Binary Decision Diagram with Minimum Expected Path Length

Size: px
Start display at page:

Download "Binary Decision Diagram with Minimum Expected Path Length"

Transcription

1 Bnary Dcson Dagram wth Mnmum Expctd Path Lngth Y-Yu Lu Kuo-Hua Wang TngTng Hwang C. L. Lu Dpartmnt of Computr Scnc, Natonal Tsng Hua Unvrsty, Hsnchu 300, Tawan Dpt. of Computr Scnc and Informaton Engnrng, Fu Jn Catholc Unvrsty, Tap, Tawan Abstract W prsnt mthods to gnrat a Bnary Dcson Dagram (BDD) wth mnmum xpctd path lngth. A BDD s a gnrc data structur whch s wdly usd n svral flds. On mportant applcaton s th rprsntaton of Boolan functons. A BDD rprsntaton nabls us to valuat a Boolan functon Smply travrs th BDD from th root nod to th trmnal nod and rtrv th valu n th trmnal nod. For a BDD wth mnmum xpctd path lngth wll b also mnmzd th valuaton tm for th corrspondng Boolan functon. Thr ffcnt algorthms for constructng BDDs wth mnmum xpctd path lngth ar proposd. 1. Introducton Bnary Dcson Dagram (BDD) was ntroducd n 1978 [1] as an ffctv way to rprsnt Boolan functons that lads to ffcnt manpulaton [2] and mplmntaton [3]. Gvn a random nput pattrn, w can travrs th BDD to dtrmn th outputng. Thr ar prvous works on mnmzng th numbr of nods n a BDD [4] [5] [6]. Howvr, th numbr of nods s not drctly rlatd to th valuaton tm for a Boolan functon. Rathr, th valuaton tm s drctly rlatd to th total xpctd path lngth of a BDD. In a logc crcut, th probablts of occuranc of th nput varabls ar dffrnt. It follows that th valuaton tm for dffrnt nput combnatons ar also dffrnt. Consquntly, a BDD wth mnmum xpctd path lngth wll also hav mnmum valuaton tm. To obtan a BDD wth mnmum xpctd path lngth, w nd to dvlop (1) mthods for computng th xpctd path lngth of a BDD (2) hurstcs for ordrng th varabls n a BDD to mnmz th xpctd path lngth. Ths papr s organzd as follows. Bsds Scton 1 bng an ntroducton, w wll dscuss basc concpt of BDDs n Scton 2. In Scton 3, w wll propos thr mthods to comput th xpctd path lngth of an ROBDD. Scton 4 dals wth hurstcs to dtrmn varabl ordrng so that th rsultant ROBDD wll hav mnmum xpctd path lngth. Fnally, xprmnt rsults wll b prsntd. 2. Prlmnary 2.1. ROBDD A BDD s a drctd, acyclc graph whch conssts of nods and dgs. Thr ar two typs of nods, trmnal and non-trmnal. A trmnal nod s a Boolan valu or, and a non-trmnal nod s an nput Boolan varabl. Each non-trmnal nod contans two outgong dgs pontng to othr nods, whch s rfrrd to as th parntnod of ths nods. For convnnc, w dstngush th two dgs as thn-dg and ls-dg. A nod whch s connctd from a thn-dg s th thn-chld of ts parnt-nod and from an ls-dg th ls-chld. A Rducd Ordrd BDD (ROBDD) [2] s a BDD wth a chosn varabl ordrng n all paths from th root nod to th trmnal nods and posssss th followng proprts (1) f both th thn-chld and ls-chld of a non-trmnal nod ar dntcal, th non-trmnal nod wll b rmovd from th path, and (2) f thr ar two or mor dntcal subtrs, only on wll b rtand and all parnt-nods whch hav th sam subtr wll shar on subtr as thr chldrn. Th formula rprsntaton of an ROBDD s f parntnod thn thn-chld ls ls-chld, whch s calld an ITE oprator (IF-THEN-ELSE). By usng th ITE oprator, Boolan opratons can b asly prformd on ROBDDs. Fgur 1 gvs an ROBDD for th functon wth th nput varabl ordrng. Not that for th sam functon, dffrnt ordrng of nput varabls wll rsult n dffrnt ROBDDs Expctd Path Lngth of ROBDD Snc th valuaton tm of a ROBDD s drctly rlatd to th path lngth of ROBDD, w want to shortn th path lngths wth hgh probablty,.., to mnmz th xpctd path lngth of th ROBDD. It s ncssary that w b abl to comput a xpctd path lngth of a gvn ROBDD. To bgn wth, w dfn th xpctd lngth of th th path n ROBDD as! ", whr # s th probablty of th th path and $ s th path lngth of th th path. Th total Expctd Path Lngth (EPL) of a ROBDD rootd at nod % s dfnd as &('*), ' 6; ) 6 (1)

2 6 6 6 I N F A B BEPL (a) a C 1- P a P a 0 1 BEPL (a ) 0 a 0 a 1 BEPL (a 1) Fgur 1. An ROBDD xampl. whr < s th numbr of paths of th ROBDD. Followng ths formula, to calculat th xpctd path lngth wll nd drctly numrat all paths. Ths approach s mpractcal bcaus th numbr of paths may grows xponntally. In th followng scton, w wll propos thr ffcnt mthods to calculat xpctd lngth bottom-up mthod, topdown mthod, and mddl-way mthod. 3. Thr Mthods for Computng EPL Snc t s mpractcal to numrat all paths n a ROBDD. W prsnt thr ffcnt mthods n ths scton for computng th EPL of a ROBDD. Thy ar bottom-up mthod, top-down mthod, and mddl-way mthod. Th frst and scond mthods nd to b xcutd only onc ovr all nods. Aftr ntalzng, th thrd mthod wll b actvatd to mprov th prformac of our algorthm Bottom-up Mthod Bottom-up mthod s formulatd by whch th xpctd path lngth can b calculatd from trmnal nods up to root nod. Snc at ach non-trmnal nod, th xpctd path lngths of ts two chld-nods ar alrady computd, w can comput th xpctd path lngth of th non-trmnal nod basd on th xpctd path lngths for ts chld-nods. Bfor w procd to dvlop th formula, w dfn th followng notatons as [ [ [ &"'*),+?>@ ] th xpctd path lngth of all paths from A to trmnal nods 'CB ] th probablty of th th path from nod A to a trmnal nod )DB6 ] th path lngth of th th path from nod A to a trmnal nod A 8 3 ' 6 B I ) B I ' 6 B N ) B N Now, lt b a non-trmnal nod wth ts thn-chld A;E and ls-chld A F as shown n Fgur 2. Th xpctd path lngths of all paths from trmnal nods up to A E and AGF can supposdly b computd as &('*),+?> D1 5*HJI &('*),+?>LK0D1M3 5*HON (2) (3) Fgur 2. Bottom-up mthod for calculatng th xpctd path lngth. whr <QP and <4P ar th total numbr of paths from trmnal nods up to nod A E and A F, rspctvly. Lt th probablty from nod A to A E b R9P. Thn, th probablty from nod A to AGF wll b TSQR P. Th xpctd path lngth from trmnal nods up to nods A s computd as&('*)u+.> V1 3 56W7X8ZY H I B ' 6 B I + ) B6\[^] I [ 3 5*HON 6W7X8 + ],_`Y B ' 6 B N + ) B6a[Q] I 1 Y B +b H I ' 6 B I ) B6\[ I H I ' 6 B I [ + ],_`Y B H N ' 6 B N ) B6 N [ H N ' 6 B N Not that th total path probablty from a non-trmnal nod to trmnal nods s. That s, 3 5*HJI ' 6B I 1 3 5CHcN 6W798 ' 6B N 1 ] From th dntty of quatons (2) (3) (5), w can rduc quaton (4) to &('*)U+.> V1 Y B + &('*)U+.> 8 [^] [ + ],_`Y B + &"'*),+?>LK0 [d] 1 Y B &('*),+?> 8 [ + ],_`Y B &('*)U+.> K [^] From quaton (6), w follow that th xpctd path lngth of a non-trmnal nod at A can b computd by followng stps stp1 multply th probablty of th thn-chld by th xpctd path lngth of th thn-chld whch s computd n th prvous stag and s radly usd. stp2 multply th probablty of th ls-chld by th xpctd path lngth of th ls-chld whch s computd n th prvous stag and s radly usd. stp3 sum rsults of stp1, stp2, and constant 1 (5) (6) (4) 2

3 m I + [ Wth boundary condton that both th path lngth of trmnal nods and ar 0, w can rcursvly calculat th xpctd lngth of th root of an ROBDD by bottom-up mthod. root 3.2. Top-down Mthod Rvrsly, top-down mthod s usd to calculat th xpctd path lngth from root nod down to trmnal nods. Snc at ach non-trmnal nod, th xpctd path lngths of ts parnt nods ar alrady computd, w can comput th xpctd path lngth of an non-trmnal nod basd on th xpctd path lngths for ts parnt nods. Bfor w procd to dvlop th formula, w dfn th followng notatons as [ &"'*),+?fo ] th xpctd path lngth of all paths from root to non-trmnal nod g '*h [ ] th probablty of th j th path from root to nod g ' h [k [ ] th sum of probablts of all paths from root to nod g ) h ] th path lngth of th j th path from root to nod g Obvously, from th abov dfntons, quatons (7) (8) hold. That s, th summaton of probablts of all paths from root to a nod g0l s k ' hnm 1 3 5Co 7X8m (7) whr <Qp s th total numbr of paths from root to nod g0l. Morovr, th xpctd path lngth from root to a nod g0l s &"'*),+?foq@d1 3 5*o 798m ) h m (8) Now, lt g b a non-trmnal nod wth ts r parnt-nods labld gle to gs and th probablts from parnt nods gle to gs to nod g b R p to R p!t, rspctvly, as shown n Fgur 3. W ar to comput th xpctd path lngth of all paths from root to nod g. Frst, th summaton of probablts of all paths from root nod to nod g s ku ' h 1Q3wv6W7X8 Y hnx whr r s th numbr of parnt-nods of nod g. Now, th xpctd path lngth from root to nod g s &('*)U+.fOy1 3 v6.798; GY o x hzx ' h x + ) h x [d] 1 3v6.798; o x + Y hzx ' hzx ) hzx [Y hzx ' hzx (10) By quatons (7) (8) and (9), quaton (10) can b rducd to &('*)U+.fOy1 3v6.798{+ Y hzx 1 3 v6.798 Y h x ku ' hnx &('*),+?f 6 [Y hzx ' hnx &"'*),+?f 6 [ ' hku ku (9) (11) From quaton (11), w follow that th xpctd path lngth of a non-trmnal nod at g can b computd by followng stps stp1 for all parnt nods, multply th probablty of parnt-nod to th nod g by th xpctd path lngth from root to th parnt nod whch s computd n th prvous stag and s radly usd. b 1 b j TEPL p b j b b j TEPL b Fgur 3. Top-down mthod for calculatng th xpctd path lngth. stp2 sum probablts of all paths from root to nod g by quaton (9), whr th sum of probablts of all path from root to a parnt-nod s alrady computd and radly usd. stp3 sum rsults of stp1 and stp2 Basd on th assumptons that th path lngth of root s and th probablts from all paths to root s 1, w can calculat th xpctd lngth of th trmnal nods of an ROBDD by top down mthod. Fnally, th xpctd path lngth of th whol ROBDD s th summaton of th xpctd path lngths of th two trmnal nods Mddl-way Mthod Th thrd mthod s usd to comput th xpctd path lngth of an ROBDD assumng that th xpctd path lngths of all non-trmnal nods at lvl ws} hav bn computd by top-down mthod and th xpctd path lngths of all non-trmnal nods at lvl hav bn computd by bottom-up mthod. Lt b th cut btwn lvls ^S and and thr ar ~ dgs crossng that connct th nods at lvls ^S and as shown n Fgur 4. To comput th xpctd path lngth of th whol ROBDD, w hav to consdr all paths connctd by ~ dgs. Frst, w consdr how to comput th xpctd path lngth connctd by a sngl crossng dg. In ths cas, dg conncts th top nd-nod g l and th bottom nd-nod A l as shown n Fgur 4. Suppos that th probablty of dg b R l and thr ar r paths from root nod to nod g l, and < paths from trmnals nods to Aul as shown n Fgur 4. Thn, th xpctd path lngth of all paths, ƒz!;, whch pass through dg s &('*)U+. ˆy1 3 56W7X8 3 v 7X8 Y q ' 6 B m ) B6 m [ ) hnm [Q] 1 Y q +b v 798 ' 6 B m 3w56W7X8u3 v 7X8 ' 6 B m ' h!m 3w56W7X8u3 v 7X8 ' 6 B m ' h!m b n ' hnm ) hnm ) B6 m [ 3

4 [ 1 Y Y TEPL(b ) b k k p k dg k a k BEPL (a k) C Algorthm fnd-last-cost(œ ) InputŒ Boolan functon; ŽJ u? G # # "(štš ; Œ Bgn (1) fnd an ntal varabl ordrng for ROBDD of ; (2) buld an ntal ROBDD; (3) comput th cost of th ROBDD; (4) whl ( not stop ) do (5) fnd nw varabl ordrng; (6) rstructur th ROBDD accordng to th nw varabl ordrng; (7) comput th cost of th nw ROBDD; (8) updat th cost functon; (9) chck f th stoppng crtron s st; - - Output rturn OŽ c and b X OŽ { ndwhl -{- (10) rturn OŽ O and b 9 OŽ End Ž G 0. G # ((štš ; Fgur 4. Mddl-way mthod for calculatng th xpctd path lngth. 1 Y q +b3v W7X8 3 56W7X8 ' 6 B m 3 v 7X8 3 56W726 ' 6 B m 3 v 7X8 ' h!m ' 6 B m ) h m ) B6 m [ By quatons (2)(5)(8)(9), quaton (12) can b rducd to &('*)U+. ˆy1 Y q + &"'*),+?> q [ &('*)U+.fOq@ ku [ ' hnm k (12) (13) From quaton (13), w follow that th xpctd path lngth of all paths passng through dg connctng nod g0l and A l can b computd by followng stps stp1 sum th xpctd path lngth from root of all paths to nod g l, th xpctd path lngth of all paths from nod A l to trmnals and twc of th total path probablty to nod g l. All of thm ar alrady computd and ar radly usd. stp2 multply th rsult of stp1 and th probablty of dg Fnally, th total xpctd lngth of th whol ROBDD s ƒ 3Š l0 E ƒ` n; 4. Algorthms for Fndng Low Cost ROBDD Our algorthm bgns wth an ntal ordrng. Thn, an tratv loop s ntrd to modfy th ntal ordrng. In ach traton, a nw ordrng s dtrmnd and th old ROBDD s rstructurd basd on th nw varabl ordrng. Nxt, th cost for th nw ROBDD s computd. Th loop contnus tll th stoppng crtron s mt. Th procdur s shown n Fgur 5. Th dtald dscrpton s xpland as follows. In stp 1, an ntal ordrng nds to b dtrmnd to construct an ntal ROBDD. It can b dtrmnd by constructng a mnmum sz ROBDD. In ths cas, algorthms Fgur 5. Th fnd-last-cost algorthm proposd n [5] [6] can b usd. Stp 3 s to comput th cost of th ntal ROBDD. For th computaton of th xpctd path lngth of th ROBDD, bottom-up and top-down mthods proposd n Scton 3 ar usd and all computd data for ach nod s stord at th nod. Stp 5 fnds a nw nput ordrng. Wndow prmutaton algorthm [5] [6] whch fnds a local mnmum n a wndow of sz and sftng algorthm [4] whch looks for a sutabl poston for ach varabl n ach traton can b usd. Wth th nw nput varabl ordrng, stp 6 rstructurs th old ROBDD to a nw ROBDD. Transposton oprator [7] s usd whch rstructurs an ROBDD by svral smpl ROBDD opratons. For xampl, f th ordr of and œ ar swappd n a nw ordrng, th followng formula can b usd. ˆž xzÿ ž@ ˆž w ` b D ;œ xb ž xª ž@ «ž@ Not that swappng s not lmtd to adjacnt varabls. In stp 7, th cost for th nw ROBDD s computd. For th xpctd lngth of th nw ROBDD, smlar to stp 6, t nds not b computd from scratch. Instad, w wll us th nformaton for th old ROBDD to calculat th nw xpctd lngth of ROBDD. Suppos that w hav a nw ordrng that varabls at lvls and j b$ ju ar swappd as shown n Fgur 6. Snc th part of ROBDD abov lvl and th part of ROBDD blow lvl j wll not b changd as sn n Fgur 6, w do not hav to rcomput thm. W only nd to comput th nw xpctd path lngth for th nods n th mddl. On th on sd, th bottom-up mthod calculats th xpctd path lngth from nods at lvl j4 up. On th othr sd, th top-down mthod calculats th xpctd path lngth from nods at lvl S down. Whn varabls on th two sds mt n th mddl, th mddlway mthod can b usd. By usng mddl-way mthod, t prvnts much mor rdundant calculatons than top-down and bottom-up mthods. 5. Exprmntal Rsults Our xprmnt s prformd on a SUN-Ultra Entrprs 150. Softwar platform s basd on th ROBDD packag n 4

5 STP TEPL BEPL nvald lvl lvl j Fgur 6. Computaton for parts lyng btwn th two swappd varabls. SIS [8]. LGSynth93 bnchmark sut s usd n our xprmnt. Exprmnt s conductd to fnd a mnmum xpctd path lngth ROBDD. Frst, th sftng algorthm [4] s usd to fnd a mnmum-szd ROBDD whch can b usd as our ntal ROBDD. Th rason for ths ntal ordrng hurstc s that a small sz ROBDD may lad to a small xpctd lngth ROBDD. In subsqunt stps, wndow prmutaton s usd to gnrat a nw nput ordrng and th xpctd path lngth for th nw ROBDD s computd. Fnally, th probablts of nput varabls ar st to b qual. Tabl 1 shows th rsults. Column <^ªr r, ˆ± ² gvs th rsults of ROBDD wth ntal ordrng whos objctv s to fnd an ROBDD wth mnmum sz. Column <^ªr ² R R AG³c gvs th rsults of ROBDD wth xpctd path lngth as objctv. Columns RDAG³c gv th xpctd path lngth and sz of ROBDDs, rspctvly. In column rato, w comput th rato of th rsults of mnmum nods to th rsults of mnmum xpctd path lngth. It s clar from Tabl 1 that n most cass, th xpctd path lngth can b rducd at th cost of small ncras of th numbr of nods xcpt cordc and f51m. In som cass (con1, vg2, cm150a, tc.), w found that both th sz and th xpctd path lngth of ROBDD ar rducd. On th avrag, th xpctd path lngth s rducd by 25% whl th th numbr of nods s ncrasd by 10%. 6. Conclusons In ths work, w prsnt mthods to gnrat a ROBDD wth mnmzd xpctd path lngth. Wth smallr EPL of a ROBDD, th valuaton tm of a Boolan functon wll b rducd. Thr mthods ar proposd to calculat th xpctd path lngth of a ROBDD ffcntly. Th xprmntal rsults ndcat that th xpctd path lngth of an ROBDD can b rducd at th cost of a small ncras of OBDD sz. Tabl 1. Rsults of xpctd path lngth wth qual nput probablty crcut mn nod mn xp path rato (%) path sz path sz path sz 5xp alu b con cordc x nc sao vg msx cm150a cm151a cm162a cm163a cm85a mux z4ml f51m pcl traffc Avrag Rfrncs [1] S. B. Akrs, Bnary dcson dagrams, IEEE Trans. Comput., Vol. C-27, pp , Jun [2] R. E. Bryant, Graph-basd algorthms for boolan functon manpulaton, IEEE Trans. on Comput., Vol. C-35, No. 8, August [3] K. S. Brac, R. L. Rudll, and R. E. Bryant, Effcnt Implmntaton of a BDD Packag, DAC, [4] R. Rudll, Dynamc varabls ordrng for ordrd bnary dcson dagrams, ICCAD, [5] M. Fujta, Y. Matsunaga, and T. Kakuda, On Varabl Ordrng of Bnary Dcson Dagrams for th Applcaton of Mult-lvl Logc Synthss, EDAC, pp 50-54, Mar [6] N. Ishura, H. Sawada, and S. Yajma, Mnmzaton of Bnary Dcson Dagrams Basd on Exchangs of Varabls ICCAD, pp , Nov [7] K. H. Wang, T. T. Hwang, and C. Chn, Rstructurng Bnary Dcson Dagrams Basd on Functonal Equvalnc, EDAC, pp , Fb [8] E. M. Sntovch, K. J. Sngh, L. Lavagno, C. Moon, R. Murga, A. Saldanha, H. Savoj, P. R. Stphan, R. K. Brayton, A. Sangovann-Vncntll, SIS A Systm for Squntal Crcut Synthss, Elctroncs Rsarch Laboratory Mmorandum No. UCBERL M9241, 4 May

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Authentication Transmission Overhead Between Entities in Mobile Networks

Authentication Transmission Overhead Between Entities in Mobile Networks 0 IJCSS Intrnatonal Journal of Computr Scnc and twork Scurty, VO.6 o.b, March 2006 Authntcaton Transmsson Ovrhad Btwn Entts n Mobl tworks Ja afr A-Sararh and Sufan Yousf Faculty of Scnc and Tchnology,

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Off-target deviation degree method for grey multi-attribute group decision-making

Off-target deviation degree method for grey multi-attribute group decision-making " m s G T è ) Ü ] è 34 3 ol34 No3 04 3 Systms Engnrng Thory & Practc Mar 04 : 000-6788(04)03-0787-06 : N945!"#$%&')()*+) : A -/0 /34 (56789;:?;@BA7C;:D EF 3008) HJILKNMPOLQLRLSUTQLRLWNXPYLZL[L\LWNXP]LN_L`PaLbNcPdLZL[NPf

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015 Journal of Informaton Scncs and Computng Tchnologs(JISCT) ISSN: 394-966 SCITECH Volum 5, Issu RESEARCH ORGANISATION Novmbr 7, 5 Journal of Informaton Scncs and Computng Tchnologs www.sctcrsarch.com/journals

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Logistic Regression I. HRP 261 2/10/ am

Logistic Regression I. HRP 261 2/10/ am Logstc Rgrsson I HRP 26 2/0/03 0- am Outln Introducton/rvw Th smplst logstc rgrsson from a 2x2 tabl llustrats how th math works Stp-by-stp xampls to b contnud nxt tm Dummy varabls Confoundng and ntracton

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

A New Competitive Ratio for Network Applications with Hard Performance Guarantees

A New Competitive Ratio for Network Applications with Hard Performance Guarantees A Nw Compttv Rato for Ntwork Applcatons wth Hard Prformanc Guarants Han Dng Dpartmnt of ECE Txas A&M Unvrsty Collg Staton, TX 77840, USA Emal: hdng@maltamudu I-Hong Hou Dpartmnt of ECE Txas A&M Unvrsty

More information

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm . Grundlgnd Vrfahrn zur Übrtragung dgtalr Sgnal (Zusammnfassung) wt Dc. 5 Transmsson of Dgtal Sourc Sgnals Sourc COD SC COD MOD MOD CC dg RF s rado transmsson mdum Snk DC SC DC CC DM dg DM RF g physcal

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Naresuan University Journal: Science and Technology 2018; (26)1

Naresuan University Journal: Science and Technology 2018; (26)1 Narsuan Unvrsty Journal: Scnc and Tchnology 018; (6)1 Th Dvlopmnt o a Corrcton Mthod or Ensurng a Contnuty Valu o Th Ch-squar Tst wth a Small Expctd Cll Frquncy Kajta Matchma 1 *, Jumlong Vongprasrt and

More information

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM Avalabl onln at www.scncdrct.com Procda Engnrng 9 () 373 377 Intrnatonal Workshop on Informaton and Elctroncs Engnrng (IWIEE) Thr-Nod Eulr-Brnoull Bam Elmnt Basd on Postonal FEM Lu Jan a *,b, Zhou Shnj

More information

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems Roadmap XML Indxing CPS 296.1 Topics in Databas Systms Indx fabric Coopr t al. A Fast Indx for Smistructurd Data. VLDB, 2001 DataGuid Goldman and Widom. DataGuids: Enabling Qury Formulation and Optimization

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Ch. 9 Common Emitter Amplifier

Ch. 9 Common Emitter Amplifier Ch. 9 Common mttr mplfr Common mttr mplfr nput and put oltags ar 180 o -of-phas, whl th nput and put currnts ar n-phas wth th nput oltag. Output oltag ( V ) V V V C CC C C C C and V C ar -of-phas 10 μ

More information

Quantum-Inspired Bee Colony Algorithm

Quantum-Inspired Bee Colony Algorithm Opn Journal of Optmzaton, 05, 4, 5-60 Publshd Onln Sptmbr 05 n ScRs. http://www.scrp.org/ournal/oop http://dx.do.org/0.436/oop.05.43007 Quantum-Insprd B Colony Algorthm Guoru L, Mu Sun, Panch L School

More information

OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS

OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS Th Svnth East Asa-Pacfc Confrnc on Structural Engnrng & Constructon August 27-29, 1999, Koch, Japan OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS Qng Quan

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges Physcs of Vry Hgh Frquncy (VHF) Capactvly Coupld Plasma Dschargs Shahd Rauf, Kallol Bra, Stv Shannon, and Kn Collns Appld Matrals, Inc., Sunnyval, CA AVS 54 th Intrnatonal Symposum Sattl, WA Octobr 15-19,

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

Construction of Aho Corasick Automaton in Linear Time for Integer Alphabets

Construction of Aho Corasick Automaton in Linear Time for Integer Alphabets Constructon of Aho Corasck Automaton n Lnar Tm for Intgr Alphabts Shr Dor Gad M. Landau Unvrsty of Hafa Unvrsty of Hafa & Polytchnc Unvrsty Abstract W prsnt a nw smpl algorthm that constructs an Aho Corasck

More information

Observer Bias and Reliability By Xunchi Pu

Observer Bias and Reliability By Xunchi Pu Obsrvr Bias and Rliability By Xunchi Pu Introduction Clarly all masurmnts or obsrvations nd to b mad as accuratly as possibl and invstigators nd to pay carful attntion to chcking th rliability of thir

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Symmetric centrosymmetric matrix vector multiplication

Symmetric centrosymmetric matrix vector multiplication Linar Algbra and its Applications 320 (2000) 193 198 www.lsvir.com/locat/laa Symmtric cntrosymmtric matrix vctor multiplication A. Mlman 1 Dpartmnt of Mathmatics, Univrsity of San Francisco, San Francisco,

More information

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES CHOOL O ENGINEERING - TI IGNAL PROCEING INTITUTE Lornzo Potta and Prr Vandrghynst CH-1015 LAUANNE Tlphon: 4121 6932601 Tlfax: 4121 6937600 -mal: lornzo.potta@pfl.ch ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUANNE

More information

ECE 407 Computer Aided Design for Electronic Systems. Instructor: Maria K. Michael. Overview. CAD tools for multi-level logic synthesis:

ECE 407 Computer Aided Design for Electronic Systems. Instructor: Maria K. Michael. Overview. CAD tools for multi-level logic synthesis: 407 Computr Aidd Dsign for Elctronic Systms Multi-lvl Logic Synthsis Instructor: Maria K. Michal 1 Ovrviw Major Synthsis Phass Logic Synthsis: 2-lvl Multi-lvl FSM CAD tools for multi-lvl logic synthsis:

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach Grn Functons, th Gnratng Functonal and Propagators n th Canoncal Quantzaton Approach by Robrt D. Klaubr 15, 16 www.quantumfldthory.nfo Mnor Rv: Spt, 16 Sgnfcant Rv: Fb 3, 16 Orgnal: Fbruary, 15 Th followng

More information

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System Natur and Sn 9;7( g v, t al, Samlng Systm Mathd Quk Swthng Varabl Samlng Systm wth Quk Swthng Attrbut Samlng Systm Srramahandran G.V, Palanvl.M Dartmnt of Mathmats, Dr.Mahalngam Collg of Engnrng and Thnology,

More information

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Basic Electrical Engineering for Welding [ ] --- Introduction --- Basc Elctrcal Engnrng for Wldng [] --- Introducton --- akayosh OHJI Profssor Ertus, Osaka Unrsty Dr. of Engnrng VIUAL WELD CO.,LD t-ohj@alc.co.jp OK 15 Ex. Basc A.C. crcut h fgurs n A-group show thr typcal

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

From Elimination to Belief Propagation

From Elimination to Belief Propagation School of omputr Scinc Th lif Propagation (Sum-Product lgorithm Probabilistic Graphical Modls (10-708 Lctur 5, Sp 31, 2007 Rcptor Kinas Rcptor Kinas Kinas X 5 ric Xing Gn G T X 6 X 7 Gn H X 8 Rading: J-hap

More information

Highly Imperceptible and Reversible Text Steganography Using Invisible Character based Codeword

Highly Imperceptible and Reversible Text Steganography Using Invisible Character based Codeword Assocaton for Informaton Systms AIS Elctronc Lbrary (AISL) PACIS 2017 Procdngs Pacfc Asa Confrnc on Informaton Systms (PACIS) Summr 7-19-2017 Hghly Imprcptbl and Rvrsbl Txt Stganography Usng Invsbl Charactr

More information

VLSI Implementation and Performance Evaluation of Low Pass Cascade & Linear Phase FIR Filter

VLSI Implementation and Performance Evaluation of Low Pass Cascade & Linear Phase FIR Filter Intrnatonal Journal of Engnrng and Tchncal Rsarch IJETR ISS: 3-869, Volum-3, Issu-6, Jun 5 VLSI Implmntaton and Prformanc Evaluaton of Low Pass Cascad & Lnar Phas Fltr Jaya Gupta, Arpan Shah, Ramsh Bhart

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Circular Wilson loop operator and master field

Circular Wilson loop operator and master field YITP wor shop Dvlopmnt of Quantum Fld Thory and trng Thory Crcular Wlson loop oprator and mastr fld hoch Kawamoto OCAMI, Osaa Cty Unvrsty atonal Tawan ormal Unvrsty from August Wth T. Kuro Ryo and A. Mwa

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

MUSIC Based on Uniform Circular Array and Its Direction Finding Efficiency

MUSIC Based on Uniform Circular Array and Its Direction Finding Efficiency Intrnatonal Journal of Sgnal Procssng Systms Vol. 1, No. 2 Dcmbr 2013 MUSIC Basd on Unform Crcular Array and Its Drcton Fndng Effcncy Baofa Sun Dpartmnt of Computr Scnc and Tchnology, Anhu Sanlan Unvrsty,

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

A Quasi-Static Approach to Minimizing Energy Consumption in Real-Time Systems under Reward Constraints

A Quasi-Static Approach to Minimizing Energy Consumption in Real-Time Systems under Reward Constraints n Proc. Intl. Confrnc on Ral-Tm and mbddd Computng Systms and Applcatons, 2006, pp. 279-286. A Quas-Statc Approach to Mnmzng nrgy Consumpton n Ral-Tm Systms undr Rward Constrants Lus Aljandro Cortés 1

More information

Representation and Reasoning with Uncertain Temporal Relations

Representation and Reasoning with Uncertain Temporal Relations Rprsntaton and Rasonng wth Uncrtan Tmporal Rlatons Vladmr Ryaov (*) Sppo Puuronn (*) Vagan Trzyan (**) (*) Dpartmnt of Computr Scnc and Informaton Systms Unvrsty of Jyvaskyla P.O.Box 5 SF-4051 Jyvaskyla

More information

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation.

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation. Hatng of a sold cylndr mmrsd n an nsulatd bath. Thrmal dffusvty and hat capacty xprmntal valuaton. Žtný R., CTU FE Dpartmnt of Procss Engnrng, arch. Introducton Th problm as ntatd by th follong E-mal from

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

Final Exam Solutions

Final Exam Solutions CS 2 Advancd Data Structurs and Algorithms Final Exam Solutions Jonathan Turnr /8/20. (0 points) Suppos that r is a root of som tr in a Fionacci hap. Assum that just for a dltmin opration, r has no childrn

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs)

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs) I. EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In th absnc of or n btwn ELMs) Abstract W. M. Stacy (Gorga Tch) and R. J. Grobnr (Gnral Atomcs) A constrant on th on prssur gradnt s mposd by momntum

More information