation fort1idtion of complexes with

4 292 J SCI INO RES VOL 61 APRIL 22 large numbers of acid and amine molecules, exhibit an abrupt increase in loading, Toluene, isooctane, hexane at tri-n-octylamine extraction (Figure 3) exhibit abrupt increase at 4-14 molll amine concentration, thereby indicating that complexes include large number of acid and amine molecul es, For systems with only one amine per complex, there is no effect of total amine concentration on the loading, If there is more than one amine per complex loading increase with increase in amine concentration, 2,5r X-H ella n e --C yc t oh e l(an e According to Table 2 and Figure 4, for Alamine 336 extraction the following orders were found: MIBK > Toluene> Hexane> Cyclohexane > Isooctane, ue to high polarity of MIBK and its capability to act as a hydrogen bond acceptor, hydroxy succinic acid shows a considerable sol ubi lity in that solvent in the presence of alamine 336 (same as with tri-noctylamine), In Figure S, the effect of Alamine 336 concentration on loading is shown, With MIBK overloading can be observed at low Alamine 336 concentrations (same as with tri-il-octylamine), 12 ~ Isooclan e ~ Toluene ~ M1BK o,a,5,2,4,6,8 1,2 14 1,6 18 Concentrat io n of tr i- n -oc tylam i ne (mo I/L) Figure 2 - Vari ation of distributi on coefficients with concentration of tri-n-oclylallline in different diluting solvents Q4 Q2 - x-hexane -+-Cyclohexane ~ Isooctan e -+-Toluene -<>--M 8K 7 Q2 Q ,4 1,6 III Concentration 1 tri-o-octylarrone (rnol/l) GyJctleltane -tr-isoodane 5 C -+-TdU l1e Q) : ---4-MEI< ~ 4 " c: '5 3 J:J '': u; i5 2 1 Figure 4 - Vari ation of distribution coeffi cients with concentrat ion of alallline 336 in different diluting solvents 7 -o-hexane CVclohe l ane -c-lsooctar'9 c -+- Toluene : so -o-mibk ~ c ', " ;; 3 2,5 1,5 2 Corcer1ration 1 trioo- oc!ytarrone (mol /l) 1 O,S 15 Concentration o f tri- n-octylamine (moll L) Figure 3 - Vari ati on of loading factors with concentrati on of tri-ll-octylallline in diftcrent diluting solvents Fi gu re 5 - Vari ati on of loading fa clors with co ncentrati on of alallline 336 in different diluting solvents

5 INCI: ISTRIB UTION OF HYROXY SUCCINIC AC I 293 Hexane and cyclohexane exhibit abrupt increase at 6-15 moul amine concentration, thereby indicating that complexes include large number of acid and amine molcules With cyclohexane loading increases, thereby indicating that complexes include more than one amine per complex and with other solvents loading decreases, thereby indicating that complexes include the diluent specifically References Yang S T, White S A & Hsu S T, Extraction of carboxylic acids with tertiary and quarternary amines, Ind Eng Chem Res, 3 (1991) Althouse J W & Tavlarides L L Analysis of organic extractant systems for aceti c acid removal for calcium magnesium acetate production, Ind Eng Chem Res, 31 ( 1992) Tamada J A & King C J, Extraction of carboxyli c acids with amine extractants 2: chemi cal interactions and interpretation of data In d Eng Chem Res 29 ( 199) Tamada J A Kertes A S & King C J Extract ion of carboxyli c acids with amine extractants I: equilibria and law of mass action modelling Ind Eng Chelll Res, 29 (199) Hano T, Matsumoto M Uenoyama S, Ohtake T, Kawona Y & Miura, S Separati on of lacti c acid from fermented broth by solvent ex tracti on Bioseparation 3 (1993) Hartl J & Marr R, Extrac tion processes for bioproduct separation, Sep Sci Tecl1ll1 28 (1993) Malmary G H Mourgues J F Bakti J Conte T S, Achour, Smagghe F J,& Molinier J E Part ition coefficients of tartaric and hydroxy succini c ac ids between dilute aqueous soluti ons and amine extractants disso lved in various diluent s J Chelll Ell!? ata, 38 (1993) Smelov V S,& Sttrahov A V Exraction of oxali c acid by trioctyl amin, Radiokhilll, 4 (1963) Bullock J I Choi S S Goodrick A Tuck G & Woodhouse E J, Organic ph ase species in the exraction of mineral acids by meth yldi octylami ne in chloroform J Phys Cllem, 68 (1964) Vieux A S Rutagengwa N, Rulinda J B & Balikungeri A Extraction of some dicarboxylic acids by trii sooctylamine Anal Chilli Acta 68 (1974) I I Manenok G S Korobanova V I Yudina T N & Soldato v V S innuence of the nature of the solvent on extraction of certain mono- and dicarboxylic acids by amines Russ J Appl Chelll 52 (1979) Reisi nger H & Marr R, Multicomponent-liquid membrane permeation of organic acids Chelll Ellg Tecllllol 15 (1992) Bi ek V, Horacek J, Kousova A, Herberger A & Prochaka J Mathemati cal model of extraction of malic acid wi th amine Chelll Eng Sci 47 (1992) Wennersten R, The extrac tion of mali c acid from fermentation broth using a solution of terti ary amine, J Cheln Teclll1l Biotechllol 33 (1983) Yang S T, White S A & Hsu S T, Extracti on of carboxylic acids with tertiary and quarternary ami nes, Ind Eng Chem Res 3 (199 1) Yerger E A& Barrow G M, Acid-base reactions in nondi ssociating solvents: II -butyl amine and acetic acid in carbon tetrac hloride, I Alii Chelll Soc,77 ( 1955) Yerger E A & Barrow G M, Acid-base reactions in nondissociating so lvents: aceti c acid and diethylamine in carbon tetrachloride and chloroform, I Am Chem Soc, 77 (1955) Kertes A S & King C J, Extraction chemistry of fe rmentation product carboxylic acids, Biotechnol Bioellg, 28 (1986) Kirsch T, Maurer G, i stribution of oxalic acid between water and tri-n-octyl amine, Ind Eng Chem Res 3S (1996) Abbrevations and Notations A B B"'I C B1 1 MTBK p q Acid Amine = Apparent equilibrium constant Concentration of alami ne 336, (mol / L) Concentration of tri -n-octylamine (mol / L) Concentration of ac id in organi c phase at the end of ex trac ti on = Concentration of total amine in organic phase = istribution coeffi cient Hydroxy succinic acid = Equi librium constant = Mehyl isobutyl ketone Tertiary amine Number of ac id molecul es Number of amine molecules Loading fac tor

Distribution of Glycolic Acid Between Water and Different Organic Solutions

Distribution of Glycolic Acid Between Water and Different Organic Solutions . NCI, Distribution of Glycolic Acid Between Water and Different Organic Solutions, Chem. Biochem. Eng. Q. 16 (2) 81 85 (2002) 81 Distribution of Glycolic Acid Between Water and Different Organic Solutions.

More information

Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents

Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents http://www.e-journals.net ISSN: 973-4945; CODEN ECJHAO E- Chemistry 211, 8(S1), S59-S515 Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents İ. İNCİ, Y. S. AŞÇI and A. F.

More information

Sushil Kumar 1, T R Mavely 2 and B V Babu* Birla Institute of Technology and Science (BITS), PILANI (Rajasthan) India

Sushil Kumar 1, T R Mavely 2 and B V Babu* Birla Institute of Technology and Science (BITS), PILANI (Rajasthan) India Reactive Extraction of Carboxylic s (Butyric-, Lactic-, Tartaric-, Itaconic- Succinic- and Citric s) using Tri-n-Butylphosphate (TBP) Dissolved in 1-Dodecanol and n-octane (1:1 v/v) Sushil Kumar 1, T R

More information

Reactive extraction of propionic acid using Aliquat 336 in MIBK: Linear solvation energy relationship (LSER) modeling and kinetics study

Reactive extraction of propionic acid using Aliquat 336 in MIBK: Linear solvation energy relationship (LSER) modeling and kinetics study Journal of Scientific & Industrial Research 78 Vol. 68, ugust 29, pp. 78-713 J SCI IN RES VOL 68 UGUST 29 Reactive extraction of propionic acid using liquat 336 in MIBK: Linear solvation energy relationship

More information

Separation Characteristics of Lactic Acid in Reactive Extraction and Stripping

Separation Characteristics of Lactic Acid in Reactive Extraction and Stripping Korean J. Chem. Eng., 17(5), 528-533 (2000) Separation Characteristics of Lactic Acid in Reactive and Stripping Dong Hoon Han*, Yeon Ki Hong and Won Hi Hong Department of Chemical Engineering, Korea Advanced

More information

Influence of Chain Length of Tertiary Amines on Extractability and Chemical Interactions in Reactive Extraction of Succinic Acid

Influence of Chain Length of Tertiary Amines on Extractability and Chemical Interactions in Reactive Extraction of Succinic Acid Korean J. Chem. Eng., 21(2), 488-493 (2004) Influence of Chain Length of Tertiary Amines on Extractability and Chemical Interactions in Reactive Extraction of Succinic Acid Yeon Ki Hong and Won Hi Hong*,

More information

Bioresource Technology

Bioresource Technology Bioresource Technology 100 (2009) 2878 2882 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Short Communication Study on solvent extraction

More information

Investigation of the oxalic acid extraction with different extractant in the emulsion type liquid membrane

Investigation of the oxalic acid extraction with different extractant in the emulsion type liquid membrane Investigation of the oxalic acid extraction with different extractant in the emulsion type liquid membrane *Aynur Manzak 1) and Mehmet Inal 2) 1), 2) Department of Chemistry, SAKARYA UNIVERSITY, Sakarya

More information

Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in Kerosene

Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in Kerosene Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in erosene Sushil umar 1, aran Gupta 2, and B V Babu* Birla Institute of Technology and

More information

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures Indian Journal of Chemistry Vol. 35A, March 1996, pp. 188-194 Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures UN Dash & B K Mohantv Department

More information

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change.

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. In order to do this, we need to be able to talk about numbers of atoms. The key concept is

More information

Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid

Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid International Conference on Biology, Environment and Chemistry IPCBEE vol.4 () ()IACSIT Press, Singapoore Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic

More information

Unit 10: Solutions. soluble: will dissolve in miscible: refers to two liquids that mix evenly in all proportions -- e.g., food coloring and water

Unit 10: Solutions. soluble: will dissolve in miscible: refers to two liquids that mix evenly in all proportions -- e.g., food coloring and water Unit 10: Solutions Name: Solution Definitions solution: a homogeneous mixture -- -- e.g., alloy: a solid solution of metals -- e.g., solvent: the substance that dissolves the solute soluble: will dissolve

More information

Solutions Solubility. Chapter 14

Solutions Solubility. Chapter 14 Copyright 2004 by Houghton Mifflin Company. Solutions Chapter 14 All rights reserved. 1 Solutions Solutions are homogeneous mixtures Solvent substance present in the largest amount Solute is the dissolved

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena.

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena. Physical Pharmacy PHR 211 Lecture 1 Solubility and distribution phenomena. Course coordinator Magda ELMassik, PhD Assoc. Prof. of Pharmaceutics 1 Objectives of the lecture After completion of thislecture,

More information

REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL

REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL Priti V. Ganorkar 1, S.M. Jadhav 2, S.G. Gaikwad 3 1, 2 Department of Chemical Engineering, Bharati Vidyapeeth Deemed

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID

INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID Int. J. Chem. Sci.: (3), 22, 39-36 ISSN 972-768X www.sadgurupublications.com INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID HUSSEIN SALIH HUSSEIN

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions A solution is a homogeneous mixture of two or more substances. A solution is made when one substance (the solute) is

More information

Florian Chemarin, Marwen Moussa, Florent Allais, Violaine Athès, Ioan-Cristian Trelea

Florian Chemarin, Marwen Moussa, Florent Allais, Violaine Athès, Ioan-Cristian Trelea Mechanistic modeling and equilibrium prediction of the reactive extraction of organic acids with amines: a comparative study of two complexation-solvation models using 3-hydroxypropionic acid Florian Chemarin,

More information

Reactive extraction of lactic acid using alamine 336 in MIBK Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

Reactive extraction of lactic acid using alamine 336 in MIBK Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G. University of Groningen Reactive extraction of lactic acid using alamine 336 in MIBK Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G. Published in: Journal of Biotechnology

More information

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces The Chemistry of Water and the Nature of Liquids Chapter 11 CHAPTER OUTLINE 11.2 I. The Structure of Water: An Introduction to Intermolecular Forces II. A Closer Look at Intermolecular lar Forces A. London

More information

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria Solutions of Acids or Bases Containing a Common Ion A common ion often refers to an ion that is added by two or more species. For

More information

Chemistry Review If 4.90 moles of nitroglycerin explodes, how many moles of water vapour are produced?

Chemistry Review If 4.90 moles of nitroglycerin explodes, how many moles of water vapour are produced? Chemistry Review 3 Use the following information to answer the next two questions. Nitroglycerin, C 3 H 5 (NO 3 ) 3(l) explodes and produces several gaseous products when exposed to physical shock, according

More information

Penicillin G extraction from simulated media by emulsion liquid membrane

Penicillin G extraction from simulated media by emulsion liquid membrane DARU Vol. 5, No. 27 2 Penicillin G extraction from simulated media by emulsion liquid membrane Ramazani Kalhor R., *2 Kaghazchi T., 3 Fazeli M.R., 4 Daeipoor F. Tofigh Daru (TODA) Co., 2 Department of

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2010, 2(4):257-265 Selective Extraction of 7-aminodeacetoxycephalosporanic

More information

LIQUID-LIQUID EXTRACTION EQUILIBRIUM FOR PYRUVIC ACID RECOVERY: EXPERIMENTAL DATA AND MODELING

LIQUID-LIQUID EXTRACTION EQUILIBRIUM FOR PYRUVIC ACID RECOVERY: EXPERIMENTAL DATA AND MODELING Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.scielo.br/bjce Vol. 34, No. 03, pp. 919 925, July September, 2017 dx.doi.org/10.1590/0104-6632.20170343s20150276 LIQUI-LIQUI

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Review Article Status of the Reactive Extraction as a Method of Separation

Review Article Status of the Reactive Extraction as a Method of Separation Journal of Chemistry Volume 2015, Article I 853789, 16 pages http://dx.doi.org/10.1155/2015/853789 Review Article Status of the Reactive Extraction as a Method of Separation ipaloy atta, 1 Sushil Kumar,

More information

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution

Solutions. LiCl (s) + H2O (l) LiCl (aq) 3/12/2013. Definitions. Aqueous Solution. Solutions. How Does a Solution Form? Solute Solvent solution Solutions Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved solvent is the liquid in which the solute is dissolved an aqueous solution

More information

Solvent Extraction of Gold from Chloride Solution by Tri-Butyl Phosphate (TBP)

Solvent Extraction of Gold from Chloride Solution by Tri-Butyl Phosphate (TBP) 23 rd International Mining Congress & Exhibition of Turkey 16-19 April 2013 ANTALYA Solvent Extraction of Gold from Chloride Solution by Tri-Butyl Phosphate (TBP) N. Sadeghi, E. K. Alamdari, D. H. Fatmehsari

More information

PETE 203: Properties of oil

PETE 203: Properties of oil PETE 203: Properties of oil Prepared by: Mr. Brosk Frya Ali Koya University, Faculty of Engineering, Petroleum Engineering Department 2013 2014 Lecture no. (2): Crude oil chemistry and composition 5. Crude

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Solubility and Complex Ion. Equilibria

Solubility and Complex Ion. Equilibria Solubility and Complex Ion a mineral formed by marine organisms through biological precipitation CALCITE Equilibria CaCO 3(s) Ca 2+ (aq) + CO 3 2- (aq) K = K sp = [Ca 2+ ][CO 3 2- ] = 2.8 x 10-9 K sp =

More information

A Thesis on. Reactive Extraction of Acetic Acid. Submitted by TARUN VERMA. Roll no 212CH1082

A Thesis on. Reactive Extraction of Acetic Acid. Submitted by TARUN VERMA. Roll no 212CH1082 A Thesis on Reactive Extraction of Acetic Acid Submitted by TARUN VERMA Roll no 212CH1082 In partial fulfilment of the requirement for the degree in Master oftechnology in Chemical Engineering Under the

More information

Ch.7 ACTIVITY & SYSTEMATIC TREATMENT OF EQ

Ch.7 ACTIVITY & SYSTEMATIC TREATMENT OF EQ Ch.7 ACTIVITY & SYSTEMATIC TREATMENT OF EQ 7. Activity Effective concentration under ionic surroundings 7-. The effect of Ionic Strength on Soluility of salts. * Consider a saturated sol. Hg (IO 3 ), concentration

More information

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1 Chapter 3: utline-1 Molecular Nature of Water Noncovalent Bonding Ionic interactions van der Waals Forces Thermal Properties of Water Solvent Properties of Water ydrogen Bonds ydrophilic, hydrophobic,

More information

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

COSMO-RS Theory. The Basics

COSMO-RS Theory. The Basics Theory The Basics From µ to properties Property µ 1 µ 2 activity coefficient vapor pressure Infinite dilution Gas phase Pure compound Pure bulk compound Partition coefficient Phase 1 Phase 2 Liquid-liquid

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville,

More information

Solution. Types of Solutions. Concentration and Solution Stoichiometry

Solution. Types of Solutions. Concentration and Solution Stoichiometry Concentration and Solution Stoichiometry Solution homogenous mixture of 2 or more pure substances only one perceptible phase species do not react chemically Types of Solutions solid liquid gas Solutions

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Lab 3: Solubility of Organic Compounds

Lab 3: Solubility of Organic Compounds Lab 3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Exam 2. CHEM Spring Name: Class: Date:

Exam 2. CHEM Spring Name: Class: Date: CHEM-112-01 Spring 2012 Name: Class: Date: 1. Record your name and ID number on the scantron form. 2. Record the test ID letter in the top right box of the scantron form. 3. Record all of your answers

More information

Solubility Products. Solubility Products. Solubility Products. Solubility Products. Slide 2 / 57. Slide 1 / 57. Slide 3 / 57.

Solubility Products. Solubility Products. Solubility Products. Solubility Products. Slide 2 / 57. Slide 1 / 57. Slide 3 / 57. Slide 1 / 57 Slide 2 / 57 Products queous equilibria II Products onsider the equilibrium that exists in a saturated solution of aso 4 in water: aso 4 (s) a 2+ (aq) + SO 4 2- (aq) Slide 3 / 57 Products

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

Sectional Solutions Key

Sectional Solutions Key Sectional Solutions Key 1. For the equilibrium: 2SO 2 (g) + O 2 (g) 2SO 3 (g) + 188 kj, the number of moles of sulfur trioxide will increase if: a. the temperature of the system is increased (at constant

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

Buffers. A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs.

Buffers. A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs. Buffers A buffered solution resists changes in ph when small amounts of acids or bases are added or when dilution occurs. The buffer consists of a mixture of an acid and its conjugate base. Example: acetic

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

CHEM134- Fall 2018 Dr. Al-Qaisi Chapter 4b: Chemical Quantities and Aqueous Rxns So far we ve used grams (mass), In lab: What about using volume in lab? Solution Concentration and Solution Stoichiometry

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Intermolecular Forces and Physical Properties

Intermolecular Forces and Physical Properties Intermolecular Forces and Physical Properties Attractive Forces Particles are attracted to each other by electrostatic forces. The strength of the attractive forces depends on the kind(s) of particles.

More information

Chapter 4. Reactions in Aqueous Solution. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 4. Reactions in Aqueous Solution. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 4 in Solution 2012 Pearson Education, Inc. John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Solutions Solute: substance in lesser quantity in

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP The expression for the equilibrium constant for the solubility equilibrium M 2 X 2 M X 2 is 1. sp 2 M X 2 / M 2 X 2. sp 2 M 2 X 2 / M 2 X 3. sp 2 M 2 X 2 4. sp M 2 X 2 Lecture 21 CH102 A1 (MWF 9:05

More information

AP Chemistry. Reactions in Solution

AP Chemistry. Reactions in Solution AP Chemistry Reactions in Solution S o l u t i o n s solution: a homogeneous mixture of two or more substances -- The solvent is present in greatest quantity. -- Any other substance present is called a.

More information

REACTIVE EXTRACTION OF SUCCINIC ACID USING NATURAL DILUENT

REACTIVE EXTRACTION OF SUCCINIC ACID USING NATURAL DILUENT REATIVE EXTRATION OF SUINI AID USING NATURAL DILUENT Rakesh Shantaram Mekade 1, Rashmi S. Deshpande 1Post Graduate Student, Department of hemical Engineering, Sinhgad ollege of Engineering, Pune. Associate

More information

Stoichiometry: Chemical Calculations. Chapter 3-4

Stoichiometry: Chemical Calculations. Chapter 3-4 Chapters 3-4 Stoichiometry: Chemical Calculations Slide 1 of 48 Molecular Masses And Formula Masses Molecular Masses Molecular mass is the sum of the masses of the atoms represented in a molecular formula.

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Section 3.1: Solubility Rules (For Ionic Compounds in Water) Section 3.1.1: Introduction Solubility

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

Stoichiometric relationships 1

Stoichiometric relationships 1 Stoichiometric relationships 1 Chapter outline Describe the three states of matter. Recall that atoms of diff erent elements combine in fi xed ratios to form compounds which have diff erent properties

More information

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Water and solutions Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Characteristics of water molecule Hydrophylic, hydrophobic and amphipatic compounds Types of real solutions Electrolytes and non- electrolytes

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Organic Chemistry. QuickTime and a are needed to see this picture.

QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Organic Chemistry. QuickTime and a are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Organic Chemistry QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Organic Chemistry Has

More information

Lect. 2: Chemical Water Quality

Lect. 2: Chemical Water Quality The Islamic University of Gaza Faculty of Engineering Civil Engineering Department M.Sc. Water Resources Water Quality Management (ENGC 6304) Lect. 2: Chemical Water Quality ١ Chemical water quality parameters

More information

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91.

AP Chemistry. Introduction to Solubility Equilibria. Slide 1 / 91 Slide 2 / 91. Slide 3 / 91. Slide 4 / 91. Slide 5 / 91. Slide 1 / 91 Slide 2 / 91 P hemistry queous Equilibria II: Ksp & Solubility Products Slide 3 / 91 Slide 4 / 91 Table of ontents: K sp & Solubility Products Introduction to Solubility Equilibria alculating

More information

Chemistry I 2nd Semester Exam Study Guide

Chemistry I 2nd Semester Exam Study Guide Chemistry I 2nd Semester Exam Study Guide Study the following topics and be able to apply these concepts to answer related questions to best prepare for the Chemistry exam. You should be able to: 1. Identify

More information

Chemistry Higher level Paper 1

Chemistry Higher level Paper 1 M15/4/EMI/PM/ENG/TZ1/XX hemistry igher level Paper 1 Thursday 14 May 2015 (afternoon) 1 hour Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions.

More information

Chapter 8 Chemical Bonding

Chapter 8 Chemical Bonding Chapter 8 Chemical Bonding Types of Bonds Ionic Bonding Covalent Bonding Shapes of Molecules 8-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1 Two

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions

EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions In general, thiosulfate solutions are standardized by indirect methods, Primary-standard oxidizing agents such as KIO 3, As 2 O 3,

More information

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chem 1515 Section 2 Problem Set #4. Name Spring 1998 Chem 1515 Section 2 Problem Set #4 Name Spring 1998 TA Name Lab Section # ALL work must be shown to receive full credit. Due Wednesday, February 4th PS4.1. Describe all the energy changes which must be

More information

Unit 6 Solids, Liquids and Solutions

Unit 6 Solids, Liquids and Solutions Unit 6 Solids, Liquids and Solutions 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Lecture 1 Solubility and Distribution Phenomena

Lecture 1 Solubility and Distribution Phenomena Physical Pharmacy Lecture 1 Solubility and Distribution Phenomena Assistant Lecturer in Pharmaceutics Overview Solubility Phenomena Introduction Solute-Solvent Interactions Solubility of gas in liquid

More information

Chem 1075 Chapter 14 Solutions Lecture Outline

Chem 1075 Chapter 14 Solutions Lecture Outline Chem 1075 Chapter 14 Solutions Lecture Outline Slide 2 Solutions A solution is a. A solution is composed of a dissolved in a. Solutions exist in all three physical states: Slide 3 Polar Molecules When

More information

KCl in water at supercritical temperatures,3 made use of an expression in which

KCl in water at supercritical temperatures,3 made use of an expression in which A REPRESENTATION OF ISOTHERMAL ION-ION-PAIR-SOLVENT EQUILIBRIA INDEPENDENT OF CHANGES IN DIELECTRIC CONSTANT* By WILLIAM L. MARSHALL AND ARVIN S. QUIST REACTOR CHEMISTRY DIVISION, OAK RIDGE NATIONAL LABORATORY,

More information

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab. 4.2: Concentration Units of Concentration (v/v, w/v, w/w and ppm) These units of concentration are most often seen and used with commercial products. Except for 'ppm' they are not used often in the lab.

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016)

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016) Solvent Extraction Research and Development, Japan, Vol. 23, No 2, 175 180 (2016) Effect of Quaternary Ammonium Salts on the Extraction of 1,3-Propanediol with Phenylboronic Acid Michiaki MATSUMOTO*, Kikuko

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants

Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants Solvent Extraction Research and Development, Japan, Vol. 19, 63 68 (212) Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants Takahiko KAKOI 1 *, Mayumi YOSHIYAMA

More information

The Characteristics of a Soln

The Characteristics of a Soln Goal 1 The Characteristics of a Soln Define the term solution, and, given a description of a substance, determine if it is a solution. The Characteristics of a Soln Solution (as used in chemistry) A homogenous

More information

Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Electronegativity Scale F > O > Cl, N > Br > C, H

Electronegativity Scale F > O > Cl, N > Br > C, H Organic Chem Chapter 12 Alkanes Organic chemistry is the study of carbon compounds. Carbon has several properties that are worth discussing: Tetravalent Always forms 4 bonds Can form multiple bonds (double

More information

Unit 6 ~ Learning Guide Name:

Unit 6 ~ Learning Guide Name: Unit 6 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Factors that Effect the Rate of Solvation

Factors that Effect the Rate of Solvation Factors that Effect the Rate of Solvation Rate of Solvation there are three ways to increase collisions between the solvent and the solute. agitating the mixture increasing the surface area of the solute

More information

The Chemistry of Acids and Bases

The Chemistry of Acids and Bases The Chemistry of Acids and Bases 1 Acid and Bases 2 Acid and Bases 3 Acid and Bases 4 Acids 5 Have a sour taste. Vinegar is a solution of acetic acid. Citrus fruits contain citric acid. React with certain

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College

Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College The Common Ion Effect Consider a solution of acetic acid: HC 2 H 3 O 2(aq) + H 2 O (l) H 3 O + (aq)

More information

Chapter 16. The Danger of Antifreeze. Buffers. Aqueous Equilibrium

Chapter 16. The Danger of Antifreeze. Buffers. Aqueous Equilibrium hapter 16 Aqueous Equilibrium The Danger of Antifreeze Each year, thousands of pets and wildlife die from consuming antifreeze Most brands of antifreeze contain ethylene glycol sweet taste and initial

More information

UNIT 4 Solutions and Solubility Chapter 8 - Solutions and Concentration

UNIT 4 Solutions and Solubility Chapter 8 - Solutions and Concentration UNIT 4 Solutions and Solubility Chapter 8 - Solutions and Concentration Types of Solutions The simplest solutions contain 2 substances: 1. SOLVENT o o 2. SOLUTE o When solute dissolves in a solvent, and

More information