Analysis of Heavy Oils by FID-TLC (Part 3)

Size: px
Start display at page:

Download "Analysis of Heavy Oils by FID-TLC (Part 3)"

Transcription

1 Analysis of Heavy Oils by FID-TLC (Part 3) Preparation of Thin Layer Rods with Chemically Bonded Silica Gels Yojiro YAMAMOTO* and Yoichi OHNO Research Center, Maruzen Oil Co., Ltd., , Gongendo, Satte-cho, Kitakatsushika-gun, Saitama Preparation of thin layer rods using partially chemically bonded silica gels was investigated to develop a rapid method for hydrocarbon type analysis of heavy oils by flame ionization detection-thin layer chromatography (FID-TLC) in which the rods served as the stationary phase. Aminopropyl and cyanopropyl bonded silica gel thin layer rods (Chromarod NH2-SII and Chromarod CN-SII) were prepared. Chromarods composed of 40% chemically bonded layer and 60% silica gel layer had good separability in FID-TLC for hydrocarbon type analysis of heavy oils. Moreover, the observation of Chromarod NH2-SII surface by EPMA suggested that aminopropyl groups were bonded uniformly onto the surface of silica thin layer of the Chromarod. 1. Introduction The development of technology to produce light fraction from heavy oil has become an important subject for research. Characterization of heavy oils and their products is necessary for understanding the reactions in the treatment of heavy oils. Since heavy oil comprises a variety of structurally complex compounds, it is impossible to isolate them. Compositional analysis to determine the contents of the individual fractions with similar chemical properties in heavy oils provides an important characteristic means. Adsorption column chromatography with silica gel1) or with alumina gel2) has been generally used for analyzing the chemical composition of heavy oils. Because the method has such drawbacks as necessitating timeconsuming determinations and use of large quantities of solvents, high performance liquid chromatography (HPLC) has been recently studied for many applications.3)-10) Since Wise et al.5) discovered that alkylamine bonded silica gels had advantage for the separation of aromatic ring compounds, these have been widely used for various hydrocarbon type analysis.8)-10) However, any method using HPLC will have shortcomings in quantitation. The unsatisfactory quantitative analysis of HPLC stems mainly from the difference in the sensitivity of each component in the RI detector or in the UV detector. Although thin layer chromatography also has shortcomings in quantitation, it has, at the same * To whom correspondence should be addressed. time, such advantages as high separability, simple and rapid procedure, and use of small samples. Moreover, some of the problems have been removed by the development of thin layer chromatography with flame ionization detection (FID-TLC), which is now used in many applications.11)-15) We have also developed rapid methods for determination of asphaltene contents in heavy oils16) and analyzing the compositions of them.17) In this study, the preparation of thin layer rods with partially chemically bonded silica gel has been investigated for the purpose of developing a rapid method for hydrocarbon type analysis of heavy oils by FID-TLC in which those rods serve as the stationary phase. 2. Experimental 2.1 Materials For standard samples, n-pentacosane, n-octadecylbenzene, 2,6-dimethylnaphthalene, and 9,10- dimethylanthracene (guaranteed reagents obtained from Tokyo Kasei Kogyo) were used. n- Hexane (liquid chromatography use of Wako Pure Chemical Industries) was used as the developing solvent for FID-TLC. 2.2 Apparatus and Methods FID-TLC Iatroscan TH-10 (Iatron Laboratories Inc.) was used for FID-TLC analysis. Chromarod S and S II (thin layer rod sintered with silica gel) and Chromarod A (thin layer rod sintered with alumina gel) were used as the stationary phase. C-R1A type Datalyzer (Simadzu) was used for treatment

2 of FID data in the same manner as in our previous papers.16),17) Such analytical conditions as the weight of sample loaded in TLC and the combustion conditions in FID were set at the optimum conditions described in our paper.16) Procedures for FID-TLC are as follows. justed to a concentration of 5-10wt% on (2) Develop the rod to 10cm after hanging for 5 minutes in the developing tank containing n-hexane. (3) Dry the rod at room temperature. (4) Determine the components as peak areas in the FID chromatogram Surface Analysis EMX-SM type Electron Probe X-ray Micro Analyzer (Simadzu) was used for the observation of rod surfaces. 3. Results and Discussion 3.1 Preparation of Thin Layer Rods with Chemically Bonded Silica Thin layer rods with aminopropyl or with cyanopropyl bonded silica gel (Chromarod NH2-SII or Chromarod CN-SII) were prepared by the following procedures.18) Chromarod SII was treated with (3-aminopropyl) triethoxysilane or (3-cyanopropyl) trichlorosilane according to the common and convenient method for preparation of bonded phases described in literature.19),20) The upper portion of the rod was then passed through a hydrogen flame to reform the silica gel layer for detection by FID, as shown in Fig. 1. Effect of length of chemically bonded layer in Chromarod on resolution was investigated, since separability is considered to be strongly affected by the layer length. In TLC, resolution (Rs) between adjecent peaks can be calculated from the following equation where (Zx)1 and (Zx)2 are the moved distances of peaks of component-1 and 2, and b1, b2 are the half widths of those peaks, respectively. Relationships between lengths of aminopropyl bonded layer in Chromarod NH2-SII ranging from 0 to 4cm and resolutions (Rs1, Rs2, Rs3) were examined, using a standard mixture prepared from n-pentacosane, n-octadecylbenzene, 2,6- dimethylnaphthalene, and 9,10-dimethylanthracene which were selected as representatives of Saturates (Sa), Monoaromatics (M-Ar), Diaromatics (D-Ar), and Triaromatics (T-Ar), respectively. The results are shown in Fig, 2 in which Rs1 and Rs2 hardly varied with the length of aminopropyl bonded layer, whereas Rs3 increased with its length. From these results, it can be concluded that Chromarods composed of 40% chemically bonded layer and 60% silica gel layer exhibited good separability in FID-TLC for hydrocarbon type a: Thin quartz rod b: Thin layer of silica gel c: Thin layer of chemically bonded silica gel F: Front point Fig. 1 Schematic Picture of Thin Layer Rod of Partially Chemically Bonded Silica Gel Fig. 2 Effect of Length of Chemically Bonded Layer in Chromarod on Resolution

3 1: n-pentacosane, 2: n-octadecylbenzene, 3: 2,6-Dimethylnaphthalene, 4: 9,10-Dimethylanthracene Fig. 3 FID-TLC Chromatograms of Standard Mixture by using Chromarods NH2-SII and CN-SII analysis of heavy oils. Fig. 3 shows FID-TLC chromatograms of the standard mixture by using Chromarod NH2-SII and Chromarod CN-SII. Both chromatograms for each type component give good separability. 3.2 Comparison with Conventional Chromarods Fig. 4 shows FID-TLC chromatograms of the standard mixture by using conventional Chromarods for comparing the chromatograms in Fig. 3. Table 1 shows a comparison of resolution indicated as Rsi (i=1-3) values for Chromarod NH2-SII and Chromarod CN-SII with those for conventional Chromarods. Since the separation of Sa, M-Ar, and D-Ar could not be carried out with Chromarod A because of its inadequate separability, Rsi for Chromarod A was not shown. Table 1 reveals that both Rs2 and Rs3 for Table 1 Comparison of Various Chromarods for Resolutions (Rsi) of Hydrocarbons i=1: Resolution between Sa and M-Ar i=2: Resolution between M-Ar and D-Ar i=3: Resolution between D-Ar and T-Ar Fig. 4 FID-TLC Chromatograms of Standard Mixture by using Chromarods S, SII, and A Chromarod NH2-SII and CN-SII, respectively, are larger than those for conventional Chromarods. This indicates good separation of Sa, M-Ar, D- Ar and T-Ar by FID-TLC with Chromarod NH2- SII and CN-SII, suggesting that Chromarod NH2- SII and Chromarod CN-SII have better separability in FID-TLC than conventional Chromarods for hydrocarbon type analysis of heavy oils. 3.3 Surface of Chromarod Surfaces of both chemically bonded layer (lower portion of the rod) and reformed silica gel layer (upper portion of the rod) of Chromarod NH2-SII were observed with EPMA. The results are shown in Figs. 5 and 6. Secondary electron (SE) s reveal that both s of both layers correspond well with the SE s of the respective layers. Furthermore, ically bonded layer corresponds to SE of its layer, as shown in Fig. 5. It is suggested, therefore, that aminopropyl groups are bonded uniformly onto the surface of chemically bonded layer of Chromarod NH2-SII. 4. Conclusion 1,2,3,4: Described in Fig. 3 Preparation of thin layer rods with partially chemically bonded silica gels was investigated to

4 496 (A) (B) 10um (C) (A): (C): Fig. 5 Surface (D) SE O-Kα of (A) Chemically Bonded (B): Si-Kα (D): C-Kα Layer of Chromarod NH2-SII (B) 10um (C) (D) (A), (B), (C), (D): Described in Fig. 5 Fig. 6 Surface of the 石油学会誌 Reformed Sekiyu Silica Gakkaishi, Gel Layer Vol. 28, of Chromarod No. 6, 1985 NH2-SII

5 develop a rapid method for hydrocarbon type analysis of heavy oils by FID-TLC in which those rods served as the stationary phase. Aminopropyl and cyanopropyl bonded silica gel thin layer rods (Chromarod NH2-SII and Chromarod CN-SII) could be prepared by treating Chromarod SII with (3-aminopropyl) triethoxysilane and (3-cyanopropyl) trichlorosilane. Chromarod composed of 40% chemically bonded layer and 60% silica gel layer exhibited good separability in FID-TLC for hydrocarbon type analysis of heavy oils. References 1) ASTM Part 15, 1289 (1982). 2) Iijima, H., Sekiyu Gakkaishi, 13, 606 (1970). 3) Suatoni, J. C., Suab, R. E., J. Chromatogr. Sci., 14, 535 (1976). 4) Suatoni, J. C., Garber, H. R., J. Chromatogr. Sci., 14, 546 (1976). 5) Wise, S. A., Chesler, S. N., Hertz, H. S., Hilpert, L. R., May, W. E., Anal. Chem., 49, (14), 2306 (1977). 6) Dark, W. A., McGough, R. R., J. Chromatogr. Sci., 16, 610 (1978). 7) Galya, L. G., Suatoni, J. C., J. Liq. Chromatogr., 3, (2), 229 (1980). 8) Chmielowiec, J., George, A. E., Anal. Chem., 52, (7), 1154 (1980). 9) Katoh, T., Yokoyama, S., Sanada, Y., Fuel, 59, 845 (1980). 10) Yokoyama, S., Tsuzuki, N., Uchino, H., Katoh, T., Sanada, Y., Nippon Kagaku Kaishi, 1983, ) Poirier, M. A., George, A. E., ACS, Div. Petrol. Chem., Prep., 27, 973 (1982). 12) Selucky, M. L., Anal. Chem., 55, 141 (1983). 13) Poirier, M. A., George, A. E., J. Chromatogr. Sci., 21, 331 (1983). 14) Sawada, S., Takahashi, T., Saito, K., Matsumura, T., Nenryo Kyokaishi, 63, 128 (1984). 15) Poirier, M. A., Rahimi, R., Ahmed, S. M., J. Chromatogr. Sci., 22, 116 (1984). 16) Yamamoto, Y., Kawanobe, T., Sekiyu Gakkaishi, 27, (3), 269 (1984). 17) Yamamoto, Y., Kawanobe, T., Sekiyu Gakkaishi, 27, (5), 373 (1984). 18) Yamamoto, Y., Patent pending. 19) Majors, R. E., J. Chromatogr. Sci., 18, 488 (1980). 20) Cooke, N. H. C., Olsen, K., J. Chromatogr. Sci., 18, 512 (1980). Keywords Chemically bonded silica, Flame ionization detection, Heavy oil, Hydrocarbon type analysis, Thin layer chromatography

Introduction. Experimental. Bhajendra N. Barman

Introduction. Experimental. Bhajendra N. Barman Hydrocarbon-Type Analysis of Base Oils and Other Heavy Distillates by Thin-Layer Chromatography with Flame-lonization Detection and by the Clay-Gel Method Bhajendra N. Barman Texaco Inc., Research and

More information

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY Chiral Chromatography Chiral - adjective: not superimposable on its mirror image: used to describe a molecule whose arrangement of atoms is such that it

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

10/27/10. Chapter 27. Injector typically 50 C hotter than oven Sample and solvent are vaporized onto the head of a column Vaporized solvent and solute are carried through the column by an inert gas (mobile phase) The mobile phase does not interact with compounds of

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Quantitative Hydrocarbon Group Type Analysis of Petroleum Hydroconversion Products Using an Improved TLC-FID System

Quantitative Hydrocarbon Group Type Analysis of Petroleum Hydroconversion Products Using an Improved TLC-FID System Quantitative Hydrocarbon Group Type Analysis of Petroleum Hydroconversion Products Using an Improved TLC-FID System Jesus Vela, Vicente L Cebolla*, Luis Membrado, and José M. Andrés Departamento de Procesos

More information

Chromatography 1 of 26 Boardworks Ltd 2016

Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 2 of 26 Boardworks Ltd 2016 What is chromatography? 3 of 26 Boardworks Ltd 2016 Different instrumental methods can be used to analyse and identify

More information

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION The method describes the identification of hydroquinone in cosmetic products. 2. PRINCIPLE Hydroquinone is identified by thin layer chromatography

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol

Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol Masatoshi SUGIOKA* and Fujimi KIMURA Faculty of Engineering, Hokkaido University, North 13,

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Institute de Carboquímica, CSIC, Departamento de Procesos Químicos, Poeta Luciano Gracia, 5, Zaragoza, Spain

Institute de Carboquímica, CSIC, Departamento de Procesos Químicos, Poeta Luciano Gracia, 5, Zaragoza, Spain Suitability of Thin-Layer Chromatography-Flame Ionization Detection with Regard to Quantitative Characterization of Different Fossil Fuel Products. II. Calibration Methods Concerning Quantitative Hydrocarbon-Group

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Thin Layer Chromatography

Thin Layer Chromatography Experiment: Thin Layer Chromatography Chromatography is a technique widely used by organic chemists to separate and identify components in a mixture. There are many types of chromatography, but all involve

More information

INTRODUCTION. Amino acids occurring in nature have the general structure shown below:

INTRODUCTION. Amino acids occurring in nature have the general structure shown below: Biochemistry I Laboratory Amino Acid Thin Layer Chromatography INTRODUCTION The primary importance of amino acids in cell structure and metabolism lies in the fact that they serve as building blocks for

More information

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC)

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC) PAPER AND THIN LAYER CHROMATOGRAPHY (TLC) Objectives Understand the principle of Paper and Thin Layer Chromatography (TLC). Diagnose two samples of urine for Phenylketonuria and Cystinuria, using paper

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Chromatography. What is Chromatography?

Chromatography. What is Chromatography? Chromatography What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components. Mixture

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

LASER MICROPROBE MASS SPECTROMETRY MICROANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS IN FLAMES, IN DIESEL FUELS AND IN DIESEL EMISSIONS

LASER MICROPROBE MASS SPECTROMETRY MICROANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS IN FLAMES, IN DIESEL FUELS AND IN DIESEL EMISSIONS LASER MICROPROBE MASS SPECTROMETRY MICROANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS IN FLAMES, IN DIESEL FUELS AND IN DIESEL EMISSIONS Robert A. Fletcher, 1 Richard A. Dobbins, 2 Bruce A. Benner, Jr.

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

A Method of Estimating the Refractive Index of Hydrocarbons in Coal Derived liquids by a Group Contribution Method

A Method of Estimating the Refractive Index of Hydrocarbons in Coal Derived liquids by a Group Contribution Method [Regular Paper] A Method of Estimating the Refractive Index of Hydrocarbons in Coal Derived liquids by a Group Contribution Method Masaaki SATOU*, Hiroki YAMAGUCHI, Toshimitsu MURAI, Susumu YOKOYAMA, and

More information

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC Chromatography Mrs. D. MEENA MPharm PA & QA KTPC INTRODUCTION ANALYTICAL TECHNIQUES Analytical chemistry involves separating, identifying and determining the relative amount of the components in a sample

More information

flowers, leaves and roots of roses rose oil heat

flowers, leaves and roots of roses rose oil heat 1 Rose oil can be extracted from the flowers, leaves and roots of roses using the apparatus below. coolant flowers, leaves and roots of roses rose oil heat (a) The rose oil contains a mixture of compounds,

More information

Minimizing Solvent Impact on Purification of Nitrogencontaining

Minimizing Solvent Impact on Purification of Nitrogencontaining Minimizing Solvent Impact on Purification of Nitrogencontaining Compounds J. Liu and P. C. Rahn Biotage Discovery Chemistry Group US 1725 Discovery Drive Charlottesville, VA 22911 USA 1 Abstract This paper

More information

Refractive Index Detection Using an Ultraviolet Detector with a Capillary Flow Cell in Preparative SFC

Refractive Index Detection Using an Ultraviolet Detector with a Capillary Flow Cell in Preparative SFC Refractive Index Detection Using an Ultraviolet Detector with a Capillary Flow Cell in Preparative SFC Yukio Hirata*, Yukinori Kawaguchi, and Yasuhiro Funada School of Materials Science, Toyohashi University

More information

Chromatographic Methods of Analysis Section 2: Planar Chromatography. Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section 2: Planar Chromatography. Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section 2: Planar Chromatography Prof. Tarek A. Fayed Planar chromatography includes two types: 1- Thin Layer Chromatography (TLC). 2- Paper Chromatography (PC). Thin

More information

Chapter No. 2 EXPERIMENTAL TECHNIQUES IN CHEMISTRY SHORT QUESTIONS WITH ANSWERS Q.1 Define analytical chemistry? The branch of chemistry which deals with the qualitative and quantitative analyses of sample

More information

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic

More information

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Bahramyadollahi 1, Raminsaeedi 2, Alihassanzadeh 3 Department of Physical Chemistry, Faculty

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 High Performance Liquid Chromatography () Instrumentation Normal Phase Chromatography Normal Phase - a polar stationary phase with a less polar mobile phase.

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Lab.2. Thin layer chromatography

Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer

More information

THIN LAYER CHROMATOGRAPHY

THIN LAYER CHROMATOGRAPHY THIN LAYER CHROMATOGRAPHY OBJECTIVE In this laboratory you will separate spinach pigments using thin layer chromatography (TLC). INTRODUCTION Mixtures of compounds are very common in Organic Chemistry.

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Colin F. Poole Department of Chemistry Wayne State University USA

Colin F. Poole Department of Chemistry Wayne State University USA Colin F. Poole Department of Chemistry Wayne State University USA Method Development Process Method Development Process Need to know what to do Before beginning experiments need to decide how to do it

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Highly Enantioselective Brønsted Acid Catalyst for the Strecker Reaction Magnus Rueping, * Erli Sugiono and Cengiz Azap General: Unless otherwise

More information

guanidine bisurea bifunctional organocatalyst

guanidine bisurea bifunctional organocatalyst Supporting Information for Asymmetric -amination of -keto esters using a guanidine bisurea bifunctional organocatalyst Minami Odagi* 1, Yoshiharu Yamamoto 1 and Kazuo Nagasawa* 1 Address: 1 Department

More information

METHOD 3600B CLEANUP

METHOD 3600B CLEANUP METHOD 3600B CLEANUP 1.0 SCOPE AND APPLICATION 1.1 Method 3600 provides general guidance on selection of cleanup methods that are appropriate for the target analytes of interest. Cleanup methods are applied

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Solid-Supported DA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Soyoung Park, * a Keiichi Ikehata, a and iroshi Sugiyama*,a,b,c a Department of Chemistry, Graduate School of

More information

Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation

Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation [Note] Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, JAPAN 2-12-1 O-okayama,

More information

CHAPTER Identification of side products in the synthesis of MMBC. As shown in the previous chapter, MMBC can be produced with high

CHAPTER Identification of side products in the synthesis of MMBC. As shown in the previous chapter, MMBC can be produced with high 113 CHAPTER 6 IDENTIFICATION OF SIDE PRODUCTS IN THE PRODUCTION OF METHYL 4- (METHOXYMETHYL) BENZENE CARBOXYLATE (MMBC) FROM METHYL 5- (METHOXYMETHYL)-FURAN-2-CARBOXYLATE (MMFC) AND ETHYLENE 6.1 Identification

More information

8. Methods in Developing Mobile Phase Condition for C18 Column

8. Methods in Developing Mobile Phase Condition for C18 Column I. HPLC Columns Technical Information 8. Methods in Developing Mobile Phase Condition for C18 Column Introduction In reversed phase HPLC, octadecyl group bonded silica columns (C18, ODS) are the most widely

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

(a) (i) What is represented by... (ii) What is represented by... (2) (b) What is the symbol for lithium?... (1) (Total 3 marks)

(a) (i) What is represented by... (ii) What is represented by... (2) (b) What is the symbol for lithium?... (1) (Total 3 marks) 1 The diagram shows the structure of a lithium atom. (a) (i) What is represented by... (ii) What is represented by... (b) What is the symbol for lithium?... (Total 3 marks) 2 (a) Balance these chemical

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Organic Chemistry Worksheets

Organic Chemistry Worksheets Highlight the single longest, continuous carbon-carbon chain. Note the alkyl branches that are connected to the root chain. Count the carbons in the root chain, starting from the end closest to the alkyl

More information

Name Period Date. Lab 10: Paper Chromatography

Name Period Date. Lab 10: Paper Chromatography Name Period Date Lab 10: Paper Chromatography Objectives Known and unknown solutions of the metal ions Fe +, Cu 2+ and Ni 2+ will be analyzed using paper chromatography. An unknown solution containing

More information

Determination of Normal Hydrocarbons C 5 -C 18 Using Silanized Algerian Bentonite (B 1100 ) as Support in Gas Chromatographic Analysis

Determination of Normal Hydrocarbons C 5 -C 18 Using Silanized Algerian Bentonite (B 1100 ) as Support in Gas Chromatographic Analysis Asian Journal of Chemistry Vol. 20, No. 1 (2008), 66-74 Determination of Normal Hydrocarbons C 5 -C 18 Using Silanized Algerian Bentonite (B 1100 ) as Support in Gas Chromatographic Analysis M. LAHMEK

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

IDENTIFICATION OF STEROIDS IN COSMETIC PRODUCTS BY TLC AND HPLC 1 02/12/2005 ACM 007 A. THIN LAYER CHROMATOGRAPHY (TLC)

IDENTIFICATION OF STEROIDS IN COSMETIC PRODUCTS BY TLC AND HPLC 1 02/12/2005 ACM 007 A. THIN LAYER CHROMATOGRAPHY (TLC) Document A. THIN LAYER CHROMATOGRAPHY (TLC) 1. SCOPE AND FIELD OF APPLICATION The method describes the identification of hydrocortisone acetate, dexamethasone, betamethasone, betamethasone 17-valerate

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Principles of Thin Layer Chromatography

Principles of Thin Layer Chromatography REVISED & UPDATED Edvo-Kit #113 Principles of Thin Layer Chromatography Experiment Objective: The objective of this experiment is to gain an understanding of the theory and methods of thin layer chromatography.

More information

Analytical Strategy: HS 2014 Rafael Hodel, Stefanie Jucker. Quality Control: Quantitative Nuclear Magnetic Resonance

Analytical Strategy: HS 2014 Rafael Hodel, Stefanie Jucker. Quality Control: Quantitative Nuclear Magnetic Resonance Analytical Strategy: HS 2014 Rafael Hodel, Stefanie Jucker Quality Control: Quantitative Nuclear Magnetic Resonance Quality Control (QC) - Why? 1) Purchasing raw materials and educts Did we get what we

More information

Thin Layer Chromatography

Thin Layer Chromatography Thin Layer Chromatography Thin-layer chromatography involves the same principles as column chromatography, it also is a form of solid-liquid adsorption chromatography. In this case, however, the solid

More information

Original. Organic Standards Section, Organic Analytical Chemistry Division, National Metrology Institute of Japan (NMIJ),

Original. Organic Standards Section, Organic Analytical Chemistry Division, National Metrology Institute of Japan (NMIJ), Original Development of a Precise Method for the Quantitative Analysis of Hydrocarbons Using Post Column Reaction Capillary Gas Chromatography with Flame Ionization Detection Takuro Watanabe 1,KenjiKato

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

Laboratory Exercise: Chromatographic Separation

Laboratory Exercise: Chromatographic Separation CHEM 109 Introduction to Chemistry Revision 1.0 Laboratory Exercise: Chromatographic Separation As we have discussed, chromatographic separations employ a system with two phases of matter; a mobile phase

More information

Chapter 23 Introduction to Analytical Separations

Chapter 23 Introduction to Analytical Separations Chapter 23 Introduction to Analytical Separations Homework Due Monday April 24 Problems 23-1, 23-2, 23-7, 23-15, 23-27, 23-29, 23-32 Analytical Separations: Universal approach to analyzing complex mixtures

More information

Tar & (SPA) tar analysis

Tar & (SPA) tar analysis Tar & (SPA) tar analysis Truls Liliedahl Chemical Technology School of Chemical Science and Engineering Royal Institute of Technology (KTH) Stockholm, Sweden Tar when gasifying biomass Gasification at

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus f^ l^ltt^^p^^* V^ COLUMN CHROMATOGRAPHY, HPLC AND MASS SPECTRAL ANALYSIS OF SOME FRACTIONS OF Lasianthus lucldus Biume 8.1 Column Chromatography 8.2 HPLC 8.3 Preparatory TLC 8.4 Mass Spectral Analysis

More information

Construction of nanoantennas on the outer bacterial membrane

Construction of nanoantennas on the outer bacterial membrane Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Construction of nanoantennas on the outer bacterial membrane

More information

Course CHEM Chromatography

Course CHEM Chromatography Course CHEM 340 - Chromatography - Chromatographic Methods o Gas Chromatography (GC) o High performance Liquid Chromatography (HPLC) Terms Stationary phase A fixed place either in a column or on a planer

More information

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

Structural Elucidation of Sumanene and Generation of its Benzylic Anions Structural Elucidation of Sumanene and Generation of its Benzylic Anions idehiro Sakurai, Taro Daiko, iroyuki Sakane, Toru Amaya, and Toshikazu irao Department of Applied Chemistry, Graduate School of

More information

Abstract. Introduction

Abstract. Introduction Investigating the Techniques of Solid- Liquid Extraction by isolating lycopene from tomato paste and Column Chromatography &Thin-Layer Chromatography (TLC)by purifying lycopene Mengying Li Department of

More information

Separation Benzene and Toluene from BTX using Zeolite 13X

Separation Benzene and Toluene from BTX using Zeolite 13X Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.9 No.3 (September 27) 7-24 ISSN: 997-4884 University of Baghdad College of Engineering Separation

More information

Supporting Information

Supporting Information Supporting Information Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho* Department of Chemistry, Kyungpook

More information

DEFINITION CHROMATOGRAPHY

DEFINITION CHROMATOGRAPHY Chromatography DEFINITION CHROMATOGRAPHY The separation of a mixture by distribution of its components between a mobile and stationary phase over time mobile phase = solvent stationary phase = column packing

More information

WIDE-POROSITY SILICAS FOR HIGH- PERFORMANCE LIQUID CHROMATOGRAPHY

WIDE-POROSITY SILICAS FOR HIGH- PERFORMANCE LIQUID CHROMATOGRAPHY ACTA CHROMATOGRAPHICA, NO. 15, 2005 WIDE-POROSITY SILICAS FOR HIGH- PERFORMANCE LIQUID CHROMATOGRAPHY S. S. Hayrapetyan and H. G. Khachatryan* Yerevan State University, 1, Alek Manoukian Str., 375025 Yerevan,

More information

Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water

Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water Wahyudiono 1, Mitsuru Sasaki*,1 and Motonobu Goto 2 (1) Department of Applied Chemistry and Biochemistry, Kumamoto

More information

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography 2003 The Japan Society for Analytical Chemistry 1365 Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography Mohammad A. MOTTALEB,* Mohammad

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst of Ullmann-coupling reaction Yuto Isomura, a Takashi Narushima, b Hideya

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

Supporting Information for. A Fluorescence Ratiometric Sensor for Trace Vapor Detection of. Hydrogen Peroxide

Supporting Information for. A Fluorescence Ratiometric Sensor for Trace Vapor Detection of. Hydrogen Peroxide Supporting Information for A Fluorescence Ratiometric Sensor for Trace Vapor Detection of Hydrogen Peroxide Miao Xu 1,, Ji-Min Han 1,, Chen Wang 1, Xiaomei Yang 1, Jian Pei 2 and Ling Zang 1, * 1 Department

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams Methods of pollution control and waste management - laboratory Adsorptive removal of volatile organic compounds from gases streams Manual for experiment 17 dr Hanna Wilczura-Wachnik and dr inż. Jadwiga

More information

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography 1998 The Japan Society for Analytical Chemistry 571 Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography Shinya KITAGAWA and Takao TSUDA Department of Applied

More information

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline Enantioselective Organocatalytic Reductive Amination of Aliphatic Ketones by Benzothiazoline as Hydrogen Donor Kodai Saito, Takahiko Akiyama* Department of Chemistry, Faculty of Science, Gakushuin University,

More information

A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS

A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS J. LIQ. CHROM. & REL. TECHNOL., 22(10), 1429 1441 (1999) A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS C. Cimpoiu, L. Jantschi,

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY 146 CHAPTER 8 ISLATIN AND CHARACTERIZATIN F PHYTCNSTITUENTS BY CLUMN CHRMATGRAPHY 8.1 INTRDUCTIN Column chromatography is an isolation technique in which the phytoconstituents are being eluted by adsorption.

More information

Experiment 6 Simple and Fractional Distillation

Experiment 6 Simple and Fractional Distillation Experiment 6 Simple and Fractional Distillation Vapor Pressure vs Temperature of Water Vapor Pressure vs Temperature of Water 25 Vapor Pressure vs Temperature of Water 25 Vapor Pressure (kpa) (kpa) 2 2

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information