Laser-driven Propulsion of Multilayer Graphene Oxide Flakes. Supporting Information

Size: px
Start display at page:

Download "Laser-driven Propulsion of Multilayer Graphene Oxide Flakes. Supporting Information"

Transcription

1 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Laser-driven Propulsion of Multilayer Graphene Oxide Flakes Supporting Information Chengbing Qin,* Zhixing Qiao, Wenjun He, Guofeng Zhang, Ruiyun Chen, Yan Gao, Liantuan Xiao,* and Suotang Jia State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi , China. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi , China. Content 1. Preparation of GO suspension Optical imaging of GO flakes Experimental setup of confocal system GO propulsion driven by CW laser irradiation Calculations of centres of GO flakes Propulsion of GO flakes driven by femtosecond laser irradiation Investigations of the producing gases AFM and SEM characterizations of GO flakes References

2 1. Preparation of GO suspension The original GO suspension, purchased from Nanjing XFNANO materials Tech Co., Ltd., was synthesized by modified Hummers methods. S1-S3 The detailed process was as follows: Typically, graphite powder (2.0 g) was mixed with a mixture of H2SO4 (98%, 100 ml), KMnO4 (10.0 g), and NaNO3 (4.0 g) in ice bath. After removing the ice bath, the mixture was transferred to a water bath with temperature of 35 and stirred for about 1 hour. Then Milli-Q water (100 ml) was added to the mixture. After successively stirring for 0.5 hour at the temperature of 90, Milli-Q water (150 ml) and H2O2 (30%, 6 ml) were added into the mixture slowly. After the color of the mixture turning from dark brown to light brown, the mixture was centrifuged (4000 rpm) and washed with HCl (5%) and Milli-Q water for several times. After filtration and vacuum drying at room temperature for 2 days, the GO powder with the color of dark brown was obtained. To get the GO suspension with the concentration of 0.5 mg/ml, the GO powder (100 mg) was re-dispersed into the Milli-Q water (200 ml) by ultrasonic treatment (350W@33 khz for 2 hours). In this experiment, the suspension was further diluted to mg/ml by adding the Milli-Q water. The diluted suspension shows a yellow color, as shown in Figure S1a. To achieve the thick multilayer GO flakes, the original diluted GO suspension was reduced by Hg lamp irradiation with the power of 500 W (Figure S1c). The color of processing suspension was turning from yellow to dark as the increasing of irradiation duration, as shown in Figure S1a. Meanwhile, lots of small suspended solids in dark was formed during lamp irradiation, which were the re-aggregation of reduced GO. Figure S2 presents the Raman spectra and FTIR spectra of the original and processing GO suspension, respectively. According to the slight increase of ID/IG ratio and the decrease of the O-H stretching vibration ( cm -1 ), S4-S7 the processing GO has been slightly reduced. 2

3 Figure S1. (a) GO suspension after irradiation with Hg lamp (500 W) with different durations. (b), (c) The photographs with Hg lamp off and on, respectively. Figure S2. Raman and FTIR spectra of the original and processing GO suspension. 3

4 2. Optical imaging of GO flakes The GO suspension with the irradiation duration of 10 min was selected to prepare the GO flakes by drop-coating the suspension (100 μl) on the glass coverslip. The optical images (transmission imaging under light of halogen lamp) of the samples prepared by original and processing GO suspension were presented in Figure S3, respectively. Note that the optical image for the original GO (Figure S3a) presents almost uniform color with few dark areas (marked as circle) on the surface. The big ratio (>99%) and small scale (1-5 μm) of monolayer GO results in the uniform and thin film. In the case, the color of GO film cannot be distinctly observed. On the other hand, the optical image for the processing GO presents many dark areas on the surface. These dark areas are the GO flakes with different scales. It can be found that these flakes are separated with each other. The background with blue color is glass coverslip. In the case, the glass coverslip is like Ocean, while the GO flakes is like Island. Due to the strong absorption of GO flakes, we can clearly determine the island-like structure from the background. Figure S3. Optical images of prepared samples. (a) GO film prepared by original GO suspension. Scale bar: 100 μm. (b) GO flakes prepared by processing GO suspension. Scale bar: 100 μm. (c) Island-like structure on the optical image. Scale bar: 30 μm. Insets in (a) and (b) are the photographs of original and processing GO suspensions. 4

5 3. Experimental setup of confocal system The propulsion of GO flakes was driven by femtosecond laser, and the propulsion trajectories were visualized by confocal fluorescence images. The fluorescence of GO flakes excited by the femtosecond laser was extremely weak in our detection region ( nm), as shown in Figure S4. Thus, a 405 nm continuum-wave (CW) laser was used to locate the GO flakes through fluorescence image, of which the fluorescence was strong enough to observe the propulsion trajectory. The spectra excited by 405 nm CW laser are in good agreement with the reported literature, S8 where the GO was also excited by ultraviolet laser. The fluorescence spectra of different areas have also been presented in Figure S5. Note that the background noise (labeled as 4) can be ignored in the experiment. Beyond the fluorescence imaging, the optical imaging (transmission imaging) can also be used to visualize the propulsion trajectory, however, in the case, the variation in their fluorescence cannot be achieved synchronously. Figure S4. GO s spectra excited by 405 and 820 nm. (a) Fluorescence imaging excited by 405 nm. The area marked as circle ( ) was used to collect the fluorescence spectra. (b) Comparison of fluorescence spectra between two excitations. 5

6 Figure S5. Comparison of fluorescence spectra between marked areas, excited by 405 nm CW laser. Both laser irradiation and confocal fluorescence images were taken with a homebuilt scanning confocal microscope based on an inverted microscope (Nikon, TE2000- U). S9,S10 The schematic of experimental configuration was shown in Figure S6. The femtosecond laser at the center wavelength of 820 nm with the pulse width about 70 fs was employed to excite and propel the GO flakes at the repetition frequency of 80 MHz. The power of 405 nm CW laser used to visualize the GO sample was only 0.2 mw. Both femtosecond laser and CW laser were directed by dichroic mirrors (DM, Semrock, Di02-R405-25x36) towards an objective (OBJ, Nikon, 60, 0.75 NA) to propel or excite the GO flakes. Fluorescence of GO flakes was collected by the same objective and passed through the DM, a notch filter and an emission filter (EmF, Semrock, FF01-496/LP-25) to block the back scattered laser light embedded in fluorescence. After passing through a 100 μm spatial filter, the fluorescence was detected by an avalanche photon detector (APD, PerkinElmer, SPCM-AQR-15). The GO sample was placed on the piezoelectric nanometer translation stage (PZT-S, Tritor, 200/20SG). Confocal fluorescence image was acquired by raster scanning the GO sample in the focal plane, and the fluorescence intensity was recorded for each imaging pixel. The integration time for each pixel was set to 1 ms. A monochromator was also used to obtain the fluorescence spectrum. 6

7 Figure S6. Schematic depiction of experimental setup. S: shutter; M: mirror; BC: beam combiner; A: attenuator; BE: beam expander; DM: dichroic mirror; OBJ: objective; PZT-S: piezoelectric nanometer translation stage; NF: notch filter; BS: beam splitter; EmF: Emission filter; L: lens; PH: pinhole; SPCM: single photon counting module; DAQ: data acquisition card; PC: personal computer. The dashed lines denote BNC cables. 7

8 4. GO propulsion driven by CW laser irradiation The GO flakes were also irradiated by 405 nm CW laser with the same power (210 mw) and irradiation duration (3 μs) following each femtosecond laser irradiation. After the CW laser irradiation, the GO trajectories were also visualized by 405 nm laser again with extremely weak power (0.2 mw). Figure S7 presents the fluorescence image arrays of the GO flakes after CW laser irradiation between the 10 th and the 11 th time femtosecond laser irradiation. No obvious displacements can be found after 30 times CW laser irradiation, which provides the proof that the CW laser cannot propel the GO flakes effectively. Figure S7. Sequences of confocal fluorescence images for the two GO flakes after 405 nm CW laser irradiation, and the ordinal numbers on the bottom left denote the times of irradiation. The irradiation power is 210 mw with duration time of 3 μs. The region of bottom flake is heighted by yellow dashed lines. Scale bar: 10 μm. 8

9 5. Calculations of centres of GO flakes In order to quantify the displacements, we define the geometric boundary of GO flakes through fluorescence threshold, and calculate the geometric centers. Considering the quite different fluorescence intensity for the upper and bottom flakes, we divide them into two parts, as shown in Figure S8. Their threshold values are chosen according to the fluorescence intensity around the edge of the flakes, respectively. Take the upper one as an example, when the threshold value of the fluorescence intensity is setting as Ithr = 8.0, as shown in Figure S9, only the pixels with the fluorescence intensity in the region of would be displayed. For each pixel, they has a coordinate as (xi, yi), where xi and yi are the corresponding number for the image pixels. Combining with fluorescence image, the outermost pixel was selected to link together, thus the edge of the GO flakes can be determined. The geometric centre (X, Y) of the flake can be calculated as following: X 1 N xi N i 1, Y 1 N yi N i 1 Note that some pixels with the intensity also in the region of would be displayed, but far from the boundary of fluorescence image. These pixels should be excluded from the calculations. Figure S8. (a) Confocal fluorescence image of GO flakes. The two flakes are divided into two parts by the yellow dash line. (b), (c) are the fluorescence images for the upper and bottom flakes, respectively. 9

10 Figure S9. The selected pixels when I thr = 8.0. The outermost pixels is linked together to build the edge of GO flake. Figure S10a displays six conditions of selected pixels for the upper flake when Ithr is set as 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0, respectively. Similar shape can be determined for these six conditions. The calculated centers for them have also been presented in Figure S10b. One can find that the deviation arising from different thresholds can be ignored. Figure S10. (a) The selected pixels for I thr=3.0, 4.0, 5.0, 6.0, 7.0, and 8.0, respectively. (b) The calculated values for X and Y varied as thresholds. 10

11 Figure S11a displays four conditions of selected pixels for the bottom flake when Ithr is set as 1.5, 2.0, 2.5, and 3.0, respectively. Many pixels outside the boundary of fluorescence can be found for the low threshold. In this condition, large threshold is more suitable. Figure S11. (a) The selected pixels for I thr = 1.5, 2.0, 2.5, and 3.0, respectively. (b) The calculated values for X and Y varied as threshold. 11

12 6. Propulsion of GO flakes driven by femtosecond laser irradiation We also observed another GO flakes with propulsion driven by femtosecond laser irradiation, as following: Figure S12. Sequences of confocal fluorescence images for the GO flake after femtosecond laser irradiation, the ordinal numbers on the top right denote the times of irradiation. The red dash lines are used to mark the original shape and location of the GO flake. 12

13 7. Investigations of the producing gases We have confirmed the gas ejection through irradiating the bulk GO materials in a vacuum chamber. In the proposed mechanism, we suggest that the main species in the producing gases are H2O, CO2, CO and some small organic compounds. To further determine the exact chemical structures of these species, we filled the chamber with pure Nitrogen (~400 torr) and investigated the producing gases by quartz enhanced photoacoustic spectroscopy (QEPAS). The experimental setup can be found in the previous works. S11,S12 Particularly, the absorption line centered at cm -1 (according to HITRAN database) was selected to measure the abundant of H2O. A butterfly-package distributed feedback (DFB) laser with center wavelength of 1368 nm (7310 cm -1 ) was used as the exciting light source. A commercially available quartz tuning fork (QTF) with a resonance frequency (f) of khz and quality factor (Qfactor) of was used as the photoacoustic transducer. Figure S13a shows the QEPAS signal of H2O absorption line at cm -1. Apparently, without femtosecond laser irradiation, there is no obvious signal. While after irradiation with femtosecond laser, strong QEPAS signal can be observed, which confirms the presence of H2O in producing gases undoubtedly. The presence of CO2 has also been confirmed by QEPAS through absorption line centered at cm -1. However, the CO and other species have not been determined, mainly resulting from the extremely low yields in the producing gases. Figure S13. (a) QEPAS 2f signal at cm -1 in Nitrogen (~400 torr) for H 2O absorption with and without femtosecond laser irradiation, respectively. (b) QEPAS 2f signal at cm -1 in 13

14 Nitrogen (~400 torr) for CO 2 absorption with and without femtosecond laser irradiation, respectively. On the other hand, gas chromatography mass spectrometry (GC-MS) has also been developed for the analysis of other species in the producing gases. Analytical measurements were conducted using a 6890N/5977 GC-MS system (Agilent Technology, USA). S13 Separations were performed using a 30 m length with 0.25 mm internal diameter with stationary phase of fused-silica capillary column coated with a 0.25 μm bonded film of 0.5% poly phenyl methyl silicon. S14 The producing gases were dissolved in dichloromethane (CH2Cl2), a 1 μl sample was injected in spilt mode with ratio of 10:1. The helium carrier gas flow was set to 1.0 ml/min. The temperature control program was 40 for 3 min, and then increasing to 280 at 5 /min. The temperature for the gasification compartment, the introduction port, ion source, and transmission line were set at 280, 250, 200, and 280, respectively. In addition, the quality scanning area was from 40 to 500 amu. A representative chromatographic output of the producing gases from the GC-MS is given in Figure S14, more than 50 compounds have been detected by GC-MS. However, in view of the complex chemical structure of GO materials and unknown reaction pathway, the exactly chemical structures for these compounds are still in analysis. Figure S14. Gas chromatograms for the producing gases of GO film after irradiating by femtosecond laser. 14

15 8. AFM and SEM characterizations of GO flakes To explore the presence of oxygen functional groups on the surface of GO, and also the variation of the oxygen functional groups before and after the femtosecond laser irradiation, the atomic force microscope (AFM, 5000N, JEOL, Japan) and scanning electron microscope (SEM, SU8010, Hitachi, Japan) with energy dispersive X-ray spectroscopy (EDS) were performed to characterize the morphologies of the prepared and irradiated GO samples. Considering the thick thickness (~200 nm) of the prepared sample used in the experiment, which is hard to show the functional groups on the surface by AFM, we present the AFM images for monolayer GO before and after femtosecond laser irradiation. These monolayer GO films were prepared by spin-coating the original GO suspension on the glass coverslip. As shown in Figure S15a, the height of monolayer GO film prepared by original suspension is about 1.5 nm. After irradiating with femtosecond laser at power of 50 mw and duration of 3 ms, the height is reduced to ~ 1.1 nm, as shown in Figure S15b. The thicknesses of both prepared and irradiated samples are larger than that of graphene, S15 strongly hinting the presence of functional groups on the surface of GO. Comparing with the prepared sample, the decrease of thickness for the irradiated GO results from the elimination of some functional groups. Figure S15. AFM images of the prepared and irradiated monolayer GO materials. Figure S16 shows the SEM and EDS results of the prepared and irradiated GO flakes. In Figure S16a, the flake was compact, after irradiating with femtosecond laser, 15

16 the flakes become broken, and the edges show significant cracks. Some small fragments can also be found on the surface. From the results of EDS analysis (the inset tables give the descriptive statistics of the amount of elements in the surface of GO flakes), we can find that the main elements on the prepared samples are C and O, with a little of S. The abundant of O element strongly indicates the presence of oxygen functional groups. The presence of S element may result from the residue of H2SO4, and also the sulfhydryl group (-SH) on the GO materials. After irradiating with femtosecond laser, the relative atomic content of O decreases from 24.30% to 14.76%, further revealing the reduction results. Figure S16. SEM and EDS results of GO flakes. (a), (b) are the results for the prepared GO flakes. (c), (d) are the results for the irradiated GO flakes. The inset tables are the descriptive statistics of the amount of elements on the surface of GO flakes. 16

17 References S1. S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu and K. Chen, Carbon, 2012, 50, S2. J. Li, S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li and X. Wang, ACS Appl. Mater. Interfaces, 2012, 4, S3. T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu and D. Wu, Colloids Surf. B Biointerfaces, 2012, 90, S4. F. Liu, H. D. Ha, D. J. Han and T. S. Seo, Small, 2013, 9, S5. J. Chen, B. Yao, C. Li and G. Shi, Carbon, 2013, 64, S6. H. Feng, R. Cheng, X. Zhao, X. Duan and J. Li, Nat. Commun., 2013, 4, S7. Q. Zhang, H. Zheng, Z. Geng, S. Jiang, J. Ge, K. Fan, S. Duan, Y. Chen, X. Wang and Y. Luo, J. Am. Chem. Soc., 2013, 135, S8. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen and M. Chhowalla, Adv. Mater., 2010, 22, S9. W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao and S. Jia, Carbon, 2016, 109, S10. H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao and S. T. Jia, Appl. Phys. Lett., 2014, 105, S11. X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao and S. Jia, Sensors (Basel), 2016, 16, 162. S12. H. Zheng, L. Dong, X. Liu, Y. Liu, H. Wu, W. Ma, L. Zhang, W. Yin and S. Jia, Laser Phys., 2015, 25, S13. C. Zhang, J. Li, Z. Chen and F. Cheng, J. Chem. Technol. Biot., 2018, 93, S14. K. Khosravi and G. W. Price, Microchem. J., 2015, 121, S15. C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter and C. T. Gibson, Nanotechnology, 2016, 27,

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to

More information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Zinc Oxide-Black Phosphorus Composites for Ultrasensitive

More information

Visible-light Driven Plasmonic Photocatalyst Helical Chiral TiO 2 Nanofibers

Visible-light Driven Plasmonic Photocatalyst Helical Chiral TiO 2 Nanofibers Visible-light Driven Plasmonic Photocatalyst Ag/AgCl @ Helical Chiral TiO 2 Nanofibers Dawei Wang, Yi Li*, Gianluca Li Puma, Chao Wang, Peifang Wang, Wenlong Zhang, and Qing Wang Fig. S1. The reactor of

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supplementary Information Supramolecular interactions via hydrogen bonding contributing to

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

In Situ synthesis of architecture for Strong Light-Matter Interactions

In Situ synthesis of architecture for Strong Light-Matter Interactions In Situ synthesis of Ag@Cu2O-rGO architecture for Strong Light-Matter Interactions Shuang Guo 1, 2, Yaxin Wang 1, *, Fan Zhang 1, Renxian Gao 1, Maomao Liu 1, Lirong Dong 1, Yang Liu 2, Yongjun Zhang 2,

More information

Please do not adjust margins. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning

Please do not adjust margins. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Electronic Supplementary Information (ESI) Flower stamen-like porous

More information

Supporting Information

Supporting Information Supporting Information Decorating Graphene Sheets with Gold Nanoparticles Ryan Muszynski, Brian Seeger and, Prashant V. Kamat* Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

Controlled Assembly of Organic Whispering Gallery Mode Microlasers as Highly Sensitive Chemical Sensors

Controlled Assembly of Organic Whispering Gallery Mode Microlasers as Highly Sensitive Chemical Sensors Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Controlled Assembly of Organic Whispering Gallery Mode Microlasers

More information

Supporting Information

Supporting Information Supporting Information Visible Light-Driven BiOI-Based Janus Micromotors in Pure Water Renfeng Dong, a Yan Hu, b Yefei Wu, b Wei Gao, c Biye Ren, b* Qinglong Wang, a Yuepeng Cai a* a School of Chemistry

More information

Controlled self-assembly of graphene oxide on a remote aluminum foil

Controlled self-assembly of graphene oxide on a remote aluminum foil Supplementary Information Controlled self-assembly of graphene oxide on a remote aluminum foil Kai Feng, Yewen Cao and Peiyi Wu* State key Laboratory of Molecular Engineering of Polymers, Department of

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods Supporting Information Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods G. Sagarzazu a, K. Inoue b, M. Saruyama b, M. Sakamoto b, T. Teranishi b, S. Masuo a and N. Tamai a a Department

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Graphene-based Hollow Spheres as Efficient Electrocatalyst for Oxygen Reduction Longfei Wu, Hongbin Feng, Mengjia Liu, Kaixiang Zhang and Jinghong Li* * Department

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Materials Graphite powder (SP-1 graphite) was obtained from Bay carbon.

More information

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Synthesis of Au@UiO-66(NH 2 ) Structures by Small Molecule-Assisted

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin This journal is The Royal Society of Chemistry 11 Electronic Supplementary Information (ESI) A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin Xiujuan Xu, a Jing Huang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Hydroxyl-Triggered Fluorescence for Location of Inorganic Materials

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Production of Graphite Chloride and Bromide Using Microwave Sparks

Production of Graphite Chloride and Bromide Using Microwave Sparks Supporting Information Production of Graphite Chloride and Bromide Using Microwave Sparks Jian Zheng, Hongtao Liu, Bin Wu, Chong-an Di, Yunlong Guo, Ti Wu, Gui Yu, Yunqi Liu, * and Daoben Zhu Key Laboratory

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Hydrothermal synthesis of - alloy nanooctahedra and their enhanced electrocatalytic

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Amphiphilic diselenide-containing supramolecular polymers

Amphiphilic diselenide-containing supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Amphiphilic diselenide-containing supramolecular polymers Xinxin Tan, Liulin Yang, Zehuan

More information

Supporting Information. Near Infrared-modulated Propulsion of Catalytic Janus Polymer. Multilayer Capsule Motors

Supporting Information. Near Infrared-modulated Propulsion of Catalytic Janus Polymer. Multilayer Capsule Motors Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Near Infrared-modulated Propulsion of Catalytic Janus Polymer Multilayer

More information

Materials Chemistry C

Materials Chemistry C Journal of Materials Chemistry C PAPER Cite this: J. Mater. Chem. C, 2018, 6, 2329 Laser-driven propulsion of multilayer graphene oxide flakes Chengbing Qin, * ab Zhixing Qiao, ab Wenjun He, ab Yani Gong,

More information

Electronic Supplementary Information. Microwave-assisted, environmentally friendly, one-pot preparation. in electrocatalytic oxidation of methanol

Electronic Supplementary Information. Microwave-assisted, environmentally friendly, one-pot preparation. in electrocatalytic oxidation of methanol Electronic Supplementary Information Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) High quantum-yield luminescent MoS 2 quantum dots

More information

Supporting Information

Supporting Information Supporting Information A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission Juan Zhou, Yong Yang, and Chun-yang Zhang* Single-Molecule Detection

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ and real-time ToF-SIMS analysis of light-induced chemical changes

More information

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Electrogenerated Upconverted Emission from Doped Organic Nanowires Electrogenerated Upconverted Emission from Doped Organic Nanowires Qing Li, Chuang Zhang, Jian Yao Zheng, Yong Sheng Zhao*, Jiannian Yao* Electronic Supplementary Information (ESI) 1 Experimental details

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

Supporting Information. Capping Nanoparticles with Graphene Quantum Dots for Enhanced Thermoelectric Performance

Supporting Information. Capping Nanoparticles with Graphene Quantum Dots for Enhanced Thermoelectric Performance Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Capping Nanoparticles with Graphene Quantum Dots for Enhanced Thermoelectric

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2 Supporting Information Synthesis and Upconversion Luminescence of BaY 2 F 8 :Yb 3+ /Er 3+ Nanobelts 5 Guofeng Wang, Qing Peng, and Yadong Li* Department of Chemistry and State Key Laboratory of New Ceramics

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Supplementary Information. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells

Supplementary Information. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information to Formation of porous SnS nanoplate networks from solution and their

More information

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Supporting Information for Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Wenming Tian, Jing Leng, Chunyi Zhao and Shengye Jin* State Key Laboratory of

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of Supplementary material Chemical functionalization of graphene sheets by solvothermal reduction of suspension of graphene oxide in N-methyl-2-pyrrolidone Viet Hung Pham, Tran Viet Cuong, Seung Hyun Hur,

More information

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction** Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Formation of MS-Ag and MS (M=Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities Yanrong Wang, a Wenlong Yang,

More information

Porphyrin and Fullerene Covalently Functionalized. Graphene Hybrid Materials with Large Nonlinear. Optical Properties

Porphyrin and Fullerene Covalently Functionalized. Graphene Hybrid Materials with Large Nonlinear. Optical Properties Supporting Information for Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties Zhi-Bo Liu, Yan-Fei Xu, Xiao-Yan Zhang, Xiao-Liang Zhang,

More information

Influence of temperature and voltage on electrochemical reduction of graphene oxide

Influence of temperature and voltage on electrochemical reduction of graphene oxide Bull. Mater. Sci., Vol. 37, No. 3, May 2014, pp. 629 634. Indian Academy of Sciences. Influence of temperature and voltage on electrochemical reduction of graphene oxide XIUQIANG LI, DONG ZHANG*, PEIYING

More information

Three-dimensional Multi-recognition Flexible Wearable

Three-dimensional Multi-recognition Flexible Wearable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 This journal is The Royal Society of Chemistry 2016 Supporting Information Three-dimensional Multi-recognition

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information for Enhancement of Exciton Transport in Porphyrin Aggregate Nanostructures

More information

Supplementary information for:

Supplementary information for: Supplementary information for: Solvent dispersible nanoplatinum-carbon nanotube hybrids for application in homogeneous catalysis Yuhong Chen, Xueyan Zhang and Somenath Mitra* Department of Chemistry and

More information

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 20XX The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence

More information

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Fe 3 O 4 /Carbon quantum dots hybrid nanoflowers for highly active and

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Chin. Phys. B Vol. 21, No. 1 (212) 1428 A tunable corner-pumped Nd:YAG/YAG composite slab CW laser Liu Huan( 刘欢 ) and Gong Ma-Li( 巩马理 ) State Key Laboratory of Tribology, Center for Photonics and Electronics,

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation

Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation Supporting information for Modify morphology of colloidal Ag 2 Se nanostructures by laser irradiation Ling-Ling Zhao a, Zhi-Ming Gao a, Hui Liu a, Jing Yang a, Shi-Zhang Qiao a,b, Xi-Wen Du a a School

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Content: Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Trifunctional NiO Ag NiO Electrodes

More information

Supporting Information

Supporting Information Supporting Information Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior Qianling Cui, Jingsan Xu,* Xiaoyu Wang, Lidong Li,* Markus Antonietti, and Menny Shalom anie_201511217_sm_miscellaneous_information.pdf

More information

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter

More information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets Supporting Information Available ot Electron of Au Nanorods Activates the Electrocatalysis of ydrogen Evolution on MoS Nanosheets Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan

More information

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Electronic Supplementary Material (ESI) for Chemical Science. This journal is The oyal Society of Chemistry 16 Electronic Supplementary Information Insight into the Charge Transfer in Particulate Ta 3

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Supporting Information for Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Mingyang Cha,, Peimei Da,, Jun Wang, Weiyi Wang, Zhanghai Chen,

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2011 69451 Weinheim, Germany Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties** Xiaohu Xia, Jie Zeng, Brenden

More information

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex Supporting Information Simple Bacterial Detection and High-Throughput Drug Screening Based on Graphene-Enzyme Complex Juan-Li, Ling-Jie Wu, Shan-Shan Guo, Hua-E Fu, Guo-Nan Chen* and Huang-Hao Yang* The

More information

CH Stretching Excitation Promotes its Cleavage in. Collision Energies

CH Stretching Excitation Promotes its Cleavage in. Collision Energies Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic supplementary information for CH Stretching Excitation Promotes its

More information

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium Electronic supplementary information For A Heptamethine cyanine -Based Colorimetric and Ratiometric Fluorescent Chemosensor for Selective Detection of Ag + in an Aqueous Medium Hong Zheng *, Min Yan, Xiao-Xing

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

A Biosensor for the Detection of Single Base Mismatches in microrna

A Biosensor for the Detection of Single Base Mismatches in microrna Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 215 Supporting Information A Biosensor for the Detection of Single Base Mismatches in microrna Jieon

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Tetraphenylethene-containing supramolecular hyperbranched

More information