as a Tool for the Design of Metal-Organic Framework Materials Supporting Information

Size: px
Start display at page:

Download "as a Tool for the Design of Metal-Organic Framework Materials Supporting Information"

Transcription

1 Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal-Organic Framework Materials Supporting Information Naomi F. Cessford, Tina Düren,, and Nigel A. Seaton Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King s Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom Details of definition of distinct sites for application of Heterogeneous Ideal Adsorbed Solution Theory (HIAST) In order to account for the large-scale heterogeneities in the structures of MIL-68 and Cu-BTC which contain more than one pore type, HIAST can be applied. Implementation of HIAST requires that individual sites corresponding to different pore types in the metalorganic framework (MOF) are defined. This can be achieved by creating a sitemap S1

2 which takes the form of a three-dimensional grid with 0.1 Å spacing. Since different pore types represent distinct sites, by assigning each site a different number, the pores in the MOF can be allocated a site number. By defining mathematical inequalities relating to the boundaries of the pores, each grid point on the sitemap can be assigned a number corresponding to the site (e.g. type of pore) within which it is positioned. Thus, for MIL- 68, where the smaller, triangular pores constitute one site and the larger, hexagonal pores represent a second site, using inequalities to distinguish between pores, a sitemap can be produced detailing the locations of the individual sites. When the adsorption simulation data are processed, the sitemap can be incorporated to obtain isotherms which describe the adsorption on separate sites. Sites in Cu-BTC can be defined using the same method, with the tetrahedral side pockets representing one site, and the two main cavities forming a second site. Figure S1. MIL-68 unit cell showing the adsorption sites available to a methane molecule where all areas colored red represent one site (larger, hexagonal pores) and all areas colored green represent a second site (smaller, triangular pores). The positions occupied by the framework atoms (i.e. where adsorption is not possible for methane) are colored white. S2

3 Table S1. Lennard-Jones parameters for atoms in the adsorbents studied, where ε is the LJ well depth, k B is the Boltzmann constant, and σ is the atomic diameter. Parameters were taken from the Universal Force Field. 1 Framework Atom σ (Å) ε/k B (K) H C O Zn Cu V Table S2. Partial charges on framework atoms in the MOFs studied. Framework Atom IRMOF-1 Cu-BTC MIL-68 MIL-47 C C C O O H Zn Cu V S3

4 Figure S2. Selectivity for methane from an equimolar mixture of methane and hydrogen as a function of pressure in Cu-BTC at 300 K. Figure S3. Comparison of adsorption selectivity values for CH 4 from an equimolar mixture of CH 4 and H 2 and for CF 4 from an equimolar mixture of CF 4 and CH 4 in the respective pores in Cu-BTC as calculated from GCMC simulations. S4

5 Figure S4. Selectivity for from an equimolar mixture of and CF 4 as a function of pressure in IRMOF-1, Cu-BTC, MIL-68, MOF-69A and MIL-47 at 300 K. S5

6 Fitting Parameters for Single-Component Isotherms c KP n( P) = KP 1+ (1 P) α + κ denotes piece-wise fitting used to accurately represent entire pressure range. Parameters given fit the data in the highest pressure piece. Table S3. Fitting parameters for IRMOF-1 1/ c K α κ c H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / H E CH E CH E-09 2 CF E CH E E CF E As for CH 4 / mixture CH E C 2 H E CH E C 3 H E /C 3 H 8 C 3 H E As C 3 H 8 for mixture CO E H E CO E (CO 2-CO 2 electrostatics off) H 2 As H 2 for mixture S6

7 Table S4. Piece-wise fitting parameters for IRMOF-1 A 1 A 2 A 3 A 4 A 5 Pressure Limit (kpa) CH 4 / CH 4 / /C 3 H 8 (a) (a) (a) C 3 H 8 C 3 H 8 (a) CO 2 (a) E E E E E (a) A2 A4 n ( P) = A1 P + A3 P n( P) = A1 P 1+ A 2 A1 P (1 A3 P) + A 4 1/ A 4 S7

8 Table S5. Fitting parameters for Cu-BTC K α κ c H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / H E CH E CH E CF E CH E E-06 1 CF E SF E CH E C 2 H E CH E C 3 H E /C 3 H 8 C 3 H E As C 3 H 8 for mixture CO E H E CO E (CO 2-CO 2 electrostatics off) H 2 As H 2 for mixture S8

9 Table S6. Piece-wise fitting parameters for Cu-BTC A 1 A 2 A 3 A 4 A 5 Pressure Limit (kpa) H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / /C 3 H 8 (CO 2-CO 2 electrostatics off) (c) CH 4 CH 4 CF 4 CH 4 (d) CH 4 (a) (a) C 3 H 8 CO 2 CO E E E E E E E E E (c) A1 A2 P n( P) = (1+ A P) 2 A 3 (d) n ( P) = A1 P+ A2 P + A3 P + A4 P + A5 P S9

10 Table S7. Fitting parameters for MIL-68 K α κ c H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / H E CH E CH E CF E CH E E CF E As for CH 4 / mixture CH E C 2 H E CH E C 3 H E /C 3 H 8 C 3 H E As C 3 H 8 for mixture CO E H E E CO E (CO 2-CO 2 electrostatics off) H 2 As H 2 for mixture S10

11 Table S8. Piece-wise fitting parameters for MIL-68 A 1 A 2 A 3 A 4 A 5 Pressure Limit (kpa) CH 4 / CH 4 / /C 3 H 8 (CO 2-CO 2 electrostatics off) CH 4 CH 4 (e) C 3 H 8 CO 2 CO E E E E E E (e) n ( P) = A1 + A2 P+ A3 P + A4 P + A5 P S11

12 Table S9. Fitting parameters for MOF-69A K α κ c H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / H E E CH E CH E CF E CH E E CF E As for CH 4 / mixture CH E C 2 H E CH E C 3 H E /C 3 H 8 C 3 H E As C 3 H 8 for mixture S12

13 Table S10. Piece-wise fitting parameters for MOF-69A A 1 A 2 A 3 A 4 A 5 Pressure Limit (kpa) CH 4 /CF 4 CH 4 / CH 4 / /C 3 H 8 CF 4 C 3 H E E E E E S13

14 Table S11. Fitting parameters for MIL-47 K α κ c H 2 /CH 4 CH 4 /CF 4 CH 4 / CF 4 / CH 4 / H 2 5.6E E CH E CH E CF E CH E E CF E As for CH 4 / mixture CH E C 2 H E CH E C 3 H E /C 3 H 8 C 3 H E As C 3 H 8 for mixture CO E H 2 5.7E E CO E (CO 2-CO 2 electrostatics off) H 2 As H 2 for mixture S14

15 Table S12. Piece-wise fitting parameters for MIL-47 A 1 A 2 A 3 A 4 A 5 Pressure Limit (kpa) CH 4 / CH 4 / /C 3 H 8 C 3 H 8 CO E E E E E References (1) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. Uff, A Full Periodic-Table Force-Field For Molecular Mechanics And Molecular-Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, S15

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Supporting Information Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Christopher E. Wilmer, 1 Omar K. Farha, 2 Youn-Sang Bae, 3,a Joseph T. Hupp, 2 and

More information

On the application of consistency criteria to. calculate BET areas of micro- and mesoporous. metal-organic frameworks

On the application of consistency criteria to. calculate BET areas of micro- and mesoporous. metal-organic frameworks Supporting Information On the application of consistency criteria to calculate BET areas of micro- and mesoporous metal-organic frameworks Diego A. Gómez-Gualdrón a, Peyman Z. Moghadam a, Joseph T. Hupp

More information

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations Supporting Information for: Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations D. Fairen-Jimenez *, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons and T. Düren

More information

Calix[4]arene-based metal-organic frameworks: towards hierarchically porous materials

Calix[4]arene-based metal-organic frameworks: towards hierarchically porous materials Calix[4]arene-based metal-organic frameworks: towards hierarchically porous materials Sean P. Bew,* Andrew D. Burrows,* Tina Düren,* Mary F. Mahon, Peyman Z. Moghadam, Viorica M. Sebestyen and Sean Thurston

More information

Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111

Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111 Simultaneously High Gravimetric and Volumetric Gas Uptake Characteristics of the Metal Organic Framework NU-111 Yang Peng, a,b Gadipelli Srinivas a,b, Christopher E. Wilmer, c Ibrahim Eryazici, d Randall

More information

High Pressure Methane Adsorption on a Series of MOF-74: Molecular Simulation Study

High Pressure Methane Adsorption on a Series of MOF-74: Molecular Simulation Study The 14 th Iranian National Chemical Engineering Congress (IChEC 2012) Sharif University of Technology, Tehran, Iran, 16-18 October, 2012 High Pressure Methane Adsorption on a Series of MOF-74: Molecular

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information Computational screening of hydrophobic

More information

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2 Effect of the organic functionalization of flexible MOFs on the adsorption of CO 2 Thomas Devic,* a Fabrice Salles, b Sandrine Bourrelly, c Béatrice Moulin, d Guillaume Maurin, b Patricia Horcajada, a

More information

SUPPORTI G I FORMATIO. Enhanced CO 2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules

SUPPORTI G I FORMATIO. Enhanced CO 2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules SUPPORTI G I FORMATIO Enhanced CO 2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules A. Özgür Yazaydın, 1 Annabelle I. Benin, 2 Syed A. Faheem, 2

More information

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Supporting Information for: Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Dorina F. Sava, Karena W. Chapman, Mark A. Rodriguez, Jeffery A. Greathouse, # Paul S. Crozier,^ Haiyan Zhao, Peter

More information

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Daiane Damasceno Borges 1, Douglas S. Galvao 1 1 Applied Physics Department and Center of Computational Engineering and Science,

More information

Supporting Information. High-throughput Computational Screening of the MOF Database for. CH 4 /H 2 Separations. Sariyer, 34450, Istanbul, Turkey

Supporting Information. High-throughput Computational Screening of the MOF Database for. CH 4 /H 2 Separations. Sariyer, 34450, Istanbul, Turkey Supporting Information High-throughput Computational Screening of the MOF Database for CH 4 /H 2 Separations Cigdem Altintas, a Ilknur Erucar b and Seda Keskin a* a Department of Chemical and Biological

More information

Experimental and Computer Simulation Studies of the Adsorption of Ethane, Carbon Dioxide, and Their Binary Mixtures in MCM-41

Experimental and Computer Simulation Studies of the Adsorption of Ethane, Carbon Dioxide, and Their Binary Mixtures in MCM-41 10132 Langmuir 2003, 19, 10132-10138 Experimental and Computer Simulation Studies of the Adsorption of Ethane, Carbon Dioxide, and Their Binary Mixtures in MCM-41 Yufeng He and Nigel A. Seaton* Institute

More information

Adsorptive separation of methanol-acetone on isostructural series of. metal-organic frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A

Adsorptive separation of methanol-acetone on isostructural series of. metal-organic frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Supporting information Adsorptive separation of methanol-acetone on isostructural series of metal-organic frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A computational study of adsorption mechanisms and

More information

Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Supporting Information

Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Supporting Information Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks Krista S. Walton 1, Andrew R. Millward 2, David Dubbeldam 3, Houston Frost 3, John J. Low 4, Omar

More information

Adsorption Separations

Adsorption Separations Molecular Modeling and Design of Metal-Organic Frameworks for CO 2 Capture Randy Snurr Department of Chemical & Biological Engineering Northwestern University, Evanston, IL 60208 http://zeolites.cqe.northwestern.edu

More information

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations Zhu Feng( ), Dong Shan( ), and Cheng Gang( ) State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors,

More information

New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor

New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor New Materials and Process Development for Energy-Efficient Carbon Capture in the Presence of Water Vapor Randy Snurr, 1 Joe Hupp, 2 Omar Farha, 2 Fengqi You 1 1 Department of Chemical & Biological Engineering

More information

Supplementary information for

Supplementary information for Supplementary information for Adsorption Induced Transitions in Soft Porous Crystals: An Osmotic Potential Approach to Multistability and Intermediate Structures D. Bousquet, F.-X. Coudert, A. G. J. Fossati,

More information

Dioxide Is Facilitated In Narrow Carbon. Nanopores

Dioxide Is Facilitated In Narrow Carbon. Nanopores Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores Piotr Kowalczyk *1, Piotr A. Gauden 2, Artur P. Terzyk 2, Sylwester Furmaniak 2, and Peter J.F. Harris 3 [1]

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

Modeling Adsorption in Metal-Organic Frameworks with Open Metal Sites: Propane/Propylene Separations

Modeling Adsorption in Metal-Organic Frameworks with Open Metal Sites: Propane/Propylene Separations Page of Langmuir 0 0 Modeling Adsorption in Metal-Organic Frameworks with Open Metal Sites: Propane/Propylene Separations Michael Fischer,, José R. B. Gomes, Michael Fröba * and Miguel Jorge * Institute

More information

Molecular Simulation Study of CH 4 /H 2 Mixture Separations Using Metal Organic Framework Membranes and Composites

Molecular Simulation Study of CH 4 /H 2 Mixture Separations Using Metal Organic Framework Membranes and Composites J. Phys. Chem. C 2010, 114, 13047 13054 13047 Molecular Simulation Study of CH 4 /H 2 Mixture Separations Using Metal Organic Framework Membranes and Composites Seda Keskin* Department of Chemical and

More information

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center

More information

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems Hong-Cai Joe Zhou Department of Chemistry Texas A&M University 2 US primary energy consumption by fuel, 1980-2035 (quadrillion Btu per year)

More information

Supplementary Information. Theoretical Optimization of Pore Size and. Chemistry in SIFSIX-3-M Hybrid. Ultramicroporous Materials

Supplementary Information. Theoretical Optimization of Pore Size and. Chemistry in SIFSIX-3-M Hybrid. Ultramicroporous Materials Supplementary Information Theoretical Optimization of Pore Size and Chemistry in SIFSIX-3-M Hybrid Ultramicroporous Materials Ahmad Ziaee 1,2, Drahomir Chovan 1,2, John J. Perry IV 2,3, Michael J. Zaworotko

More information

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES Atichat Wongkoblap*, Worapot Intomya, Warangkhana Somrup, Sorod Charoensuk, Supunnee Junpirom and Chaiyot Tangsathitkulchai School of Chemical

More information

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Fluid Phase Equilibria 178 (2001) 87 95 Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Jian Chen a,, Jian-Guo Mi

More information

The right isotherms for the right reasons? Validation of generic force fields for prediction of. methane adsorption in metal-organic frameworks

The right isotherms for the right reasons? Validation of generic force fields for prediction of. methane adsorption in metal-organic frameworks Molecular Simulation ISSN: 0892-7022 (Print) 1029-0435 (Online) Journal homepage: http://www.tandfonline.com/loi/gmos20 The right isotherms for the right reasons? Validation of generic force fields for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1192 Large-Scale Screening of Hypothetical Metal-Organic Frameworks Christopher E. Wilmer, 1 Michael Leaf, 1 Chang Yeon Lee, 2 Omar K. Farha, 2 Brad G. Hauser, 2 Joseph T. Hupp 2 and

More information

Screening of Bio-Compatible Metal-Organic Frameworks as Potential Drug Carriers using Monte Carlo Simulations

Screening of Bio-Compatible Metal-Organic Frameworks as Potential Drug Carriers using Monte Carlo Simulations Supporting Information for: Screening of Bio-Compatible Metal-Organic Frameworks as Potential Drug Carriers using Monte Carlo Simulations Maria C. Bernini, a,b David Fairén-Jimenez, b,c,* Marcelo Pasinetti,

More information

The Adsorption and Separation of CO 2 /CH 4 Mixtures with Nanoporous Adsorbents by molecular simulation

The Adsorption and Separation of CO 2 /CH 4 Mixtures with Nanoporous Adsorbents by molecular simulation The Adsorption and Separation of CO 2 /CH 4 Mixtures with Nanoporous Adsorbents by molecular simulation Linghong Lu a, Shanshan Wang a, Erich A. Müller b, Wei Cao a, Yudan Zhu a, Xiaohua Lu a, George Jackson

More information

Supporting information for. Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic

Supporting information for. Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic Supporting information for Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic Amir H. Farmahini, David S. Sholl, Suresh K. Bhatia * School of Chemical Engineering, The

More information

Supplementary Figures

Supplementary Figures Death time Supplementary Figures D i, Å Supplementary Figure 1: Correlation of the death time of 2-dimensional homology classes and the diameters of the largest included sphere D i when using methane CH

More information

Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise

Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise Modeling the Adsorption of Carbon Monoxide on Zeolites Eric Feise Background The research on this topic involves two fundamental pieces: 1)The chemistry part: the physical realities that we are trying

More information

Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions

Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions Adsorption Isotherm Measurements of Gas Shales for Subsurface Temperature and Pressure Conditions Beibei Wang, Reza Haghapanah, Jennifer Wilcox Department of Energy Resources Engineering, Stanford University

More information

Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the

Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the adsorption of n-alkanes Naseem A. Ramsahye 1, Thuy Khuong Trung 1, Lorna Scott, 2 Farid Nouar 2, Thomas Devic 2, Patricia Horcajada

More information

High-Connected Mesoporous Metal Organic Framework

High-Connected Mesoporous Metal Organic Framework Supporting Information High-Connected Mesoporous Metal Organic Framework Xiaojun Gu, a Zhang-Hui Lu a,b and Qiang Xu* a,b a National Institute of Advanced Industrial Science and Technology (AIST), Ikeda,

More information

Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model

Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model Mahfuzh Huda, 1 Siti Mariyah Ulfa, 1 Lukman Hakim 1 * 1 Department of Chemistry, Faculty of Mathematic

More information

COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON

COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON COMPUTATIONAL STUDIES OF METHANE ADSORPTION IN NANOPOROUS CARBON A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements

More information

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores CARBON Providence, Rhode Island Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores D. D. Do* and H. D. Do, University of Queensland, St. Lucia, Qld 7, Australia

More information

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties 12 th HLRS Results and Review Workshop Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties High Performance Computing Center Stuttgart (HLRS), October 8,

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks

Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks Langmuir Supporting Information Separation of CO 2 from CH 4 using Mixed-Ligand Metal-Organic Frameworks Youn-Sang Bae, Karen L. Mulfort, %, Houston Frost, Patrick Ryan, Sudeep Punnathanam, Linda J. Broadbelt,

More information

China; University of Science and Technology, Nanjing , P R China.

China;   University of Science and Technology, Nanjing , P R China. Electronic Supplementary Information Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures Dewei Rao,

More information

Introduction. Monday, January 6, 14

Introduction. Monday, January 6, 14 Introduction 1 Introduction Why to use a simulation Some examples of questions we can address 2 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling Calculate

More information

ADSORPTION OF XYLENE ISOMERS IN METAL ORGANIC FRAMEWORK UiO-66 BY MOLECULAR SIMULATIONS

ADSORPTION OF XYLENE ISOMERS IN METAL ORGANIC FRAMEWORK UiO-66 BY MOLECULAR SIMULATIONS ADSORPTION OF XYLENE ISOMERS IN METAL ORGANIC FRAMEWORK UiO-66 BY MOLECULAR SIMULATIONS M. A. GRANATO, V. D. MARTINS, A. F. P. FERREIRA and A. E. RODRIGUES LSRE Laboratory of Separation and Reaction Engineering

More information

BET Surface Area Analysis of Nanoparticles *

BET Surface Area Analysis of Nanoparticles * OpenStax-CNX module: m38278 1 BET Surface Area Analysis of Nanoparticles * Nina Hwang Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites Meghan Thurlow and Daniela Kohen Carleton College, Northfield, MN Introduction Separation of CO 2 from multi-species gas emissions

More information

Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)Zinc(II) MOFs

Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)Zinc(II) MOFs Supporting Information Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)Zinc(II) MOFs Pravas Deria,*,a, b Diego A. Gómez-Gualdrón,c Idan Hod, a Randall Q. Snurr,*,c Joseph

More information

A new tetrazolate zeolite-like framework for highly selective CO 2 /CH 4 and CO 2 /N 2 separation

A new tetrazolate zeolite-like framework for highly selective CO 2 /CH 4 and CO 2 /N 2 separation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for ChemComm. Supporting Information A new tetrazolate

More information

Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments

Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments Dr. Robert Eschrich 1 Christian Reichenbach 1, Andreas Möller 1, Jens Möllmer 2, Marcus Lange 2, Hannes Preißler

More information

Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling. Dissertation by Ahmad Kadoura

Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling. Dissertation by Ahmad Kadoura Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling Dissertation by Ahmad Kadoura In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Unusual pore structure and sorption behaviour in a hexanodal zinc-organic framework material Jinjie Qian a,b Feilong Jiang, a Linjie Zhang, a,b Kongzhao Su, a,b Jie Pan, a,b Qipeng

More information

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom Hydrogen Adsorption and Storage on Porous Materials K. M. Thomas. School of Chemical Engineering and Advanced Materials H2FC SUPERGEN Conference Birmingham University, 16-18 th December 2013 Newcastle

More information

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Supporting information for A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties Suresh Sanda, Srinivasulu Parshamoni and SanjitKonar* Department of

More information

Effects in Microporous Materials

Effects in Microporous Materials Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information (ESI) to accompany: Separating Mixtures by

More information

Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs

Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs Characterisation of Porous Hydrogen Storage Materials: Carbons, Zeolites, MOFs and PIMs Steven Tedds, a * Allan Walton, a Darren P. Broom, b and David Book a DOI:.39/c0fd00022a Electronic Supplementary

More information

A Combined Experimental Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks

A Combined Experimental Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks pubs.acs.org/jpcc A Combined Experimental Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks Yao Houndonougbo,*, Christopher Signer,

More information

Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries

Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries Daiane Damasceno Borges 1, Guillaume Maurin 2, and Douglas S. Galvão 1 1 Applied Physics Department, University of Campinas

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/4/eaaq1636/dc1 Supplementary Materials for Readily accessible shape-memory effect in a porous interpenetrated coordination network Mohana Shivanna, Qing-Yuan

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas using a Combined Experimental and Modeling Approach A. Özgür Yazaydın 1, Randall Q. Snurr 1*, Tae-Hong

More information

Supplementary material: The origin of the measured chemical shift of 129 Xe in UiO-66 and UiO-67 revealed by DFT investigations

Supplementary material: The origin of the measured chemical shift of 129 Xe in UiO-66 and UiO-67 revealed by DFT investigations Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Supplementary material: The origin of the measured chemical shift of 129 Xe in

More information

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS THERMAL SCIENCE: Year 07, Vo., No. 6B, pp. 85-858 85 DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS Introduction by Bo SONG, Xiaopo WANG *,

More information

Module 5: "Adsoption" Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption.

Module 5: Adsoption Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption. The Lecture Contains: Definition Applications How does Adsorption occur? Physisorption Chemisorption Energetics Adsorption Isotherms Different Adsorption Isotherms Langmuir Adsorption Isotherm file:///e

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Which of the following chemical elements corresponds to the symbol Cu?

Which of the following chemical elements corresponds to the symbol Cu? Which of the following chemical elements corresponds to the symbol Cu? A) copper B) gold C) lead D) silver E) none of the above Which of the following chemical elements corresponds to the symbol Cu? A)

More information

Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials

Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials Theore&cal Study of Adsorp&on in SIFSIX- 3- Zn Type Porous Materials Ahmad Ziaee* 1,2, Drahomir Chovan 1,2, Michael Zaworotko 2,3 and Syed A.M. Tofail 1,2 1 Department of Physics and Energy 2 Materials

More information

Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study

Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study 1 Invited Contribution Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study A. Wongkoblap 1, S. Junpirom 2 and D.D. Do 1 * (1) Department of Chemical Engineering,

More information

Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity

Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity Supporting information Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity Shuang Liu a,c, Lixian Sun a, b*, Fen Xu b,d*, Jian Zhang a, Chengli Jiao a, Fen Li a, Zhibao Li a,c,

More information

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents Supporting Information Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Hajime Hirao*, Wilson Kwok Hung Ng, Adhitya Mangala

More information

2009 Metal organic frameworks issue

2009 Metal organic frameworks issue This article was published as part of the 2009 Metal organic frameworks issue Reviewing the latest developments across the interdisciplinary area of metal organic frameworks from an academic and industrial

More information

Supplementary Figure 1. Crystal structure of MIL-100. a, Trimer of Fe-based

Supplementary Figure 1. Crystal structure of MIL-100. a, Trimer of Fe-based Supplementary Figure 1. Crystal structure of MIL-100. a, Trimer of Fe-based octahedra and 1,3,5-benzenetricarboxylate (Fe: green; C: black; O: red). b, Second building unit of MIL-100. c, Scheme of one

More information

A mechanochemical strategy for IRMOFs assembly based on predesigned oxo-zinc precursors

A mechanochemical strategy for IRMOFs assembly based on predesigned oxo-zinc precursors Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information A mechanochemical strategy for IRMOFs assembly based on predesigned oxo-zinc

More information

Microporous Carbon adsorbents with high CO 2 capacities for industrial applications

Microporous Carbon adsorbents with high CO 2 capacities for industrial applications Microporous Carbon adsorbents with high CO 2 capacities for industrial applications Santiago Builes, a,b Thomas Roussel,* b Camelia Matei Ghimbeu, c Julien Parmentier, c Roger Gadiou, c Cathie Vix-Guterl

More information

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract.

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract. A GRAND CANONICAL MONTE-CARLO STUDY OF H ADSORPTION IN PRISTINE AND Li-DOPED CARBON REPLICAS OF FAUJASITE ZEOLITE Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara CRMC-N CNRS, Campus de Luminy,

More information

Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped cavities

Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped cavities University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2009 Modelling hydrogen adsorption within spherical, cylindrical and slit-shaped

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

CHEM 101 WINTER MAKEUP EXAM

CHEM 101 WINTER MAKEUP EXAM CHEM 101 WINTER 08-09 MAKEUP EXAM On the answer sheet (Scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on

More information

Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas

Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas Martin Lísal Institute of Chemical Process Fundamentals, CAS, Prague, Czech Republic Faculty of Science, J. E.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information One-of-A-Kind: A Microporous Metal-Organic Framework

More information

Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation

Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation J. Phys. Chem. C 2010, 114, 12039 12047 12039 Zeolitic Imidazolate Frameworks as H 2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation Sang Soo Han,*, Seung-Hoon Choi, and William A. Goddard

More information

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture Carbon Capture Workshop, Tuesday, April 3 rd, Texas A&M, Qatar Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture J. P. Sculley, J.-R. Li, J. Park, W. Lu, and H.-C. Zhou Texas A&M

More information

Force Fields in Molecular Mechanics

Force Fields in Molecular Mechanics Force Fields in Molecular Mechanics Rajarshi Guha (9915607) and Rajesh Sardar (9915610) March 21, 2001 1 Introduction With the advent of computers chemists have realized the utility of carrying out simulations

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Carbon Dioxide Sorption in an Organic Molecular Porous Material Hyunuk Kim, Yonghwi Kim, Minyoung Yoon, Soyoung Lim, Se Min Park, Gon Seo, Kimoon Kim*, National

More information

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of Electronic Supplementary Information Selective Sorption of Light Hydrocarbons on a Family of Metal-Organic Frameworks with different Imidazolate Pillars Hong-Ru Fu and Jian Zhang* State Key Laboratory

More information

Journal of Materials Chemistry A ARTICLE. Efficient Identification of Hydrophobic MOFs: Application in the Capture of Toxic Industrial Chemicals

Journal of Materials Chemistry A ARTICLE. Efficient Identification of Hydrophobic MOFs: Application in the Capture of Toxic Industrial Chemicals Journal of Materials Chemistry A Received th January 2xx, Accepted th January 2xx DOI:.39/xxxx www.rsc.org/ Efficient Identification of Hydrophobic MOFs: Application in the Capture of Toxic Industrial

More information

A NbO-type copper metal organic framework decorated. with carboxylate groups exhibiting highly selective CO 2

A NbO-type copper metal organic framework decorated. with carboxylate groups exhibiting highly selective CO 2 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information for A NbO-type copper metal organic framework decorated

More information

Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks (MOFs)

Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks (MOFs) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2010 Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks

More information

Molecular Dynamics Simulations of Carbon Dioxide, Methane, and. Mixture in Montmorillonite Clay Hydrates

Molecular Dynamics Simulations of Carbon Dioxide, Methane, and. Mixture in Montmorillonite Clay Hydrates Molecular Dynamics Simulations of Carbon Dioxide, Methane, and Their Mixture in Montmorillonite Clay Hydrates Item Type Article Authors Kadoura, Ahmad Salim; Nair, Arun Kumar Narayanan; Sun, Shuyu Citation

More information

Molecular Dynamics of Covalent Crystals

Molecular Dynamics of Covalent Crystals Molecular Dynamics of Covalent Crystals J. Hahn and H.-R. Trebin Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550 Stuttgart, Germany Abstract. A molecular mechanics-like

More information

boron nitride nanotubes

boron nitride nanotubes On validity of current force fields for simulations on boron nitride nanotubes Tamsyn A. Hilder*, Rui Yang, V. Ganesh, Dan Gordon, Andrey Bliznyuk, Alistair P. Rendell, and Shin-Ho Chung Computational

More information

Supporting Information

Supporting Information CD-MOF: A Versatile Separation Medium Karel J. Hartlieb, James M. Holcroft, Peyman Z. Moghadam, Nicolaas A. Vermeulen, Mohammed M. Algaradah, Majed S. Nassar, Youssry Y. Botros ǂ, Randall Q. Snurr, J.

More information

Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO 4-5

Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO 4-5 J. Phys. Chem. B 1998, 102, 7183-7189 7183 Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO 4-5 Thierry Maris, Thijs J. H. Vlugt, and Berend Smit* Department of Chemical Engineering,

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Supporting Information

Supporting Information Supporting Information Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal Organic Frameworks Quan-Guo Zhai, Xianhui Bu,* Chengyu Mao, Xiang Zhao, Pingyun Feng* Department

More information

ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED. Jan 12-13, 2014

ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED. Jan 12-13, 2014 ELEMENTS, COMPOUNDS AND MIXTURES AND HOW THEY ARE REPRESENTED Jan 12-13, 2014 WHAT ARE ELEMENTS? Elements are pure substances Made of only one kind of material Has definite properties, and Is the same

More information