Chemistry 192 Problem Set 2 Spring, 2018 Solutions

Size: px
Start display at page:

Download "Chemistry 192 Problem Set 2 Spring, 2018 Solutions"

Transcription

1 Chemistry 192 Problem Set 2 Spring, 2018 Solutions 1. The gas phase species NO 2 and N 2 O 4 equilibrate according to the reaction N 2 O 4(g) 2NO 2(g), and it is found that at 298K in a reaction vessel of fixed volume the equilibrium concentrations of each species are [NO 2 ] M and [N 2 O 4 ] M. Under different nonequilibrum conditions in the same vessel at the same temperature, NO 2 and N 2 O 4 are added such that their partial pressures are P NO bar and P N2 O bar. Under the nonequilibrium conditions, predict whether the reaction will proceed to the right or left. K c [NO 2] 2 [N 2 O 4 ] ( ) K P K c (RT ) ngas ( )(298)( ) Q P P 2 NO 2 P N2 O 4 (0.456) so the reaction proceeds to the right. Q P < K P 2. For the reaction between solid iodine, hydrogen gas and gas-phase hydrogen iodide I 2(s) + H 2(g) 2HI (g) at 298 K, the equilibrium partial pressures of hydrogen and hydrogen iodide are measured to be respectively P H2 32. bar and P HI 4.0 bar. Suppose an initial nonequilibrium mixture of solid iodine, hydrogen gas and hydrogen iodide is prepared at 298 K in a closed 10.0 L container containing 68. grams of hydrogen gas, 352. grams 1

2 of hydrogen iodide gas and 500. grams of solid iodine (sufficient to be in excess). Calculate the concentration equilibrium constant K c for the reaction, and predict whether the reaction will proceed spontaneously to the right or left under the non-equilibrium conditions. K P P HI 2 (4.0) P H2 32. K c K P (RT ) ngas 0.50( ) ( ) mol 68. g 2.00 g [H 2 ] 3.4 M 10.0 L ( ) mol 352. g g [HI] M 10.0 L Q c > K c Q c [HI]2 [H 2 ] so reaction is spontaneous to the left 3. At 500.K and a total pressure of 5.57 bar, it is found that the degree of dissociation at equilibrium of gas-phase ammonia according to the reaction NH 3(g) 1 2 N 2(g) H 2(g) is α In a separate experiment at 500.K, a non equilibrium mixture is prepared by combing 1.00 moles each of gas-phase NH 3, N 2 and H 2 in a 1.00 L flask. Calculate first K P and then K c for the ammonia dissociation reaction, and predict the direction of the reaction for the non equilibrium mixture. Let n 0 the initial number of moles of ammonia. n NH3 n N2 n H2 initial n change αn 0 αn 0 /2 3αn 0 /2 equilibrium n 0 () αn 0 /2 3αn 0 /2 K P P 1/2 N 2 P 3/2 H 2 P NH3 n tot n 0 (1 + α) ( α/2 ) 1/2 ( 3α/2 ) 3/2 1 + α P 1 + α P 1 + α P 2

3 ( ) /2 ( ) 3/ K c K P (RT ) ngas (3.38)[( )(500.)] Q c 1 > K c 4. Consider the reaction at equilibrium reaction is spontaneous to the left PCl 5(g) PCl 3(g) + Cl 2(g). When a certain amount of PCl 5(g) is heated in a 10.0 liter flask at 275. C, analysis shows that at equilibrium the number of moles of each species is n P Cl mol, n P Cl mol and n Cl mol. Calculate K P and K c for the reaction at 275. C. ( ) K c [PCl 3][Cl 2 ] ( 10.0 ) [PCl 5 ] K P K c (RT ) ngas ( )[( )(548)] For the reaction given in problem 4, if for all species at 275. C, 1.00 moles of each species were placed in the 10.0 L flask, determine whether the reaction would be favored to the left or right. ( ) Q c ( 10.0 ) Q c < K c to right 6. Consider the reaction at equilibrium between gas-phase iodine, hydrogen and hydrogen iodide H 2(g) + I 2(g) 2HI (g). At 450.C the concentration equilibrum constant for the reaction is K c (a) Calculate K P at 450.C. K P K c (RT ) ngas K c (RT )

4 (b) If 2.0 moles each of iodine vapor and hydrogen are placed in a 5.0 L flask, and the gases are allowed to come to equilibrium at 450.C, calculate the final total pressure and partial pressures of each gas in the container. H 2 I 2 HI initial 2.0 mol 2.0 mol 0 mol change -x mol -x mol 2x mol equilibrium (2.0-x) mol (2.0 x) mol 2x mol K c [HI]2 [H 2 ][I 2 ] 50.0 ( ) 2x 2 ( 5.0 ) ( ) 2.0 x 2.0 x x 2 4 4x + x 2 46x 2 200x x 200 ± (200) 2 4(46)(200) (2)(46) 200 ± x 2.79, The first solution is > 2 and consequently unphysical. Then n H2 n I2 2.0 mol 1.55 mol 0.44 mol n HI 2x 3.1 mol P H2 P I2 n H 2 RT V 7. For the reaction (0.44 mol)( L bar mol 1 K 1 )(723 K) 5.0 L P HI (3.1 mol)( L bar mol 1 K 1 )(723 K) 37. bar 5.0 L P tot P H2 + P I2 + P HI 48. bar N 2 O 4(g) 2NO 2(g) 5.3 bar it is found that K P at 25.0 C. Calculate the degree of dissociation of N 2 O 4 at 25.0C and total pressures of 1.0 bar and 0.10 bar. N 2 O 4 NO 2 initial n 0 change -αn 2αn equilibrium ()n 2αn 4

5 K P (P NO 2 ) 2 (χ NO 2 P ) 2 P N2 O 4 χ N2 O 4 P n tot ()n + 2αn (1 + α)n χ NO2 n NO 2 n tot 2α 1 + α χ N2 O α 1.0 bar 0.10 bar ( 2α 1 + α P )2 ( 1 + α ) P 4α2 2 P α α α α α α The degree of dissociation (the fraction of the pure substance that dissociates at equilibrium) of NOCl (g) at 298K and a total pressure of 2.00 bar according to the reaction NOCl (g) NO (g) Cl 2(g) is α Calculate the pressure equilibrium constant, K P 298.K. Let n 0 be the initial number of moles of gas-phase NOCl. for the reaction at NOCl NO Cl 2 initial n change -αn 0 αn 0 αn 0 /2 equilibrium n 0 () αn 0 αn 0 /2 5

6 n tot n 0 (1 + α/2) K P P NOP 1/2 Cl 2 (χ NOP )(χ Cl2 P ) 1/2 P NOCl χ NOCl P (α/(1 + α/2))((α/2)/(1 + α/2))1/2 ()/(1 + α/2) P α(α/2) 1/2 ()(1 + α/2) 1/2 P ( /2) 1/2 ( )( /2) 1/ Predict the effects of increased pressure and temperature on the following reactions at equilibrium. (a) CO (g) + H 2 O (g) CO 2(g) + H 2(g) H 41.8 kj mol 1 (b) Answer increase P - no change increase T - to left 2SO 2(g) + O 2(g) 2SO 3(g) H kj mol 1 (c) Answer increase P - to right increase T - to left CaCO 3(s) Ca (s) + CO 2(g) H kj mol 1 Answer increase P - to left increase T - to right 10. At 400.K the concentration equilibrium constant for the reaction HCONH 2(g) NH 3(g) + CO (g) is K c If 10.0 grams of pure gas-phase HCONH 2 are placed in a 10.0 liter flask at 400.K, calculate the total pressure in the flask when equilibrium is reached g n initial mol ( ) g mol Let x be the number of moles of HCONH 2 that has reacted at equilibrium. 6

7 HCONH 2 NH 3 CO initial mol 0 mol 0 mol change -x mol x mol x mol equilibrium (0.222-x) mol x mol x mol [NH 3 ][CO] [HCONH 2 ] (x/10.0) 2 (0.222 x)/ x x 48.4 x x x 48.4 ± [(48.4)2 + 4(10.7)] 1/2 48.6, n tot mol x mol + 2x mol mol + x mol mol P n totrt V (0.442 mol)( L bar mol 1 K 1 )(400. K) 10.0 L 1.47 bar 11. When metallic lead is added to a solution of Cr 3+ (aq) the following reaction occurs Pb (s) + 2Cr 3+ (aq) Pb 2+ (aq) + 2Cr2+ (aq) with associated equilibrium constant K c (a) If solid lead is added to a M Cr 3+ aqueous solution, find the final concentrations of all ions in the system. K c [Pb2+ ][Cr 2+ ] 2 [Cr 3+ ] 2 [Cr 3+ ] [Pb 2+ ] [Cr 2+ ] initial M 0 M 0 M change -2x M x M 2x M equilibrium ( x) M x M 2x M x(2x) ( x) 2 Because K c is small, we can ignore the term 2x in the denominator. Then Then 4x x M [Cr 3+ ] M 2x 0.20 M to 2 significant figures, justifying our assumption. [Pb 2+ ] x M 7 [Cr 2+ ] 2x M

8 (b) If 100 ml of water are added to the solution at equilibrium, predict the direction that the equilibrium would be shifted. All concentrations are decreased, and by LeChâtelier s principle, the reaction shifts to the right. 12. At 145.K the the degree of dissociation of ozone in the gas-phase decomposition reaction O 3(g) 3 2 O 2(g) at a total pressure of P 1.00 bar is α Calculate the concentration equilibrium constant K c of the dissociation reaction. n O3 n O2 initial n 0 0 change -αn 0 (3/2)αn 0 equilibrium ()n 0 (3/2)αn 0 χ O2 (3/2)α 1 + α/2 ( (3/2)α 1 + α/2 P K P n tot n 0 (1 + α/2) ) 3/2 χ O3 1 + α/ α/2 P K c K P (RT ) ngas ( )( ) At a temperature of 452K gas-phase isopropyl alcohol dissociates into gas-phase acetone and hydrogen according to the reaction 3 (CH 3 ) 2 CHOH (g) (CH 3 ) 2 CO (g) + H 2(g). At P 2.00 bar and T 452K, the degree of dissociation isopropyl alcohol is measured to be α Calculate the concentration equilibrium constant K c for the reaction. n (CH3 )2CHOH n (CH3 ) 2 CO n H2 initial n change αn 0 αn 0 αn 0 equilibrium n 0 () αn 0 αn 0 8

9 n tot n 0 () + n 0 α + n 0 α n 0 (1 + α) K P P (CH 3 ) 2 COP H2 P (CH2 ) 2 CHOH ( )2 α 1 + α P ( ) 1 + α P α 2 P (0.182)2 1 (0.182) K c K P (RT ) n (0.0685)[( )(452)] The gas-phase decomposition of antimony pentachloride into gas-phase antimony trichloride and chlorine gas SbCl 5(g) SbCl 3(g) + Cl 2(g) has a concentration equilibrium constant K C at a temperature of 521. K. A sample of pure SbCl 5 gas is placed in a reaction vessel of fixed volume at T 521.K, and when the system attains equilibrium, the total pressure is measured to be 3.51 bar. Calculate the equilibrium degree of dissociation α (i.e. the fraction dissociated) of antimony pentachloride in the reaction vessel. K P K C RT ( )( )(521.) 1.08 Let n 0 be the initial number of moles of SbCl 5. n SbCl5 n SbCl3 n Cl2 initial n change αn 0 αn 0 αn 0 equilibrium n 0 () αn 0 αn 0 n tot n 0 (1 + α) K P P SbCl 3 P Cl2 χ SbCl 3 P χ Cl2 P P SbCl5 χ SbCl5 P α 1 + α P α 1 + α P α α P P 2 α 2 (3.51) 1.08 α

10 15. The equilibrium behavior of the gas-phase reaction P 4(g) 2P 2(g) is studied at 1325.K, and the concentration equilibrium constant is measured to be K C Calculate the equilibrium degree of dissociation α of P 4 at 1325.K and a total pressure of 2.00 bar. K P K C (RT ) ngas ( )[( )(1325)] n P4 n P2 initial n 0 0 change -αn 0 2αn 0 equilibrium ()n 0 2αn n tot n 0 (1 + α) ( )2 2α 1 + α P 1 + α P 4α 2 P 8.00α2 2 2 α α

Review Unit #11. Review Unit # H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1

Review Unit #11. Review Unit # H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1 Review Unit #11 1. H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1 K c = 1.6 What effect would these changes have on the equilibrium position? a. Cool the mixture b. Increase the volume of the flask c. Add H 2(g)

More information

3 Chemical Equilibrium

3 Chemical Equilibrium Aubrey High School AP Chemistry 3 Chemical Equilibrium Name Period Date / / 3.1 Problems Chemical Analysis 1. Write the equilibrium constant expressions for the following reactions. How are they related

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Sample Exercise 15.1 (p. 632) Write the equilibrium expression for K eq for these three reactions: a) 2 O 3(g) 3 O 2(g) b) 2 NO (g) + Cl 2(g) 2 NOCl (g) c) Ag + (aq) +

More information

K eq. b) 4 HCl (g) + O 2(g) 2 H 2 O (g) + 2 Cl 2(g) c) NOCl (g) NO (g) + ½ Cl 2(g) 1. d) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq)

K eq. b) 4 HCl (g) + O 2(g) 2 H 2 O (g) + 2 Cl 2(g) c) NOCl (g) NO (g) + ½ Cl 2(g) 1. d) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq) Name: 1 Equilibrium Worksheet SOLUTIONS Complete the following questions on a separate piece of paper. 1. Write the uilibrium epression,, for each of the following reactions: a) NO (g) + O (g) NO (g) [

More information

Chemistry 431 Problem Set 8 Fall 2018 Solutions

Chemistry 431 Problem Set 8 Fall 2018 Solutions Chemistry 43 Problem Set 8 Fall 208 Solutions. Use able 4. of the text to calculate the equilibrium constant of the reaction NO g + 2 O 2g NO 2g at 25. C and 35. C. r,m G f,m G NO 2g f,m G NO g At 25 C

More information

Chemistry 192 Problem Set 7 Spring, 2018

Chemistry 192 Problem Set 7 Spring, 2018 Chemistry 192 Problem Set 7 Spring, 2018 1. Use Table D2 to calculate the standard enthalpy change for the combustion of liquid benzene (C 6 H 6 ) in pure oxygen gas to produce gas phase carbon dioxide

More information

K P VERSUS K C PROPERTIES OF THE EQUILIBRIUM CONSTANT

K P VERSUS K C PROPERTIES OF THE EQUILIBRIUM CONSTANT K P VERSUS K C 1. What are the units of K p and K c for each of the following? a) 2H 2 S(g) 2H 2 (g) + S 2 (g) b) 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(g) 2. What are the units of K p and K c for each

More information

Chemistry 431 Problem Set 1 Fall 2018 Solutions

Chemistry 431 Problem Set 1 Fall 2018 Solutions Chemistry 43 Problem Set Fall 208 Solutions. It is known that 25.0 ml of liquid benzene (C 6 H 6 ) contains.08 0 24 carbon atoms. Determine the density of liquid benzene. (.08 0 24 ) ( ) ( ) (78. ) atoms

More information

AP* Chapter 13. Chemical Equilibrium

AP* Chapter 13. Chemical Equilibrium AP* Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

A.P. Chemistry. Unit #11. Chemical Equilibrium

A.P. Chemistry. Unit #11. Chemical Equilibrium A.P. Chemistry Unit #11 Chemical Equilibrium I. Chemical Equilibrium the point in a reaction at which the concentrations of products and reactants remain constant Dynamic Equilibrium the equilibrium condition

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Calculations Involving the Equilibrium Constant K eq )

Calculations Involving the Equilibrium Constant K eq ) Calculations Involving the Equilibrium Constant K eq ) 1. Given the equilibrium equation below: A 2(g) + B 2(g) 2AB (g) If, at equilibrium, the concentrations are as follows: [A 2 ] = 3.45 M, [B 2 ] =

More information

a) Write the expression for the equilibrium constant, K eq

a) Write the expression for the equilibrium constant, K eq Chemistry 12 K eq Calculations Worksheet Name: Date: Block: 1. Given the equilibrium equation below: A 2(g) + B 2(g) 2AB (g) If, at equilibrium, the concentrations are as follows: [A 2] = 3.45 M, [B 2]

More information

Chemistry 432 Problem Set 12 Spring 2018 Solutions

Chemistry 432 Problem Set 12 Spring 2018 Solutions Chemistry 43 Problem Set Spring 08 Solutions. Derive an expression for the integrated rate law for a reaction obeying d[a] = k[a] /. [A] [A] 0 d[a] = k [A] / d[a] t [A] = / 0 k [A] / [A] [A] 0 { [A] /

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

3 A (aq) + 2 D (aq) 4 C (g) + B (s) + 2 E (l)

3 A (aq) + 2 D (aq) 4 C (g) + B (s) + 2 E (l) AP Chemistry Test (Chapter 13) Multiple Choice (20%) 1) Which one best describes the K C for this reaction? 3 A (aq) + 2 D (aq) 4 C (g) + B (s) + 2 E (l) A) K c = [A] 3 [D] 2 B) K c = [C] 4 [B][E] 2 [C]

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be:

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be: Name: Unit Test CHEMICAL EQUILIBRIUM Date: _ 50 marks total I. Multiple Choice 15 marks 1. Reactions that can proceed in both the forward and reverse directions are said to be: A. complete B. reversible

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry,

More information

Chemistry 192 Final Exam Spring 2018 Solutions

Chemistry 192 Final Exam Spring 2018 Solutions Chemistry 192 Final Exam Spring 2018 Solutions R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 N A = 6.022 10 23 molecules mol 1 T = t + 273.15 F = 96485. C mol 1 c =2.998 10 8 m

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

The Equilibrium Law. Calculating Equilibrium Constants. then (at constant temperature) [C] c. [D] d = a constant, ( K c )

The Equilibrium Law. Calculating Equilibrium Constants. then (at constant temperature) [C] c. [D] d = a constant, ( K c ) Chemical Equilibrium 1 The Equilibrium Law States If the concentrations of all the substances present at equilibrium are raised to the power of the number of moles they appear in the equation, the product

More information

UNIT 11 Practice Test Page 1 of 13 Equilibrium

UNIT 11 Practice Test Page 1 of 13 Equilibrium UNIT 11 Practice Test Page 1 of 13 Do NOT write on this test. $0.10/page lost or damaged fee. 1. In which of the following does the reaction go farthest to completion? A. K = 10 5 B. K = 10 5 C. K = 1000

More information

QUESTIONS: Equilibria AS & AS

QUESTIONS: Equilibria AS & AS QUESTION (2012:2) Phosphorus pentachloride gas, PCl 5 (g), decomposes to form phosphorus trichloride gas, PCl 3 (g), and chlorine gas, Cl 2 (g). The equilibrium can be represented as: PCl 5 (g) Ý PCl 3

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

AP Chapter 14: Chemical Equilibrium & Ksp

AP Chapter 14: Chemical Equilibrium & Ksp AP Chapter 14: Chemical Equilibrium & Ksp Warm-Ups (Show your work for credit) Name Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 14: Chemical Equilibrium & Ksp 2 Warm-Ups

More information

(E) half as fast as methane.

(E) half as fast as methane. Name AP Chem / / AP Chem Practice Exam #2 Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the BLUE SIDE of your scantron for each of the following.

More information

ALE 9. Equilibrium Problems: ICE Practice!

ALE 9. Equilibrium Problems: ICE Practice! Name Chem 163 Section: Team Number: ALE 9. Equilibrium Problems: ICE Practice! (Reference: 17.5 Silberberg 5 th edition) Equilibrium Calculations: Show all work with correct significant figures. Circle

More information

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle

Le Châtelier s Principle. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Equilibrium: Le Châtelier s Principle Factors Affecting : Le Châtelier s Principle Pressure Factors Affecting : Le Châtelier s Principle Pressure When volume decreases, the pressure increases. systems in which some reactants and products are

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 1588 B) C) 28 D) 397 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 1588 B) C) 28 D) 397 E) 0. Chapter 15 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression.

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression. Equilibrium 1 UNIT 3: EQUILIBRIUM OUTCOMES All important vocabulary is in Italics and bold. Relate the concept of equilibrium to physical and chemical systems. Include: conditions necessary to achieve

More information

CHEMICAL EQUILIBRIUM -2

CHEMICAL EQUILIBRIUM -2 CHEMICAL EQUILIBRIUM - 1. The gaseous reaction A + B C + D + heat, has reached equilibrium. It is possible to make the reaction to proceed forward 1) by adding more of C ) by adding more of D 3) by raising

More information

2.0 Equilibrium Constant

2.0 Equilibrium Constant 2.0 Equilibrium Constant When reactions are reversible and chemical equilibrium is reached, it is important to recognize that not all of the reactants will be converted into products. There is a mathematical

More information

CHEM J-8 June /01(a) With 3 C-O bonds and no lone pairs on the C atom, the geometry is trigonal planar.

CHEM J-8 June /01(a) With 3 C-O bonds and no lone pairs on the C atom, the geometry is trigonal planar. CHEM1001 2014-J-8 June 2014 22/01(a) What is the molecular geometry of the formate ion? Marks 7 With 3 C-O bonds and no lone pairs on the C atom, the geometry is trigonal planar. Write the equilibrium

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.91, 15.94-99, 15.10-15.103 Example: Ice melting is a dynamic process:

More information

Chemistry 12: Dynamic Equilibrium Practice Test

Chemistry 12: Dynamic Equilibrium Practice Test Chemistry 12: Dynamic Equilibrium Practice Test A. Multiple Choice: For each question, select the best answer and record your choice on the answer key provided. /25 1) A system at equilibrium is said to

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Solutions to: Chemical Equlibrium Homework Problem Set S.E. Van Bramer 1/9/96

Solutions to: Chemical Equlibrium Homework Problem Set S.E. Van Bramer 1/9/96 Solutions to: Chemical Equlibrium Homework Problem Set S.E. an Bramer 1/9/96 1. Write an expression for each of the equilibria (a) 3 O 2 (g) 2 O 3 (g) ( ) 2 P O3 K p ( ) 3 P O2 (b) H 2 (g) + I 2 (g)

More information

Equilibrium Calculations

Equilibrium Calculations OpenStax-CNX module: m51112 1 Equilibrium Calculations OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section,

More information

91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria

91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria (2017:2) 91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria The addition of a small amount of iron to a mixture of nitrogen and hydrogen gases helps to speed up the

More information

Ch 6 Practice Problems

Ch 6 Practice Problems Ch 6 Practice Problems 1. Which of the following statements is true? A) When two opposing processes are proceeding at identical rates, the sstem is at equilibrium. B) Catalsts are an effective means of

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Class Results Simulator:

Class Results   Simulator: Class Results http://chemconnections.org/general/chem120/equil-graph.html Simulator: http://chemconnections.org/java/equilibrium/ http://chemconnections.org/general/chem120/equil-graph.html The changes

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Dr. Valverde s AP Chemistry Class

Dr. Valverde s AP Chemistry Class AP* Chemistry Dr. Valverde s AP Chemistry Class Chapter CHEMICAL 13 Review: EQUILIBRIA: Chemical Equilibrium GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the rate

More information

AP* Thermodynamics Free Response Questions page 1. Essay Questions

AP* Thermodynamics Free Response Questions page 1. Essay Questions AP* Thermodynamics Free Response Questions page 1 Essay Questions 1991 The reaction represented above is a reversible reaction. BCl 3 (g) + NH 3 (g) Cl 3 BNH 3 (s) (a) Predict the sign of the entropy change,

More information

Reaction Quotient. Initial M M M Initial M M M

Reaction Quotient. Initial M M M Initial M M M Reaction Quotient How do you predict which direction a reaction will proceed to reach equilibrium? Why? When a reaction reaches equilibrium there must be some non-negligible amount of every species in

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

Chemistry 40S Chemical Equilibrium (This unit has been adapted from

Chemistry 40S Chemical Equilibrium (This unit has been adapted from Chemistry 40S Chemical Equilibrium (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Defining Equilibrium Goals: Describe physical and chemical equilibrium. Describe the

More information

DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice

DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice Multiple Choice Section: This study guide is a compilation of questions from provincial exams since April 1994. I urge you to become intimately familiar

More information

EQUILIBRIA. e Q = a D B

EQUILIBRIA. e Q = a D B I. Basis of Equilibrium. A. Q and equilibrium. EQUILIBRIA 1. Consider the general reaction bb + cc dd + ee a. Αs time elapses, [B] and [C] decrease causing the rate of the forward reaction to decrease.

More information

OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements

OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements Equilibria Notes and Example Calculations Answers given at the end of the booklet The Equilibrium Constant, Kc Le Chatelier Principle

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

Primary Topics in Equilibrium

Primary Topics in Equilibrium Primary Topics in Equilibrium Outline 1. Equilibrium Expression 2. Calculating Concentration Given K 3. Calculating K Given Concentration Review 1. Equilibrium Expression (only gas and aqueous do not include

More information

Chp 13, 14, 15 SHOW ALL WORK AND CIRCLE FINAL ANSWERS. a) 1 only b) 2 only c) 3 only d) 1 and 2 only e) 1, 2, and H 2

Chp 13, 14, 15 SHOW ALL WORK AND CIRCLE FINAL ANSWERS. a) 1 only b) 2 only c) 3 only d) 1 and 2 only e) 1, 2, and H 2 Chp 13, 14, 15 Name: SHOW ALL WORK AND CIRCLE FINAL ANSWERS 1. Which of the following factors affect the initial rate of a reaction? 1) The nature of the reactants. 2) The concentration of the reactants.

More information

The Equilibrium State

The Equilibrium State 15.1 The Equilibrium State All reactions are reversible and under suitable conditions will reach a state of equilibrium. At equilibrium, the concentrations of products and reactants no longer change because

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Chemistry 1A Fall Midterm Exam 3

Chemistry 1A Fall Midterm Exam 3 Chemistry 1A Fall 2017 Name Student ID Midterm Exam 3 You will have 120 minutes to complete this exam. Please fill in the bubble that corresponds to the correct answer on the answer sheet. Only your answer

More information

F325: Equilibria, Energetics and Elements How Far?

F325: Equilibria, Energetics and Elements How Far? F325: Equilibria, Energetics and Elements 5.1.2 How Far? 100 marks 1. Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol. A dynamic equilibrium

More information

A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: slow fast (D) H 2 O

A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: slow fast (D) H 2 O Chemistry 112, Spring 2007 Prof. Metz Exam 2 Practice Use the following information to answer questions 1 through 3 A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: H 2

More information

Equilibrium Reversible Reactions

Equilibrium Reversible Reactions 1 Equilibrium Reversible Reactions Oak Park High School Mrs. Kornelsen Chemistry 40s Intro: Do Blue bottle Reaction demo Or watch online: http://www.dlt.ncssm.edu/core/chapter14- Gas_Phase- Solubility-

More information

Math Without a Calculator for AP Chemistry

Math Without a Calculator for AP Chemistry Math Without a Calculator for AP Chemistry Number Sense 6.02 1000 6.02 0.01 0.1 1000 0.02 1000 0.3 1000 0. 1000 Let fractions be your friends! Fraction Decimal Percent 3/ 0.80 Example: 3.00 1.2 3.00 6

More information

Calculating equilibrium constants

Calculating equilibrium constants Equilibrium Work Book Writing Equilibrium Constants Expressions 1. Write the equilibrium law (mass action expression) for each of the following reactions: a. SO 2 (g) + NO 2 (g) SO 3 (g) + NO(g) b. 2 C(s)

More information

Homework #5 Chapter 6 Chemical Equilibrium

Homework #5 Chapter 6 Chemical Equilibrium Homework #5 Chapter 6 Chemical Equilibrium 2. Assume the reaction is A + B C + D. It is given that K9 and K [C][D]. At the start of [A][B] the reaction, before equilibrium is reached, there are 8 A molecules,

More information

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression.

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression. Practice Problems for Chem 1B Exam 1 Chapter 14: Chemical Equilibrium 1. Which of the following statements is/are CORRECT? 1. For a chemical system, if the reaction quotient (Q) is greater than K, products

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

The Advanced Placement Examination in Chemistry. Part II - Free Response Questions & Answers 1970 to Equilibrium

The Advanced Placement Examination in Chemistry. Part II - Free Response Questions & Answers 1970 to Equilibrium The Advanced Placement Examination in Chemistry Part II - Free Response Questions & Answers 1970 to 005 Equilibrium Teachers may reproduce this publication, in whole or in part, in limited print quantities

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 3 Chemical Equilibrium Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

Quadratic Equation: ax 2 + bx + c = 0

Quadratic Equation: ax 2 + bx + c = 0 Exam # Key (last) (First-Name) Signature Exam 2 General Chemistry 201. May 12, 2009 No credit will be given for correct numerical answers without a clear indication of how they were obtained. Show all

More information

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each Name: Score: /100 Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each 1. Which of the following contains the greatest number of moles of O? A) 2.3 mol H 2 O

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Chemistry 112, Spring 2007 Prof. Metz Exam 2 Solutions April 5, 2007 Each question is worth 5 points, unless otherwise indicated

Chemistry 112, Spring 2007 Prof. Metz Exam 2 Solutions April 5, 2007 Each question is worth 5 points, unless otherwise indicated Chemistry 11, Spring 007 Prof. Metz Exam Solutions April 5, 007 Each question is worth 5 points, unless otherwise indicated 1. A proposed mechanism for the reaction of NO with Br to give BrNO is NO + NO

More information

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals 1. Chemical equilibrium is said to by dynamic because a. The reaction proceeds quickly b. The mass of the reactants is decreasing c. The macroscopic properties

More information

aa + bb ---> cc + dd

aa + bb ---> cc + dd 17 Chemical Equilibria Consider the following reaction: aa + bb ---> cc + dd As written is suggests that reactants A + B will be used up in forming products C + D. However, what we learned in the section

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas The Gas Laws Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases Boyle s Law P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant

More information

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3 Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O B 1.5 moles of ammonia, NH 3 C 1 mole of hydrogen gas, H 2 D 0.5 moles of methane, CH 4 Q2.

More information

Name ID# Section # CH 1020 EXAM 2 Spring Form A

Name ID# Section # CH 1020 EXAM 2 Spring Form A Name ID# Section # CH EXAM Spring 7 - Form A Fill in your name, ID#, and section on this test booklet. Fill in and bubble in your name, ID# (bubble for C ), and section on the scantron form. For question

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

AP Study Questions

AP Study Questions Class: Date: AP 19.5-19.7 Study Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 3. The value of G at 25 C for the formation of POCl 3 from its constituent

More information

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chem 1515 Section 2 Problem Set #4. Name Spring 1998 Chem 1515 Section 2 Problem Set #4 Name Spring 1998 TA Name Lab Section # ALL work must be shown to receive full credit. Due Wednesday, February 4th PS4.1. Describe all the energy changes which must be

More information

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each Name: Score: /100 Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each 1. Which of the following contains the greatest number of moles of O? A) 2.3 mol H 2 O

More information

I. Multiple Choice Questions (Type-I) is K p

I. Multiple Choice Questions (Type-I) is K p Unit 7 EQUILIBRIUM I. Multiple Choice Questions (Type-I) 1. We know that the relationship between K c and K p is K p K c (RT) n What would be the value of n for the reaction NH 4 Cl (s) NH 3 (g) + HCl

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E

HOMEWORK 1C. (d) 2D + E 2F K eq = 1 x 10 9 I C E HOMEWORK 1A 1. Write the correct equilibriumconstant expressions for the following reactions. (a) 4NH 3 (g) + 7O 2 (g) 4NO 2 (g) + 6H 2 O (g) (b) 2NO 2 (g) + 7H 2 (g) 2NH 3 (g) + 4H 2 O (g) (c) NH 4 Cl

More information

Study Guide for Module 13 An Introduction to Equilibrium

Study Guide for Module 13 An Introduction to Equilibrium Chemistry 1020, Module 13 Name Study Guide for Module 13 An Introduction to Equilibrium Reading Assignment: Section 12.1 and Chapter 13 of Chemistry, 6th Edition by Zumdahl. Guide for Your Lecturer: 1.

More information