Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy (SECPM)

Size: px
Start display at page:

Download "Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy (SECPM)"

Transcription

1 Presented at the COMSOL Conference 2009 Milan Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy (SECPM) R. Fayçal Hamou MaxPlanckInstitut für Eisenforschung GmbH Interface Chemistry and Surface Engineering Department Atomistic Modeling Group (AMG) 1

2 V e V IHP 2 0

3 Experimental techniques Atomic force microscopy Scanning tunneling microscopy Scanning electrochemical microscopy : ECSTM, SECPM Allow electrochemists to learn more about the structure of the double layer at the atomic level. On the theoretical side, the new numerical methods of calculations provide a possibility to simulate, all the changes within the double layer. 3

4 Scanning Electrochemical Potential Microscopy (SECPM) Probing the potential profile of the EDL SECPM :Patented in

5 SECPM probe EDL Potential Profiling Electrolyte Electrode 5

6 Previous experimental results Potential profile In the SECPM experiments presented here, the decay length of the potential profile was always smaller than the Debye length from the Gouy Chapman Stern theory Debye length depends on the applied potential. Cedric Hurth; Chunzeng Li; Allen J. Bard; J. Phys. Chem. C 2007, 111,

7 SECPM probe Scanning electron micrographs of a PtIr tip prepared by the procedure described earlier in the text. at low (a) and high (b) magnification. PhD Thesis C. M. Hurth 2005 under the supervision of Prof. Allen J. Bard, The University of Texas at Austin 7

8 SECPM simulation Metallic probe Coating Electrolyte Electrode Metallic apex Using the PoissonBoltzmann for simulating the EDL (by including a Stern layer) Poisson equation to model the dielectric coating Suitable boundaries, Moving mesh, time dependent simulation: Probe moving at 10 nm/s Using Comsol Multiphysics software 8

9 3D distribution of the electric field and potential 9

10 Effect of the metallic apex geometry : protruding probe Length protrusion effect 15 nm 23 nm Geometry 1 Geometry 2 11 nm Geometry 3 Quasi flat surface 2.5nm 10

11 11

12 12

13 13

14 Effect of the metallic apex geometry : protruding probe 14

15 Effect of the metallic apex geometry : protruding probe Potential profile between the Probe and the electrode for different separation distances. 15

16 Effect of the metallic apex geometry : protruding probe Geometry 2 Geometry 1 Surface charge density on the metallic protrusion 16

17 Effect of the exposed metallic surface r=8nm r=15nm r=22nm r=60nm r=30nm 17

18 18

19 19

20 Effect of the exposed metallic surface Variation of the electric flux passing through the exposed metallic tip during the approach 20

21 Effect of the exposed metallic surface Variation of the tip surface charge density during the approach 21

22 The effect of the Open Circuit Potential: Positively charged 22

23 The effect of the Open Circuit Potential: Positively charged ocp=0.148 V 23

24 The effect of the Open Circuit Potential: Positively charged ocp=0.046 V 24

25 The effect of the Open Circuit Potential: Positively charged 25

26 The effect of the Open Circuit Potential: Positively charged 26

27 The effect of the Open Circuit Potential: Positively charged 27

28 The effect of the Open Circuit Potential: Positively charged 28

29 The effect of the Open Circuit Potential: Positively charged 29

30 The effect of the Open Circuit Potential: Positively charged 30

31 The effect of the Open Circuit Potential: Positively charged Variation of the electric flux passing through the exposed metallic tip during the approach 31

32 The effect of the Open Circuit Potential: Positive charge Variation of the tip surface charge density during the approach 32

33 The effect of the Open Circuit Potential: Negatively charged ocp=0.149 V 33

34 The effect of the Open Circuit Potential: Negatively charged ocp=0.149 V 34

35 The effect of the Open Circuit Potential: Negatively charged ocp=0.045 V 35

36 The effect of the Open Circuit Potential: Negatively charged 36

37 The effect of the Open Circuit Potential: Negatively charged 37

38 The effect of the Open Circuit Potential: Negatively charged 38

39 The effect of the Open Circuit Potential: Negatively charged 39

40 The effect of the Open Circuit Potential: Negatively charged 40

41 The effect of the Open Circuit Potential: Negatively charged 41

42 The effect of the Open Circuit Potential: Negatively charged Variation of the electric flux passing through the exposed metallic tip during the approach 42

43 The effect of the Open Circuit Potential: Negatively charged Variation of the tip surface charge density during the approach 43

44 Conclusion In this investigation it was shown that the tip geometry has an influence on the probed potential. A sharp protrusion distorts the charge distribution, which can effect the probed potential considerably. A clear electrostatic screening effects was observed in probing the double layer. This effect depends on the strength of the double layer at the probe. This simulation will be extended for the surface potential mapping in order to comprehend better the importance of the effects mentioned above. 44

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Supporting Information The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy The Hydrogen Evolution Reaction for

More information

Simulating the Electrical Double Layer Guigen Zhang, Ph.D.

Simulating the Electrical Double Layer Guigen Zhang, Ph.D. Presented at the COMSOL Conference Boston Simulating the Electrical Double Layer Guigen Zhang, Ph.D. Dept. of Bioengineering, Dept. of Electrical & Computer Engineering Institute for Biological Interfaces

More information

Probing into the Electrical Double Layer Using a Potential Nano-Probe

Probing into the Electrical Double Layer Using a Potential Nano-Probe A3 Foresight Program, 2. 27-3. 1, 26 Probing into the Electrical Double Layer Using a Potential Nano-Probe Heon Kang ( 姜憲 ) Department of Chemistry, Seoul National University, Republic of Korea (E-mail:

More information

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze Presented at the COMSOL Conference 009 Milan Classical Models of the Interface between an Electrode and Electrolyte M.Sc. Ekaterina Gongadze Faculty of Informatics and Electrical Engineering Comsol Conference

More information

Direct Probing of Electrical Double Layers by Scanning Electrochemical Potential Microscopy

Direct Probing of Electrical Double Layers by Scanning Electrochemical Potential Microscopy 4620 J. Phys. Chem. C 2007, 111, 4620-4627 Direct Probing of Electrical Double Layers by Scanning Electrochemical Potential Microscopy Cedric Hurth, Chunzeng Li, and Allen J. Bard*, Department of Chemistry

More information

Real-Space Investigation of Electrical Double Layers. Potential Gradient Measurement with a Nanometer Potential Probe

Real-Space Investigation of Electrical Double Layers. Potential Gradient Measurement with a Nanometer Potential Probe pubs.acs.org/jpcc Real-Space Investigation of Electrical Double Layers. Potential Gradient Measurement with a Nanometer Potential Probe Young-Hwan Yoon, Dae-Ha Woo, Taeho Shin, Taek Dong Chung,* and Heon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters Markus Nesselberger 1, Melanie Roefzaad 1, R. Fayçal Hamou 2, P. Ulrich Biedermann 2, Florian F. Schweinberger

More information

Supporting Information

Supporting Information Supporting Information Detection of CO2 in the Electrochemical Reduction of Carbon Dioxide in DMF by Scanning Electrochemical Microscopy Tianhan Kai, Min Zhou, Zhiyao Duan, Graeme A. Henkelman, Allen J.

More information

1044 Lecture #14 of 18

1044 Lecture #14 of 18 Lecture #14 of 18 1044 1045 Q: What s in this set of lectures? A: B&F Chapter 13 main concepts: Section 1.2.3: Diffuse double layer structure Sections 13.1 & 13.2: Gibbs adsorption isotherm; Electrocapillary

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure S1. Change in open circuit potential ( OCP) of 1% W-doped BiVO 4 photoanode upon illumination with different light intensities. Above

More information

Nanotechnology in Biological Engineering II

Nanotechnology in Biological Engineering II Nanotechnology in Biological Engineering II THE EFFECT OF ELECTRICAL DOUBLE LAYER ON THE ELECTROCHEMICAL PROCESSES OF NANOMETER INTERDIGITATED ELECTRODES Xiaoling Yang 1 and Guigen Zhang 1,2,3 1 Micro/Nano

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE)

Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE) Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE) Emilio RuizReina 1, Félix Carrique 2, Ángel Delgado 3, María del Mar Fernández 3 1 Department of Applied Physics

More information

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Supporting Information In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy Mohsin A Bhat, #, Nikoloz Nioradze,

More information

957 Lecture #13 of 18

957 Lecture #13 of 18 Lecture #13 of 18 957 958 Q: What was in this set of lectures? A: B&F Chapter 2 main concepts: Section 2.1 : Section 2.3: Salt; Activity; Underpotential deposition Transference numbers; Liquid junction

More information

Electrolyte Concentration Dependence of Ion Transport through Nanochannels

Electrolyte Concentration Dependence of Ion Transport through Nanochannels Electrolyte Concentration Dependence of Ion Transport through Nanochannels Murat Bakirci mbaki001@odu.edu Yunus Erkaya yerka001@odu.edu ABSTRACT The magnitude of current through a conical nanochannel filled

More information

Charging Kinetics of Micropores in Supercapacitors

Charging Kinetics of Micropores in Supercapacitors Clemson University TigerPrints All Theses Theses 5-2012 Charging Kinetics of Micropores in Supercapacitors Daniel Oberklein Clemson University, dfoberklein@roadrunner.com Follow this and additional works

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Raman spectroscopy of CVD graphene on SiO 2 /Si substrate. Integrated Raman intensity maps of D, G, 2D peaks, scanned across the same graphene area. Scale

More information

Analysis of Geometrical Aspects of a Kelvin Probe

Analysis of Geometrical Aspects of a Kelvin Probe Analysis of Geometrical Aspects of a Kelvin Probe Stefan Ciba 1, Alexander Frey 2 and Ingo Kuehne* 1 1 Heilbronn University, Institute for Fast Mechatronic Systems (ISM), Kuenzelsau, Germany 2 University

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Bruno Bastos Sales, Joost Helsen and Arne Verliefde

Bruno Bastos Sales, Joost Helsen and Arne Verliefde FEM modeling of capacitive deionization for complex streams Dennis Cardoen Bruno Bastos Sales, Joost Helsen and Arne Verliefde International Conference on Numerical and Mathematical ing of Flow and Transport

More information

Capacitive properties of a gold/electrolyte interface

Capacitive properties of a gold/electrolyte interface Capacitive properties of a gold/electrolyte interface Lab Course Manual Physik E19 (AG Krischer), Technische Universität München Abstract When metals are brought together with electrolytes, many interesting

More information

Supplementary Figure 1. AFM scan of DPTAP bilayers. Supplementary Figure 2. Nanopipette geometry used for FEM simulations.

Supplementary Figure 1. AFM scan of DPTAP bilayers. Supplementary Figure 2. Nanopipette geometry used for FEM simulations. Supplementary Figure 1. AFM scan of DPTAP bilayers. (a) Topography image with distinct single, double and triple layer structures. (b) Line profile corresponding to the line in (a) of a single bilayer

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates WDS' Proceedings of Contributed Papers, Part II, 5 9,. ISBN 978-8-778-85-9 MATFYZPRESS The Computational Simulation of the Positive Ion Propagation to Uneven Substrates V. Hrubý and R. Hrach Charles University,

More information

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Bernhard Roling Institute of Physical Chemistry and Collaborative Research

More information

Non-Faradaic Impedance Characterization of an

Non-Faradaic Impedance Characterization of an Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Non-Faradaic Impedance Characterization of an Evaporating Droplet

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: In-situ measurement of electric-field screening in hysteresis-free PTAA/ FA.83 Cs.7 Pb(I.83 Br.7 ) 3 /C6 perovskite solar cells gives an ion mobility of ~3 x -7 cm /Vs; to

More information

Poisson equation based modeling of DC and AC electroosmosis

Poisson equation based modeling of DC and AC electroosmosis COMSOL Conference Prague 2006 Page 1 Poisson equation based modeling of DC and AC electroosmosis Michal Přibyl & Dalimil Šnita Institute of Chemical Technology, Prague, Czech Republic Department of Chemical

More information

Electrostatic Double Layer Force: Part III

Electrostatic Double Layer Force: Part III NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 4 Electrostatic Double Layer Force: Part III Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati

More information

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 I INTRODUCTION Scanning ElectroChemical Microscopy (SECM) has the ability to provide spatially resolved, rather

More information

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

Nanoscale work function measurements by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Defects, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Work function, Surface activation, Catalysis Principle Scanning tunneling microscopy

More information

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Presented at the COMSOL Conference 2008 Boston Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Jarrod Schiffbauer *,1, Josh Fernandez 2,

More information

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Presented at the COMSOL Conference 2010 China Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Zhang Qianfan, Liu Yuwen, Chen Shengli * College of Chemistry and Molecular Science,

More information

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes Stephen J. Percival and

More information

Kevin C. Leonard and Allen J. Bard* INTRODUCTION

Kevin C. Leonard and Allen J. Bard* INTRODUCTION pubs.acs.org/jacs The Study of Multireactional Electrochemical Interfaces via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy: The Hydrogen Evolution Reaction for Mn in

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells

Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells Yifei Wang 1, S. R. Narayanan 2 and Wei Wu 1* 1 Ming Hsieh Department of Electrical Engineering, University

More information

Supporting Information File 1. Tunneling Ultramicroelectrode (T-UME): Nanoelectrodes and Nanoparticle Collisions

Supporting Information File 1. Tunneling Ultramicroelectrode (T-UME): Nanoelectrodes and Nanoparticle Collisions Supporting Information File 1 Tunneling Ultramicroelectrode (T-UME): Nanoelectrodes and Nanoparticle Collisions Jiyeon Kim, Byung-Kwon Kim, SungKi Cho and Allen J. Bard* Center for Electrochemistry, Department

More information

Scanning probe studies of the electrical activity at interfaces formed by silicon wafer direct bonding

Scanning probe studies of the electrical activity at interfaces formed by silicon wafer direct bonding phys. stat. sol. (c) 4, No. 8, 893 897 (007) / DOI 10.100/pssc.00675481 Scanning probe studies of the electrical activity at interfaces formed by silicon wafer direct bonding M. Ratzke *, 1,, O. Vyvenko

More information

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany INVESTIGATION OF ELECTRIC CONDITIONS IN THE VICINITY OF CARBON NANOTUBES GROWN IN A DC PLASMA SHEATH J. Blažek a, P. Špatenka b, Ch. Taeschner c, A. Leonhardt c a University of South Bohemia, Department

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany Supporting information: Stability limits of tin-based electrocatalyst supports Simon Geiger a,*, Olga Kasian a, Andrea M. Mingers a, Karl J. J. Mayrhofer a,b,c, Serhiy Cherevko a,b,* a Department of Interface

More information

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL D. Wijesinghe 1, and D. Nawarathna *1 1 Department of Electrical and Computer Engineering, North Dakota State

More information

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S.

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. REPORT ON SCANNING TUNNELING MICROSCOPE Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. Bobji Submitted by Ankush Kumar Jaiswal (09371) Abhay Nandan (09301) Sunil

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE

Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE z Chapter-II CHEMISTRY OF PHOTOELECTRODE- ELECTROLYTE INTERFACE 2.1 Introduction In recent years, semiconductor-electrolyte cells have been attracting a great deal of interest in the field of solar energy

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 014 Supplementary Information for High Resolution Mapping of Oxygen Reduction Reaction

More information

Charging and Transport Dynamics of a Flow-

Charging and Transport Dynamics of a Flow- Charging and Transport Dynamics of a Flow- Through Electrode Capacitive Deionization System Supporting information Yatian Qu, a,b Patrick G. Campbell, b Ali Hemmatifar, a Jennifer M. Knipe, b Colin K.

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Diffuse-charge effects on the transient response of electrochemical cells

Diffuse-charge effects on the transient response of electrochemical cells Diffuse-charge effects on the transient response of electrochemical cells M. van Soestbergen,,2 P. M. Biesheuvel, 3 and M. Z. Bazant 4 Materials Innovation Institute, Mekelweg 2, 2628 CD Delft, The Netherlands

More information

Structure and charging kinetics of electrical double layers at large electrode voltages

Structure and charging kinetics of electrical double layers at large electrode voltages Microfluid Nanofluid (21) 8:73 78 DOI 1.17/s144-9-542-2 SHORT COMMUNICATION Structure and charging kinetics of electrical double layers at large electrode voltages Clint Cagle Guang Feng Rui Qiao Jingsong

More information

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

Scanning Tunneling Microscopy: theory and examples

Scanning Tunneling Microscopy: theory and examples Scanning Tunneling Microscopy: theory and examples Jan Knudsen The MAX IV laboratory & Division of synchrotron radiation research K5-53 (Sljus) jan.knudsen@sljus.lu.se April 17, 018 http://www.sljus.lu.se/staff/rainer/spm.htm

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln What does double layer of IPE look like?-see Fig.1.2.3 Also called Electrified Inteface At no external E appl -- inner Stern layer or Inner Helmholz plane (IHP) contains mostly solvent solvent molecules

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Supporting Information. Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas. Phase with a Solid Membrane Cell

Supporting Information. Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas. Phase with a Solid Membrane Cell Supporting Information Electrochemical Vapor Deposition (E-CVD) of Semiconductors from Gas Phase with a Solid Membrane Cell Sung Ki Cho 1, Fu-Ren F. Fan, and Allen J. Bard * Center for Electrochemistry,

More information

Copyright. Joaquin Rodriguez Lopez

Copyright. Joaquin Rodriguez Lopez Copyright by Joaquin Rodriguez Lopez 2010 The Dissertation Committee for Joaquin Rodriguez Lopez Certifies that this is the approved version of the following dissertation: The Use of Scanning Electrochemical

More information

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites October 5-7, 2016, Boston, Massachusetts, USA Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites Tyler Stalbaum, Qi Shen, and Kwang J. Kim Active Materials

More information

Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve

Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve Int. J. Electrochem. Sci., 10 (015) 1-7 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Short communication On Asymmetric Shape of Electric Double Layer Capacitance Curve Aljaž

More information

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar Supporting Information 15 January, 2013 Ms. ID: ac-2012-03581b Parallel Screening of Electrocatalyst Candidates using Bipolar Electrochemistry Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and

More information

Scanning electrochemical microscopy (SECM) is a wellestablished

Scanning electrochemical microscopy (SECM) is a wellestablished pubs.acs.org/ac Electrophoretic Migration and Particle Collisions in Scanning Electrochemical Microscopy Aliaksei Boika and Allen J. Bard* Center for Electrochemistry, Department of Chemistry and Biochemistry,

More information

NTEGRA for EC PRESENTATION

NTEGRA for EC PRESENTATION NTEGRA for EC PRESENTATION Application Purpose: In-situ control/modification of the surface morphology of single crystal and polycrystal electrodes (samples) during electrochemical process (in situ) in

More information

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 0, 202 Comsol Conference Europe 202, Milan, CEA Italy 0 AVRIL 202 PAGE Excerpt from the Proceedings of the 202 COMSOL Conference in Milan SUMMARY

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator

3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator 3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator A. Majzoobi *, I. A. Joneidi, S. Mohajer, H.Mohseni, A. A. Shayegani High Voltage Lab,

More information

Surface Complexation.

Surface Complexation. Surface Complexation. Jean-François Gaillard, Notes for CE-367 OBJECTIVES To show how the presence of particles in natural and engineered systems controls the fate of many trace elements. The concepts

More information

Adaptive numerical simulation of Streamer. Shailendra Singh

Adaptive numerical simulation of Streamer. Shailendra Singh Adaptive numerical simulation of Streamer Shailendra Singh Tools: BDV from Drift diffusion calculation Motivation: Streamer criteria works very well in moderately uniform field. But in highly non uniform

More information

Figure S1 TEM image of nanoparticles, showing the hexagonal shape of the particles.

Figure S1 TEM image of nanoparticles, showing the hexagonal shape of the particles. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Au@Poly(acrylic acid) Plasmons and

More information

Modelling the Static and Dynamic Behaviour of Electrolytes: A Modified Poisson-Nernst-Planck Approach

Modelling the Static and Dynamic Behaviour of Electrolytes: A Modified Poisson-Nernst-Planck Approach Modelling the Static and Dynamic Behaviour of Electrolytes: A Modified Poisson-Nernst-Planck Approach A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Charged Interfaces & electrokinetic

Charged Interfaces & electrokinetic Lecture Note #7 Charged Interfaces & electrokinetic phenomena Reading: Shaw, ch. 7 Origin of the charge at colloidal surfaces 1. Ionization Proteins acquire their charge by ionization of COOH and NH 2

More information

Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations.

Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations. EUROPHYSICS LETTERS Europhys. Lett., 26 (2), pp. 103-107 (1994) 10 April 1994 Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations. V. KOUTSOS, E. MANIAS, G. TEN BRINKE and G.

More information

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Supporting Information Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Jun Hui Park, Scott N. Thorgaard, Bo Zhang, Allen J. Bard * Center for Electrochemistry,

More information

Simulation of Turbulent Flow of a Rotating Cylinder Electrode. Influence of Using Plates and Concentric Cylinder as Counter Electrodes

Simulation of Turbulent Flow of a Rotating Cylinder Electrode. Influence of Using Plates and Concentric Cylinder as Counter Electrodes Int. J. Electrochem. Sci., 8 (2013) 4690-4699 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Simulation of Turbulent Flow of a Rotating Cylinder Electrode. Influence of Using Plates

More information

Curriculum Vitae December 2006

Curriculum Vitae December 2006 Appendix: (A brief description of some representative results) (1) Electronic states of Pb adatom and Pb adatom chains on Pb(111) have been investigated by spatially scanning tunneling spectroscopy (STS)

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms.

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms. Executive Summary One of the critical hurdles of the success of many clean energy technologies is energy storage. For this, new and advanced computational tools to predict battery properties are very important.

More information

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale NANO LETTERS 2006 Vol. 6, No. 11 2531-2535 Diego Krapf, Bernadette M. Quinn, Meng-Yue Wu, Henny W. Zandbergen, Cees Dekker,

More information

Generalization of Gouy-Chapman-Stern Model of Electric Double Layer for a Morphologically Complex Electrode: Deterministic and Stochastic Morphology

Generalization of Gouy-Chapman-Stern Model of Electric Double Layer for a Morphologically Complex Electrode: Deterministic and Stochastic Morphology Chapter 3 Generalization of Gouy-Chapman-Stern Model of Electric Double Layer for a Morphologically Complex Electrode: Deterministic and Stochastic Morphology All generalizations are dangerous, even this

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Mikhail A. Vorotyntsev LSEO-UMR 5188 CNRS, Université de Bourgogne, Dijon,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Nanoscale characteristics by Scanning Tunneling Spectroscopy

Nanoscale characteristics by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Band structure, Band Gap, k-space, Brioullin Zone, Metal, Semi-Metal, Semiconductor Principle

More information

Two-Electrode Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy

Two-Electrode Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy University of South Carolina Scholar Commons Theses and Dissertations 2018 Two-Electrode Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy Jason Giamberardino University

More information

Yin-Quan Li, Orawon Chailapakul, and Richard M. Crooks a) Department of Chemistry, Texas A&M University, College Station, Texas

Yin-Quan Li, Orawon Chailapakul, and Richard M. Crooks a) Department of Chemistry, Texas A&M University, College Station, Texas Electrochemical scanning tunneling microscopy study of the electrochemical behavior of naked and n-alkanethiol-modified Au(111) surfaces in F - and CN -containing electrolyte solutions Yin-Quan Li, Orawon

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Ultrafast nanophotonics - optical control of coherent electron -

Ultrafast nanophotonics - optical control of coherent electron - ICTP 18.2.8 Ultrafast nanophotonics - optical control of coherent electron - Hirofumi Yanagisawa LMU, MPQ Hirofumi Yanagisawa Japan (Tokyo) Switzerland (Zurich) Germany (Munich) http://roundtripticket.me/world-map-labled.html/best-image-of-diagram-world-map-and-labeled-for-labled

More information

Supporting Information for

Supporting Information for Supporting Information for Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth Characterization and Electrocatalysis Min Zhou, Jeffrey E. Dick, and Allen J. Bard Center for Electrochemistry,

More information

EMISSION OF QD IN ELECTROSTATIC FIELDS

EMISSION OF QD IN ELECTROSTATIC FIELDS EMISSION OF QD IN ELECTROSTATIC FIELDS P. Hruska, L. Grmela Physics Department, FEEC, Brno University of Technology Abstract The paper presents the wave functions ψ, probability functions ψψ* and the ground

More information

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1 Supporting Information: Combination of Solid State and Electrochemical Impedance Spectroscopy to Explore Effects of Porosity in Sol-Gel Derived BaTiO3 Thin Films Joshua Whittam, 1 Andrew L. Hector, 1 *

More information

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Supporting information for Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Jin Lu, Yunshan Fan, Marco Howard, Joshua C. Vaughan, and Bo Zhang* Department of Chemistry, University of

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information