for rare event detection

Size: px
Start display at page:

Download "for rare event detection"

Transcription

1 A Micromegas detector for rare event detection T. Papaevangelou 1 S. Andriamonje 1 S. Aune 1 H. Brauninger 2 T. Dafni 3 G. Fanourakis 4 E. Ferrer Ribas 1 J. Galán Lacarra 3 T. Geralis 4 A. Giganon 1 I. Giomataris 1 I.G. Irastorza 3 K. Kousouris 4 J. Morales 3 J.P. Mols 5 M. Pivovaroff 6 M. Riallot 1 J. Ruz 1 R. Soufli 6 K. Zachariadou 4 1 IRFU, Centre d Etudes de Saclay, Gif sur Yvette CEDEX, France 2 Max-Planck-Institut for Extraterrestrial Physics, Garching, Germany 3 Instituto de Física Nuclear y Altas Energías, Zaragoza, Spain 4 Institute of Nuclear Physics, NCSR Demokritos, Athens, Greece 5 Institute fur Kernphysik, TU-Darmstadt, Darmstadt, Germany 6 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, USA 11th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2008

2 Outline The micromegas detector Micromegas for solar axion search in CAST A micromegas based TPC for neutrinoless double beta decay Conclusions

3 Micromegas Detector Two-region gaseous detector: Conversion region Primary ionization Charge drift Drift field typical 2-3 V/cm Amplification field typical 4-5 V/cm Amplification gap: 50-0 μm γ Amplification region Charge multiplication Readout layout Strips (1/2 D) Pixels Separated by a Micromesh Very strong and uniform magnetic field Giomataris, Charpak (1996) Mesh signal Pixels / strips signals

4 Micromegas Technologies Conventional technology The pillars are attached to the mesh. A supporting ring or frame is adjusting the mesh on top of the readout plane Typical dimensions: mesh thickness 5 μm, gap 50 μm Bulk technology The pillars are attached to a woven mesh and to the readout plane Typical dimensions: mesh thickness 30 μm, gap 0 μm Microbulk technology The pillars are constructed by chemical process of a kapton foil, that is attached to the mesh and to the readout plane Typical dimensions: mesh thickness 5 μm, gap 50 μm

5 Bulk technology Woven Inox mesh Readout plane + mesh all in one 30 µm vacrel 128 µm Well established technique Readout pads Advantages: Uniformity, it Reachable resolution FWHM, limited i by the thickness of the mesh), very robust, low noise due to lower capacity, easy to construct Disadvantages: higher risetime, sensitivity to pressure variations, stability pad pillar

6 Microbulk technology Readout plane + mesh all in one Micromesh 5µm copper Kapton 50 µm Innovative technique, well developed during the last year Readout pads Advantages: Uniformity, reachable resolution (better than FWHM), stability at long term runs, less sensitivity to pressure variations, background rejection Disadvantages: Higher electronic noise due to higher capacity, complexity of the manufacturing process, fragility Mesh 5 µm of copper Holes 30 µm diameter Pitch 0 µm Pads of 400 μm

7 CAST Experiment (see talk by Annika Nordt) Axion flux on earth 2 GeV g aγγ 1 expect 0.3 events/hour for g aγγ = - GeV -1 and A = 14.5 cm 2 Solar axions may convert to photons inside the field of a prototype LHC magnet via inversed Primakoff effect Low background Low radioactivity Signal: X-Ray excess during tracking (1- kev) materials (plexiglas, Low count rate copper, kapton) Low background Particle recognition Detector stability Shielding CAST phase II different pressure setting(s) X-Ray focusing device in every tracking. Each setting is a new experiment! A background rate ~0 cts/h is essential for the discovery potential

8 Micromegas in CAST Phase I ( ) & He-4 phase ( ) one conventional not shielded Micromegas was used (sunrise) Readout :192 x 192 strips, 350 μm pitch Gas mixture: 95% Ar, 5% 1 bar (flamable) X-Ray detection Threshold: ~06keV ~0.6keV Background ~5-5 events kev -1 s -1 cm -2 Position sensitivity ~0 μm

9 Micromegas in CAST, Phase II Sunrise line: it has been redesigned for Shielding X-Ray focusing optics A Bulk detector replaced the conventional one Readout :6 x 6 strips, 550 μm pitch Gas mixture: 97.7% Ar, 2.3% 1.44 bar (non flammable increased efficiency) Sunset side: the TPC was replaced by one Bulk and one Microbulk detector t Readout :6 x 6 strips, 550 μm pitch Gas mixture: 97.7% 7% Ar, 2.3% 1.44 bar Under construction at LLNL

10 Micromegas readout Mesh: 1 GHz FADC, 2.5 μsec (MATACQ) Strips: Integrated charge at each strip in groups of 96 (Gasiplex) 1 kev X-Rays: Localized energy deposition (<1 mm) Short risetime and pulse width for the analogue signal Charge in one cluster of few strips per axis Pattern recognition algorithm can be applied to reduce background 55 Fe 55 Fe cosmic 55 Fe cosmic

11 ] Pattern recognition Define signal characteristics for 55 Fe X-Rays (daily calibration runs) Strips: multiplicity, width, topology of clusters Mesh: risetime, width, amplitude, integral of signals Examine distributions Apply cuts in data runs Sequential Multivariate analysis Y-Multiplicity Rise Time / Pulse Time Fe data X-Multiplicity Y-Multiplicity X-Multiplicity 55 Entries Fe data Amplitude_ov_CH_vs_RiseTime_ovPulseTime_run_90031 Neural networks Amplitude / Charge Amplitude / Charge Optimize between efficiency and rejection Data reduction > 3 kev cm -2 dn/de [s Integral 5.911e Calibration_Energy_Mesh_ Entries BackgroundB_Energy_Strips_ Entries Integral Integral ] kev cm -2 dn/de [s -1-1 Rise Time / Pulse Time Fe data Total Energy [kev] Total Energy [kev]

12 ] ] Detector Performance Energy resolution Long term stability of gain -1 kev -1 dn/de [s cm % Isobutane 5 % Isobutane Total_Energy_Mesh_run_7005 Total_Energy_Mesh_run_ χ / ndf / 35 Constant.65 ± 0.94 Mean ± Sigma ± % FWHM -1 kev -1 dn/de [s cm ± Constant Mean ± Sigma ± % FWHM Total Energy [kev] Total Energy [kev] Spatial resolution Panter with X-Ray telescope [mm] Image from a lead foil with pinholes Efficiency [mm]

13 Micromegas background in CAST 2007: Implementation of shielding (Pb+ Cd + Cu + Polyethylene) -1 kev cm -2-1 dn/de [s Background_Energy_Strips_ ] NO shielding: 5.3 cts/h SHIELDED: 1.7 cts/h Total Energy [kev] The background level (after cuts) is reduced by a factor 3 to 5 The new background levels imply 2-3 expected bkg counts per pressure setting (~2800 sec solar tracking per setting) compared to 25 (Micromegas) and 80 (TPC) from 4 He phase (~5700 sec) The combined performance of the three detectors is comparable with the Telescope- CCD system concerning discovery potential Background [ -5 s -1 cm -2 kev -1 ] tracking background mean background Pressure [mbar] Implementation of a telescope in the sunrise side can decrease the background by a factor ~0

14 Neutrinoless Double Beta (0νββ) ββ decay is relevant when the nucleus cannot decay β β ββ 76 Ge 2νββ: Standard process, observed in about isotopes so far e - e - ν ν ββ 0νββ: Only possible if the neutrino has a mass and is Majorana particle. Yet to be seen e - ν 136 Xe Observable: the energy of the two β: Precious information on neutrino properties (mass scale, Majorana/Dirac nature, ) Continuum for the 2ν A narrow peak for the 0ν Good energy resolution is essential!!! 2νββ Q value 0νββ

15 Current generation ββ experiments Source = target Source target NEMO/SUPERNEMO CUORICINO/CUORE GERDA Good E resolution Good scaling-up BUT, modest background discriminstion strong requirements on radiopurity and shielding Event topology information BUT, moderate energy resolution and difficult scaling up

16 Gas Xe TPCs for ββ? Can they be competitive in the race towards ton or multiton scale exp s? Gas TPCs offer in principle the advantages of both previous approaches: topological signature & scaling-up But also: Xe easy to enrich No long lived isotope to activate Very weak 2νββ mode (still to be measured!) Single homogeneus medium (no surfaces/boundaries) 870 kev e- in the MUNU TPC 1 e - events and 2 e - events have different topologies. This can be used to reject gamma background (1 e - ) Gothard demostrated that this can be done. They achieved a 96.5% efficiency in rejecting single e - events. We may do better. A gas TPC would have an extra handle to reduce background by a factor of at least 2 (most probably more?). 2 e-

17 A micromegas based TPC for ββ? TPC s not presently comtemplated in present projects (EXO: liquid TPC) Why?: Energy resolution: Fano factor, gain stability homogeneity, equalization, ballistic deficit, Complex detectors. Specially for large V needed. traditional limitations of TPCs read by wires are overriden by recent developemnts (micropattern detectors) No mechanical challenge. Standard PCB technology replaces plane of wires. Spatial resolution achievable much higher. h Manufacturing process of large surfaces/volumes is much simpler, and cheaper. Robustness Impact on electronics (more freedom in readout design) All MICROPATT TERN And specially: Energy resolution close to the Fano limit Enhanced stability and homogeneity Specifica ally MΜ

18 A new experiment: NEutrino Xenon TPC (NEXT) Goal is 1. To define all technical aspects of a 0 kg Xe gas TPC by doing some R&D, and building a demonstrator of kg, NEXT, to operate underground in a timescale of 2-3 years. Pressure vessel cathode HV Xe PMTs 2. To build a 0 kg detector, NEXT0, already with physics interest. (in a timescale of 5 years) Readout plane Readout planes 3. To assess the option of scaling up to 1 ton, NEXT00, and eventually build it. A sensitivity down to 60 mev (for NEXT-0) and 20 mev (for NEXT-00) is a priori reachable if Low enough resolution is achieved (~1% FWHM) Low enough background after topology cuts (i.e. not background limited) Expression of Interest to the Canfranc Underground Laboratory received positively Collaborating groups: Barcelona, Berkeley, Saclay, Valencia, Zaragoza Hall A of new Canfranc Lab

19 High energy resolution in Micromegas: ongoing g tests Measurement of E resolution at high energies: Highpressure Ar+Isob small setup, read by new generation Micromegas readout (microbulk) non-pixelized anode Mixtures tests: Ar + Iso 2%, Ar + Iso 5% Pressures tested: from 1 to 5 bar Americium alpha source: 5.5 MeV alpha μm P exhaust

20 Energy resolution Measurements Energy resolution tested with Am alpha source (5.5 MeV) Best resolution obtained: % (FWHM) in a wide range of parameters (mesh and drift V, P, etc ) Landau deconvolution analysis indicate possible intrinsic Micromegas energy resolution of 0.7 % FWHM. Setup upgraded recently for same measurement in Xe (recirculation system). First (very priliminary) measurements indicate: at 2 bars: 2.8 % FWHM at 4 bars: 4.5 % FWHM Am 5.5 MeV α Hellaz TPC Equipped with MM Recirculation pump E res TPC

21 CONCLUSIONS The micromegas detector has several advantages in rare event detection: Low intrinsic background due to Low radioactivity materials Particle discrimination Spatial resolution Stability in long term runs Good energy resolution During ~6 year operation in CAST, micromegas has shown a low and stable background level, contributing significantly in the achieved results. Recent upgrades are leading to better performance and a dominant contribution to the future results is expected. These established characteristics, combined with the achieved and prospective improvements in energy resolution makes the option of a gas Xe TPC for ββ very promising ii

22 END

23 Neutrinoless Double Beta (0νββ) (A,Z) (A,Z+2) + 2 e - Lepton number violation (ΔL =2) Neutrino must be Majorana (equal to its antiparticle) Decay rate: Phase space factor Nuclear Matrix Element Region being explored by present experiments quasi degeneracy m 1 m 2 m 3 Effective neutrino mass is the underlying quantity (assuming light neutrino exchange as fundamental process) Cosmological disfavoured Region Inverse hierarchy Δm 2 12= Δm 2 atm Direct hierarchy Δm 2 12= Δm 2 sol IGEX ( 76 Ge) <m ν > < ev PRD65(02) NEMO-3 ( 0 Mo) <m ν > < ev PRL95(05) & TAUP07 expected soon < ev CUORICINO ( 130 Te) <m ν > < ev PRL95(05)142501

An ultra-low-background detector for axion searches

An ultra-low-background detector for axion searches An ultra-low-background detector for axion searches S Aune 1, T Dafni 2, G Fanourakis 3, E Ferrer Ribas 1, J Galán Lacarra 2, T Geralis 3, I Giomataris 1, F J Iguaz 2, I G Irastorza 2, K Kousouris 3, J

More information

on behalf of CAST Collaboration

on behalf of CAST Collaboration S. Cenk YILDIZ Dogus University/Istanbul on behalf of CAST Collaboration 13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13) 7-10 October 2013 Siena, Italy Axions and CAST Experiment

More information

arxiv: v2 [physics.ins-det] 20 Jul 2009

arxiv: v2 [physics.ins-det] 20 Jul 2009 Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures arxiv:96.534v2 [physics.ins-det] 2 Jul 29 Abstract T. Dafni a, E. Ferrer-Ribas b, I. Giomataris

More information

First Results from the CAST Experiment

First Results from the CAST Experiment First Results from the CAST Experiment IKP/Technische Universität-Darmstadt CEA, Saclay Outline The CAST experiment: Motivation Description The first results of CAST 2003 2004 What follows The CERN Axion

More information

arxiv: v1 [physics.ins-det] 23 Oct 2007

arxiv: v1 [physics.ins-det] 23 Oct 2007 1 arxiv:0710.4279v1 [physics.ins-det] 23 Oct 2007 The SuperNEMO double beta decay experiment I. Nasteva on behalf of the SuperNEMO Collaboration School of Physics and Astronomy, University of Manchester,

More information

Detecting low energy recoils with Micromegas

Detecting low energy recoils with Micromegas Detecting low energy recoils with Micromegas Giomataris Ioannis, DAPNIA-Saclay Principle, performance Low threshold results Axion-WIMP search, polarimetry Large gaseous TPC Conclusions 1 40 kv/cm 1 kv/cm

More information

NEXT ELECTROLUMINESCENCE READOUT

NEXT ELECTROLUMINESCENCE READOUT IFIC - INSTITUTO DE FISICA CORPUSCULAR NEXT ELECTROLUMINESCENCE READOUT Igor Liubarsky Instituto de Fisica Corpuscular CONTENTS Why do it Neutrinoless Double Beta Decay Neutrino Experiments with Xe TPC

More information

The GERmanium Detector Array

The GERmanium Detector Array The GERmanium Detector Array n n ν=v p e - e - p Outline: Exp. issues of 0νββ-decay of 76 Ge Concept of GERDA Status of the experiment Summary and conclusions Kevin Kröninger (Max-Planck-Institut für Physik,

More information

Background optimization for a new spherical gas detector for very light WIMP detection

Background optimization for a new spherical gas detector for very light WIMP detection Background optimization for a new spherical gas detector for very light WIMP detection a, I. Giomataris b, G. Gerbier b, J. Derré b, M. Gros b, P. Magnier b, D. Jourde b, E.Bougamont b, X-F. Navick b,

More information

A new detector for neutron beam monitoring

A new detector for neutron beam monitoring A new detector for neutron beam monitoring European Organization for Nuclear Research (CERN), Geneva, Switzerland in collaboration with Commissariat à l Energie Atomique (CEA), Saclay, France, Instituto

More information

AXION theory motivation

AXION theory motivation CERN Axion Solar Telescope (CAST) Igor G. Irastorza, CEA/Saclay (for the CAST collaboration) Symposium on Detector Developments for Particle, Astroparticle and Synchrotron Radiation Experiments SLAC, Stanford,

More information

NEMO-3 latest results

NEMO-3 latest results NEMO-3 latest results Thibaud Le Noblet LAPP On behalf of the NEMO collaboration GdR neutrino 29-30 mai 2017 - APC Outline Neutrinoless double beta decay Tracker-calorimeter technique NEMO-3 detector Latest

More information

The Majorana Neutrinoless Double-Beta Decay Experiment

The Majorana Neutrinoless Double-Beta Decay Experiment The Majorana Neutrinoless Double-Beta Decay Experiment A proposed detector to search for neutrinoless double-beta decay Reyco Henning Lawrence Berkeley National Laboratory for the Majorana Collaboration

More information

mean free path stopping power absorption coefficient detected recoil rate detected 0νββ events

mean free path stopping power absorption coefficient detected recoil rate detected 0νββ events mean free path stopping power absorption coefficient detected recoil rate detected 0νββ events The T-REX Project: in Rare-Event searches, top0logy can be the key: merge MPGDs (Micromegas) with low-background

More information

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik, Outline Neutrinos

More information

Status and Perspectives of the COBRA-Experiment

Status and Perspectives of the COBRA-Experiment Status and Perspectives of the COBRA-Experiment Jan Tebrügge for the COBRA Collaboration Status and Perspectives of the COBRA-Experiment Jan Tebrügge beta decays for thedouble COBRA Collaboration CdZnTe

More information

a step forward exploring the inverted hierarchy region of the neutrino mass

a step forward exploring the inverted hierarchy region of the neutrino mass a step forward exploring the inverted hierarchy region of the neutrino mass Maria Martinez (U. La Sapienza, Rome) on behalf of the CUPID-0 collaboration 28th Rencontres de Blois, May 29 - June 03 (2016)

More information

Light dark matter search with a spherical proportional counter

Light dark matter search with a spherical proportional counter Light dark matter search with a spherical proportional counter I. Giomataris, CEA-Irfu-France NEWS (New Experiment for Wimps with Sphere) Main goal: search for ultra-light WIMP 100 MeV 10 GeV Using the

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

Radiopurity of Micromegas readout planes

Radiopurity of Micromegas readout planes Radiopurity of Micromegas readout planes S. Cebrián, T. Dafni, E. Ferrer-Ribas, J. Galán, I. Giomataris, H. Gómez, F.J. Iguaz, I.G. Irastorza, G. Luzón, R. De Oliveira, et al. To cite this version: S.

More information

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall Neutrinoless Double Beta Decay Phys 135c Spring 2007 Michael Mendenhall Theory Overview neutrino Lagrangian ν c iγ 2 γ 0 ν T L ν = M D [ν R ν L + ν c LνR] c }{{} + M L [ν c Lν L + ν L νl] c + M R [ν c

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo Hyon-Suk Jo Center for Underground Physics Institute for Basic Science INPC 2016 - Adelaide Convention Centre, Australia

More information

How can we search for double beta decay? Carter Hall University of Maryland

How can we search for double beta decay? Carter Hall University of Maryland How can we search for double beta decay? Carter Hall University of Maryland 1 Neutrinoless Double Beta Decay (ββ0ν) Forbidden if neutrino mass is Dirac only N(Z,A) N(Z+2,A)e - e - e L - 2n W-W- ν R +εν

More information

Latest results of CAST and future prospects. Theodoros Vafeiadis On behalf of the CAST collaboration

Latest results of CAST and future prospects. Theodoros Vafeiadis On behalf of the CAST collaboration Latest results of CAST and future prospects Theodoros Vafeiadis On behalf of the CAST collaboration Contents Axions CAST Detection principle Scientific program Experimental layout Detectors Micromegas

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

Background Free Search for 0 Decay of 76Ge with GERDA

Background Free Search for 0 Decay of 76Ge with GERDA Background Free Search for 0 Decay of 76Ge with GERDA Victoria Wagner for the GERDA collaboration Max-Planck-Institut für Kernphysik Rencontres de Moriond, Electro Weak La Thuile, March 24 2017 The GERDA

More information

A novel large-volume Spherical Detector with Proportional Amplification read-out

A novel large-volume Spherical Detector with Proportional Amplification read-out A novel large-volume Spherical Detector with Proportional Amplification read-out I. Giomataris 1, I. Irastorza 2, I. Savvidis 3, S. Andriamonje 1, S. Aune 1, M. Chapelier 1, Ph. Charvin 1, P. Colas 1,

More information

The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radiopurity issues.

The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radiopurity issues. The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radiopurity issues. 1 Universidad Autónoma de Madrid Instituto de Física Teórica UAM/CSIC 28049 Cantoblanco

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection

TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 015) IOP Publishing Journal of Physics: Conference Series 718 (016) 0406 doi:.88/174-6596/718/4/0406 TREX-DM: a low

More information

Chung-Yao Chao Fellowship Interview

Chung-Yao Chao Fellowship Interview Chung-Yao Chao Fellowship Interview Shaobo WANG Shanghai Jiao Tong University, China April 24, 2017 Supervisor: Prof. Xiangdong JI Dr. Ke HAN 1 Outlines Resume: Education Internship Previous Work and Achievements:

More information

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott Davis Fermi Pauli Dirac Majorana Pontecorvo Reines Koshiba Goeppert-Mayer Experimental Double Beta Decay Outline Experimental issues Upcoming experiments Conclusion Example Decay Scheme 2-76 As 0+ 76 Ge

More information

-> to worldwide experiments searching for neutrinoless double beta decay

-> to worldwide experiments searching for neutrinoless double beta decay From Baksan to -> A.Smolnikov International Session-Conference of RAS "Physics of fundamental interactions dedicated to 50th anniversary of Baksan Neutrino Observatory, Nalchik, Russia, June 6-8, 2017

More information

Neutron imaging with a Micromegas detector

Neutron imaging with a Micromegas detector Neutron imaging with a Micromegas detector S Andriamonje A, V. Dangendorf B, I. Espagnon C, H. Friedrich B, A. Giganon A, I. Giomataris A, F. Jeanneau C *, R. Junca C, A. Menelle D, J. Pancin A, A. Pluquet

More information

cryogenic calorimeter with particle identification for double beta decay search

cryogenic calorimeter with particle identification for double beta decay search cryogenic calorimeter with particle identification for double beta decay search Cuore Upgrade with Particle IDentification In the middle of 2015 INFN decided to support CUPID activity to develop: CUPID-0:

More information

PoS(HQL2018)054. Search for 0νββ Decay with EXO-200 and nexo. Guofu Cao 1. On behalf of EXO-200 and nexo collaboration

PoS(HQL2018)054. Search for 0νββ Decay with EXO-200 and nexo. Guofu Cao 1. On behalf of EXO-200 and nexo collaboration 1 Institute of High Energy Physics 19B Yuquan Road, Shijingshan District, Beijing 100049, China E-mail: caogf@ihep.ac.cn On behalf of EXO-200 and nexo collaboration The search for neutrinoless double beta

More information

Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay

Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay Prepared for submission to JCAP arxiv:1512.7926v1 [physics.ins-det] 24 Dec 215 Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay I. G. Irastorza,

More information

Prospects for 0-ν ββ Search with a High-Pressure Xenon Gas TPC. What s NEXT?

Prospects for 0-ν ββ Search with a High-Pressure Xenon Gas TPC. What s NEXT? Prospects for 0-ν ββ Search with a High-Pressure Xenon Gas TPC What s NEXT? David Nygren LBNL INT Nu Mass February 2010 1 INT Nu Mass February 2010 2 Xenon for 0 ν ββ Only inert gas with a 0 ν ββ candidate

More information

New results of CUORICINO on the way to CUORE

New results of CUORICINO on the way to CUORE New results of CUORICINO on the way to CUORE Laboratori Nazionali del Gran Sasso of INFN On behalf of the CUORE Collaboration The CUORE experiment CUORE (Cryogenic Underground Observatory for Rare Events)

More information

Searching for neutrino- less double beta decay with EXO- 200 and nexo

Searching for neutrino- less double beta decay with EXO- 200 and nexo Searching for neutrino- less double beta decay with EXO- 200 and nexo Andrea Pocar University of Massachusetts, Amherst on behalf of the EXO-200 and nexo collaborations The EXO- 200 Collaboration 2 The

More information

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events CUORE (Cryogenic Underground Osservatory for Rare Events) and CUORICINO E.Fiorini, Neutrino 2004 Paris, June 17, 2004 For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear

More information

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration) SuperNEMO Double Beta Decay Experiment A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration) 1 OUTLINE NEMO-3 SuperNEMO DEMONSTRATOR: present status and plans for the future 2 NEMO-3 Collaboration

More information

An InGrid based Low Energy X-ray Detector for the CAST Experiment

An InGrid based Low Energy X-ray Detector for the CAST Experiment An InGrid based Low Energy X-ray Detector for the CAST Experiment, a Klaus Desch, a Jochen Kaminski, a Michael Lupberger a and Theodoros Vafeiadis b a University of Bonn, Germany b CERN E-mail: krieger@physik.uni-bonn.de

More information

Excited State Transitions in Double Beta Decay: A brief Review

Excited State Transitions in Double Beta Decay: A brief Review Excited State Transitions in Double Beta Decay: A brief Review Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15) Dresden 26/08/2014 Björn Lehnert Institut für

More information

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search Kiseki Nakamura Kobe university for the AXEL collaboration PMT AXEL experiment High pressure xenon gas TPC for

More information

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon Institute for Nuclear and Particle Astrophysics Nuclear Science Division 1 Outline Introduction - 0νββ decay (see Agostini s

More information

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012 LUCIFER Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 212 Neutrino nature Except for the total leptonic number the neutrino is a neutral fermion. So if the total leptonic number is

More information

PROJECT STATUS AND PERSPECTIVES

PROJECT STATUS AND PERSPECTIVES COBRA CdZnTe 0-NEUTRINO BETA-BETA RESEARCH APPARATUS PROJECT STATUS AND PERSPECTIVES DATE JULY 28, 2011 BY JERRAD MARTIN Agenda Introduction to COBRA Past Results Status of Current R&D PROJECT STATUS AND

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION

THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION THE NEXT EXPERIMENT FOR NEUTRINOLESS DOUBLE BETA DECAY SEARCHES ANDER SIMÓN ESTÉVEZ ON BEHALF OF THE NEXT COLLABORATION 2 OUTLOOK NEXT: Neutrino Experiment with a Xenon TPC R&D Phase NEW Detector design

More information

An active-shield method for the reduction of surface contamination in CUORE

An active-shield method for the reduction of surface contamination in CUORE An active-shield method for the reduction of surface contamination in CUORE Marisa Pedretti on behalf of CUORE Collaboration INFN - Milano Università degli Studi dell Insubria Outline of the talk Introduction

More information

Double Beta Present Activities in Europe

Double Beta Present Activities in Europe APPEAL Workshop 19-21 February 2007, Japan Double Beta Present Activities in Europe Xavier Sarazin Laboratoire de l Accélérateur Linéaire Orsay France Germanium detector Bolometers CdZnTe semiconductors

More information

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal 25 International Linear Collider Workshop - Stanford, U.S.A. Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal A. Bellerive, K. Boudjemline, R. Carnegie, M. Dixit, J. Miyamoto,

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

Investigation and development of the suppression methods of the 42 K background in LArGe

Investigation and development of the suppression methods of the 42 K background in LArGe bb G E R D A Investigation and development of the suppression methods of the 42 K background in LArGe A.V. Lubashevskiy on behalf of GERDA collaboration, Max-Planck-Institut für Kernphysik, Heidelberg.

More information

First results on neutrinoless double beta decay of 82 Se with CUPID-0

First results on neutrinoless double beta decay of 82 Se with CUPID-0 First results on neutrinoless double beta decay of 82 Se with CUPID-0 Lorenzo Pagnanini on behalf of the CUPID-0 collaboration 30 th Rencontres de Blois CUPID: a next generation experiment CUPID (CUORE

More information

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment Physikalisches Institut Kepler Center for Astro and Particle Physics : a test facility for the characterization of BEGe detectors for the GERDA experiment Raphael Falkenstein for the GERDA collaboration

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A. Recent results in n physics Neutrinos

More information

A proposal to study gas gain fluctuations in Micromegas detectors

A proposal to study gas gain fluctuations in Micromegas detectors A proposal to study gas gain fluctuations in Micromegas detectors M. Chefdeville 15/05/2009 We present two methods to measure gas gain fluctuations in Micromegas detectors and the experimental setup that

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

Prospects for kev-dm searches with the GERDA experiment

Prospects for kev-dm searches with the GERDA experiment Physik-Institut Prospects for kev-dm searches with the GERDA experiment Roman Hiller for the GERDA collaboration 29/03/2017 Page 1 GERDA concept Cleanroom Lock systen Enriched 76 Ge detectors Cryostat

More information

IPRD 2016 IPRD Light Dark Matter searches at LSM, Modane and SNOLab. Ioannis KATSIOULAS CEA, Saclay / IRFU / SEDI.

IPRD 2016 IPRD Light Dark Matter searches at LSM, Modane and SNOLab. Ioannis KATSIOULAS CEA, Saclay / IRFU / SEDI. IPRD 2016 IPRD 2016 Light Dark Matter searches at LSM, Modane and SNOLab Ioannis KATSIOULAS CEA, Saclay / IRFU / SEDI ioannis.katsioulas@cea.fr New Experiments With Spheres AIM: Search for WIMPs in the

More information

arxiv: v1 [astro-ph.im] 6 Dec 2010

arxiv: v1 [astro-ph.im] 6 Dec 2010 arxiv:12.1166v1 [astro-ph.im] 6 Dec 20 MIMAC: A micro-tpc matrix for directional detection of dark matter, J. Billard, G. Bosson, O. Bourrion, C. Grignon, O. Guillaudin, F. Mayet, J.P. Richer LPSC, Universite

More information

Status of Cuore experiment and last results from Cuoricino

Status of Cuore experiment and last results from Cuoricino Status of Cuore experiment and last results from Cuoricino on behalf of the Cuore collaboration Istituto Nazionale di Fisica Nucleare, Genova E-mail: elena.guardincerri@ge.infn.it CUORE is a cryogenic-bolometer

More information

Search for Majorana neutrinos and double beta decay experiments

Search for Majorana neutrinos and double beta decay experiments Search for Majorana neutrinos and double beta decay experiments Xavier Sarazin Laboratoire de l Accélérateur Linéaire (CNRS-IN2P3, Univ. Paris-Sud 11) Majorana Neutrino Neutrino is the only fermion with

More information

The NEXT double beta decay experiment

The NEXT double beta decay experiment Journal of Physics: Conference Series PAPER OPEN ACCESS The NEXT double beta decay experiment To cite this article: A Laing and NEXT Collaboration 216 J. Phys.: Conf. Ser. 718 6233 Related content - Radiopurity

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 Par$cle and Neutrino Physics Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 1 SNOWMASS on the Mississippi Community study 2013 for the high energy community 10 year plan

More information

Spatial resolution of a MPGD TPC using the charge dispersion signal

Spatial resolution of a MPGD TPC using the charge dispersion signal Spatial resolution of a MPGD TPC using the charge dispersion signal Madhu Dixit Carleton University & TRIUMF Carleton University University of Montreal LAL Orsay CEA Saclay A. Bellerive, K. Boudjemline,

More information

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches K. Zuber, Techn. Univ. Dresden Status of double beta decay searches How to explain everything about double beta in 45 mins Cocoyoc, 6.1.2009 Contents General introduction Experimental considerations GERDA

More information

ACTAR TPC: an active target and time projection chamber for nuclear physics

ACTAR TPC: an active target and time projection chamber for nuclear physics ACTAR TPC: an active target and time projection chamber for nuclear physics 1 Nuclear structure through transfer reactions Past: structure of nuclei close to stability in direct kinematics, use of magnetic

More information

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA This work was performed under the auspices of the U.S. Department of Energy by

More information

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

The LZ Experiment Tom Shutt SLAC. SURF South Dakota The LZ Experiment Tom Shutt SLAC SURF South Dakota 1 LUX - ZEPLIN 31 Institutions, ~200 people 7 ton LXe TPC ( tons LXe total) University of Alabama University at Albany SUNY Berkeley Lab (LBNL), UC Berkeley

More information

X-ray detectors of the CAST experiment

X-ray detectors of the CAST experiment Home Search Collections Journals About Contact us My IOPscience X-ray detectors of the CAST experiment This content has been downloaded from IOPscience. Please scroll down to see the full text. (http://iopscience.iop.org/1748-0221/9/03/c03047)

More information

arxiv: v1 [physics.ins-det] 20 Dec 2017

arxiv: v1 [physics.ins-det] 20 Dec 2017 Prepared for submission to JINST LIDINE 2017: LIght Detection In Noble Elements 22-24 September 2017 SLAC National Accelerator Laboratory arxiv:1712.07471v1 [physics.ins-det] 20 Dec 2017 Radon background

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: November 18, 2017 Columbia University Science Honors Program 3 evidences for 3 neutrinos 2 3 neutrinos: 3 charged leptons Neutrinos are

More information

Direct Dark Matter and Axion Detection with CUORE

Direct Dark Matter and Axion Detection with CUORE Direct Dark Matter and Axion Detection with CUORE Europhysics Conference on High-Energy Physics 2011 Cecilia G. Maiano on behalf of CUORE collaboration Contents The Bolometric Technique The CUORE experiment

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Weak Interactions and Neutrinos Natal, September 19 2013 Neutrinoless double

More information

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope) DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope) I. Štekl (IEAP CTU in Prague) on behalf of TGV collaboration CSNSM Orsay, France CU

More information

next The NEXT double beta decay experiment Andrew Laing, IFIC (CSIC & UVEG) on behalf of the NEXT collaboration. TAUP2015, Torino, 8/09/2015

next The NEXT double beta decay experiment Andrew Laing, IFIC (CSIC & UVEG) on behalf of the NEXT collaboration. TAUP2015, Torino, 8/09/2015 a next The NEXT double beta decay experiment Andrew Laing, IFIC (CSIC & UVEG) on behalf of the NEXT collaboration. TAUP2015, Torino, 8/09/2015 NEXT: A light TPC ENERGY PLANE (PMTs) TPB coated surfaces

More information

The GERDA Phase II detector assembly

The GERDA Phase II detector assembly The GERDA Phase II detector assembly Tobias Bode 1, Carla Cattadori 2, Konstantin Gusev 1, Stefano Riboldi 2, Stefan Schönert 1, Bernhard Schwingenheuer 3 und Viktoria Wagner 3 for the GERDA collaboration

More information

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis Dominique Trischuk, Alain Bellerive and George Iakovidis IPP CERN Summer Student Supervisor August 216 Abstract The

More information

Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial

Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial IPPP-Imperial meeting, 28.05.2009 Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial Double beta decay basic statements (A,Z) (A,Z+1) Q ββ (A,Z+2) ββ2ν: allowed

More information

Neutrinoless Double-Beta Decay

Neutrinoless Double-Beta Decay Neutrinoless Double-Beta Decay Michal Tarka Stony Brook University ELBA XIV, 27 June 2016 Outline Neutrinoless double-beta decay (0νββ) Historical background & Motivation Neutrino masses Overview of (2νββ

More information

Rencontres de Moriond 2008

Rencontres de Moriond 2008 Solar axion search with the CAST experiment S. Borghi 1 a b, E. Arik 17 c d, S. Aune 2, D. Autiero 1 e, K. Barth 1, A. Belov, B. Beltrán 5 f, G. Bourlis g, F. S. Boydag 17 d, H. Bräuninger 4, G. Cantatore

More information

Recent Results and Status of EXO-200 and the nexo Experiment

Recent Results and Status of EXO-200 and the nexo Experiment Recent Results and Status of EXO-200 and the nexo Experiment, for the EXO-200 and nexo Collaborations Physics Department, Carleton University, Ottawa, ON, Canada E-mail: licciard@physics.carleton.ca The

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Welcome to neutrino nuclear physics

Welcome to neutrino nuclear physics Welcome to neutrino nuclear physics 3. Double Beta Decays & Neutrinos Perspectives of ββ Experiments-- Hiro Ejiri, JASRI Spring-8; RCNP Osaka Univ. TIT April 2003 Contents I. Perspectives of ββ Experiments

More information

Search for Neutrinoless Double- Beta Decay with CUORE

Search for Neutrinoless Double- Beta Decay with CUORE Search for Neutrinoless Double- Beta Decay with CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Jan. 14, 2014, WIDG Seminar, Yale University What we (don t) know about Neutrinos Neutrino Mass

More information

arxiv: v3 [physics.ins-det] 19 Sep 2017

arxiv: v3 [physics.ins-det] 19 Sep 2017 Neutron spectroscopy with the Spherical Proportional Counter based on nitrogen gas arxiv:1512.04346v3 [physics.ins-det] 19 Sep 2017 E. Bougamont a, A. Dastgheibi a,d, J. Derre a, J. Galan a, G. Gerbier

More information

arxiv: v1 [physics.ins-det] 10 May 2011

arxiv: v1 [physics.ins-det] 10 May 2011 Preprint typeset in JINST style - HYPER VERSION Micromegas detector developments for Dark Matter directional detection with MIMAC arxiv:115.256v1 [physics.ins-det] 1 May 211 F.J. Iguaz a, D. Attié a, D.

More information

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters Yong-Hamb Kim On behalf of AMoRE collaboration Institute for Basic Science (IBS) Korea Research Institute for Standards and Science

More information

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal Madhu Dixit Carleton University & TRIUMF Carleton A. Bellerive K. Boudjemline R. Carnegie M. Dixit J. Miyamoto H. Mes E. Neuheimer

More information