UV-PCO DEVICE FOR INDOOR VOCS REMOVAL: INVESTIGATION ON MULTIPLE COMPOUNDS EFFECT

Size: px
Start display at page:

Download "UV-PCO DEVICE FOR INDOOR VOCS REMOVAL: INVESTIGATION ON MULTIPLE COMPOUNDS EFFECT"

Transcription

1 UV-PCO DEVICE FOR INDOOR VOCS REMOVAL: INVESTIGATION ON MULTIPLE COMPOUNDS EFFECT WH Chen *, JS Zhang and ZB Zhang Dept. of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 3244, USA ABSTRACT Current design models for UV-PCO devices often assume that the air contains only one VOC species or all the VOCs in the air can be treated on a non-interacting basis. However, trace-level multiple VOCs co-exist in most indoor environments. In this study, a UV-PCO reactor was tested in a full-scale chamber under low VOC concentration levels. Multiple versus single VOC tests were performed on selected groups of compounds. Removal efficiency for each compound was calculated. It was found that the interference effect among test VOCs were generally small in the 2-VOC and 3-VOC mixture tests performed on toluene, ethylbenzene, octane, decane and dodecane. However, in the 6 VOC mixture test, the interference effect among different VOCs became quite obvious, and compounds with lower removal efficiency in the single compound test appeared to also have relatively lower efficiency and more obvious delay period in the initial reaction. Results, although limited, indicate that interference between multiple VOCs may not be neglected for the PCO reactor for the indoor applications where the number of VOCs species is large and the TVOC concentration is high. INDEX TERMS VOCs, Photocatalytic oxidation, Indoor air quality, Multiple component system INTRODUCTION Volatile organic compounds (VOC) represent a major group of indoor contaminants. They are possible causes of sick building syndrome and may have adverse health effect. Application of ultraviolet photocatalytic oxidation (UV-PCO) for indoor VOCs removal has received growing interests in recent years. Different types of models, from simple effectiveness-ntu method (Zhang et al., 2003) to -D lumped parameter model (Hall et al., 998) and more complex 3-D CFD model (Hossain et al., 999), have been developed for analyzing the removal performance of PCO reactors. All these models assume that the air contains only one VOC species or all the VOCs in the air can be treated on a non-interacting basis. However, on the other hand, experiments results have confirmed the interference effect among different VOCs for the VOC mixture, especially under high concentration levels. For example, Turchi et al. (995) tested a mixture of isopropanol, acetone and methanol with a concentration of approximately 00 ppmv per compound using an annular tube flow reactor. They found that the behavior of the mixture can be described by a Langmuir-Hinshelwood (L-H) model with the effect of competition between different VOCs for the same type of adsorption sites considered in the denominator. Lichtin et al. (996) tested 4 binary mixtures of VOCs over Degussa P-25 TiO 2 with concentrations ranged from 50 ppm to % using either a batch reactor or an annular tube flow reactor. Both promotion and inhibition of removal of one component by the other as well as absence of significant effects have been observed. They suggested that the inhibition of removal could be a consequence of competition between reactants for adsorption sites on the catalyst, modification of the catalyst surface by adsorption of or reaction with a reactant, or strong adsorption of an intermediate product of degradation of the other reactant. As for the promotion of removal of some VOCs by trichloroethylene (TCE) and perchloroethylene (PCE), they attributed the promotion effect to the production of a transient product of decomposition of these reactants which can initiate or propagate chain oxidation and suggested that atomic chlorine plays an important role. No quantitative relationships were developed in this paper. Obee et al. (999) tested the mixture of butanol and propanal with various combinations of concentrations (0 2.7 ppm) using a glass-plate flow reactor. They found that small amount of butanol (i.e..0 ppm) could significantly reduce the oxidation of propanal, although the oxidation rates for each individual compound lied in the linear range at these low concentrations. However, the decrease of butanol oxidation rate by the addition of small amount of propanal was not significant. No quantitative relationships were developed in this paper. Since most of IAQ applications involve multiple VOC species at low concentrations (ppb to very low ppm), it is important to determine how significant the interference effects can be under typical indoor concentration levels among different VOCs and to describe these effects quantitatively in model whenever possible. * Corresponding author wchen3@syr.edu 398

2 This paper presents full-scale chamber test results of a UV-PCO reactor under low concentration levels (i.e. < mg/m 3 for most VOCs) using single compounds, binary VOC mixtures, a triple VOC mixture and a 6-VOC mixture, respectively. No such data have been reported previously in the literature. The purpose is to assess the significance of interference effects among different VOCs for indoor applications. RESEARCH METHODS PCO Reactor for Testing The PCO reactor tested was a prototype structured honeycomb in-duct unit. It consists of two layers of honeycomb monoliths coated with TiO 2 -based catalyst and a bank of three 25 W germicidal UV lamps centered in between. Test Procedures All the tests were conducted in a 54.4 m 3 full-scale stainless steel chamber (4.88m x 3.66m x 3.05m high or 6ft x 2ft x 0ft high) using a pull-down test procedure under a controlled temperature of 23 ± 0.5 o C and relative humidity of 50 ± 5%. The PCO reactor was installed in the test box on the return duct of chamber HVAC system and the recirculation flow rate through the reactor was controlled at 360 m 3 /h (800 CFM) for all the tests. Between each test, the PCO reactor was flushed by humid clean air for at least overnight. An empty chamber test was performed first to investigate the possible effects of chamber characteristics (i.e. air tightness and sink effect) on test results for the air cleaners. Detailed description of the pull-down test procedure and empty chamber test results can be found in Chen et al. (2005). The dynamic period was hour for all the tests, except for the 6 VOC mixture test which had a 2-hour dynamic period. Test VOCs Table lists the tests performed during this study. Two aromatic hydrocarbons (toluene and ethylbenzene) and three alkanes (octane, decane and dodecane) were selected for single VOC, binary and triple VOC mixture tests. A mixture of 6 VOCs, which cover major chemical categories and a wide range of molecular weight and boiling point for VOCs commonly found indoors, was also tested. Detailed information of the challenge VOC mixture and their properties can be found in Chen et al. (2005). Table Summary of Tests Performed Test Compound Test Date Note Toluene 2/3/04 Toluene (II) 2/9/04 Repeat test Ethylbenzene 2/20/04 Toluene + Ethylbenzene 2/2/04 Octane 2/25/04 Decane 2/27/04 Decane (II) 5/3/04 Repeat test Dodecane 5/0/04 Dodecane (II) 5/24/04 Repeat test Dodecane (III) 5/25/04 Repeat test Dodecane (IV) 5/26/04 Repeat test Dodecane (V) 5/27/04 Repeat test Octane + Decane 2/26/04 Octane + Decane + Dodecane 5/4/04 6 VOC mixture: Toluene, Ethylbenzene, Octane, Decane, Dodecane, Undecane, Hexane, Dichloromethane, Tetrachloroethylene,,2-Dichlorobenzene, Formaldehyde, Acetaldehyde, n-hexanal, 2-Butanone, Cyclohexanone, and 2-Butanol 3//04 VOC Sampling and Analysis For quantitation of individual VOC, air samples were collected on the return duct of the chamber using sorbent tubes (Tenax TA, 0.2mg). These sample tubes were then analyzed by either an ATD GC/MS (Automated Thermal Desorber Gas Chromatograph/Mass Spectrometer) or GC/FID (Flame Ionization Detector) system to determine the concentration of each individual compound excluding formaldehyde and acetaldehyde. For formaldehyde and acetaldehyde, DNPH-Silica cartridges were used to collect samples and then analyzed by a HPLC system. The measurement uncertainty for individual VOC was estimated to be ± 5%. 3982

3 RESULTS AND DISCUSSIONS Figure shows the measured VOC concentration decay vs. time for each compound tested. Concentration (mg/m^3) 0 0. dodecane dodecane (II) dodecane (III) dodecane (IV) dodecane (V) dodecane in 3-VOC mixture dodecane in 6-VOC mixture C o nc en tra tio n (m g /m ^3 ) 0 0. decane decane (II) decane in 2-VOC mixture decane in 3-VOC mixture decane in 6-VOC mixture (a) Dodecane (b) Decane C o n c e n tra tio n (m g /m ^ 3 ) 0 0. octane occane in 2-VOC mixture octane in 3-VOC mixture occane in 6-VOC mixture Concentration (mg/m^3) 0 0. toluene toluene (II) toluene in 2-VOC mixture toluene in 6-VOC mixture ethylbenzene ethylbenzene in 2-VOC mixture ethylbenzene in 6-VOC mixture (c) Octane (d) Toluene and Ethylbenzene Figure Experimental data: single compound vs. multiple compounds Assuming perfect mixing in the chamber and neglecting sink effect and air leakage rate, the mass-balance for a test VOC under full-recirculation mode during the dynamic period can be written as: V dc dt = Q η C(t) ( t 0) (C = C 0 at t = 0) () where, V test chamber volume, C contaminant concentration inside the chamber, Q volumetric air flow rate through the PCO reactor η - single-pass removal efficiency or fractional conversion as stated in Zhang (2003) Cin Cout η = C in If η does not change during the test period, an analytical solution can be obtained: Q η t V C( t) = C e (2a) or 0 Q C( t)) = ln( C ) η t V ln( 0 (2b) 3983

4 As shown by Figure, the VOC concentration decay followed the exponential decay well in all tests except for the results from 6 VOC mixture test. Therefore, the single-pass efficiency was calculated by least-square fit of experimental data to Eq. (2b) for these tests and results are summarized in Table 2. For the 6 VOC mixture test, the removal characteristics was different for different VOCs. For some compounds (i.e. toluene, octane), the removal rates were slow at the beginning and became larger later during the test period, which made the direct fitting of all experimental data to Eq. (2b) inappropriate. Therefore, a 2-h average removal efficiency was defined based on the time-averaged VOC concentration during the test period (Chen et. al, 2005) and reported in Table 2. Results show that the maximum difference was 0% for all the repeat tests, suggesting a good repeatability of the test method. For the 2-VOC and 3-VOC mixture tests, the addition of other compound either somewhat reduced the removal efficiency of the target VOC or had no significant effect. For example, the removal efficiency of dodecane was almost the same in the 3-VOC mixture test as that in single compound test, while the removal efficiency reduced by a factor of 2 (largest in these tests) for octane in the 3-VOC mixture test. On the other hand, the high R 2 values of least-square fit indicate that the removal efficiency was nearly constant within the tested concentration range, which further suggests that the reaction was in the linear range ( st order reaction with a constant rate coefficient) with respect to each compound in the mixture. This seems contradictory to the decrease of removal efficiency observed for some compound (i.e. octane in 3-VOC mixture test), because fitting a simple st order reaction well means that there was no obvious competitive adsorption between different VOCs in the mixture for the available sites on the catalyst surface. Therefore, the removal efficiency should not have obvious decrease unless mechanism other than competitive adsorption took into effect. However, since the decrease of removal efficiency was within a factor of.4 for most compounds in the 2-VOC and 3-VOC mixture test, the results are still meaningful and suggest that the interference effects among test VOCs under the experimental concentration levels were generally small considering the uncertainty of VOC concentration measurement. As for the 6 VOC mixture test, the interference effect among different VOCs became quite obvious. The reactions of some compounds (i.e. octane, toluene) on the catalyst surface seemed to be prohibited by the coexistence of other VOCs at relatively high concentration levels at the beginning, which was possibly due to the competition of the available adsorption sites. Once the other more reactive VOCs have been decomposed, the reactions for these compounds became faster. The 2-h average efficiency for each compound in the 6 VOC mixture test was significantly smaller than that obtained from single compound test, suggesting that the interference effect became stronger as more VOCs were added into the mixture and the TVOC concentration went up. In addition, compounds with lower removal efficiency in the single compound test appeared to also have relatively lower efficiency and more obvious delay period in the initial reaction during the 6 VOC mixture test. Table 2 Summary of Calculated Single-pass Efficiency for Each Test Compound Test VOC Compound Single-pass Fit by Regression Relative Efficiency η Slope (Qη/V) R 2 Effectiveness* (%) Toluene Toluene (II) Toluene in 2-VOC Toluene in 6-VOC.8** 0.27 Ethylbenzene Ethylbenzene in 2-VOC Ethylbenzene in 6-VOC 2.6** 0.34 Octane Octane in 2-VOC Octane in 3-VOC Octane in 6-VOC.** 0.7 Decane Decane (II) Decane in 2-VOC Decane in 3-VOC Decane in 6-VOC 2.5** 0.29 Dodecane Dodecane (II) Dodecane (III) Dodecane (IV) Dodecane (V)

5 Dodecane in 3-VOC Dodecane in 6-VOC 4.0** 0.45 * Relative Effectiveness was calculated as the ratio of single-pass efficiency of a compound in mixture to that of a compound as a single test VOC; ** The efficiency was 2-h average removal efficiency. CONCLUSION AND IMPLICATIONS A full-scale PCO reactor has been tested on selected VOC and mixtures to evaluate the effect of interference between multiple VOCs on removal efficiency for indoor applications. Results show that:. UV-PCO is a promising technology. The tested PCO reactor did totally remove all the test compounds (except dichloromethane) in the 6 VOC mixture test, although the relative time required for degradation was different for different compounds. 2. Whether the interference effect for multiple VOC system has to be considered depends on the number of coexisting VOC species, their properties as well as TVOC concentration. In the 2-VOC and 3-VOC mixture tests performed on toluene, ethylbenzene, octane, decane and dodecane, the removal efficiency was nearly constant and the interference effect among test VOCs were generally small within the tested concentration range. However, in the 6 VOC mixture test, the interference effect became quite obvious and the affinity of a compound for the adsorption sites on the catalyst surface might have played an important role on the relative quickness of its removal in the mixture. Brown (2002) reported that the maximum mean TVOC concentration in established dwellings was only 0.32 mg/m 3, in which neglecting the interference effect in modeling may be acceptable. However, in new dwellings and offices after renovation, the TVOC concentration could reach as high as mg/m 3 (Brown, 2002). Treating the VOCs on a non--interacting basis may significantly overestimate the performance of PCO reactor for this situation. 3. Literature review of single compound test results show that the reaction rate is in the linear range under low concentrations (i.e., less than several ppm) for most VOCs. In this concentration range, the interference effect should not occur significantly based on the competitive adsorption theory. More systematic research is needed to determine whether the L-H model with the effect of competition between different VOCs for adsorption sites considered can predict the mixture performance based on the single VOC test data under the concentration levels in typical indoor applications. ACKNOWLEDGEMENT The authors are grateful for the financial support from Niagara Mohawk - a National Grid Company, NYSERDA, STAR Center and CASE Center at Syracuse University. REFERENCES Brown S.K., Volatile organic pollutants in new and established buildings in Melbourne, Australia, Indoor Air 2, pp Chen W., Zhang J.S., and Zhang Z., Performance of air cleaners for removing multiple volatile organic compounds in indoor air, ASHRAE Transactions, (), pp 0-4. Hall, R. J., Bendfeldt P., Obee T. N., and Sangiovanni J. J., 998. Computational and Experimental Studies of UV/Titania Photocatalytic Oxidation of VOCs in Honeycomb Monoliths, J. Adv. Oxid. Technol. Vol. 3, No. 3, pp Hossain, Md. M., Raupp G. B., Hay S.O., and Obee T.N., 999. Three-Dimensional Developing Flow Model for Photocatalytic Monolith Reactors, AIChE Journal, Vol. 45, No. 6, pp Lichtin N.N., Avudaithai M., Berman E., and Grayfer A., 996. TiO 2 -photocatalyzed oxidative degradation of binary mixtures of vaporized organic compounds, Solar Energy Vol. 56, No. 5, pp Timothy N. Obee, and Stephen O. Hay, 999. The Estimation of Photocatalytic Rate Constants Based on Molecular Structure: Extending to Multi-component Systems, J. Adv. Oxid. Technol. Vol. 4, No. 2, pp Turchi C.S., Rabago R., and Jassal A.S., 995. Destruction of volatile organic compound (VOC) emissions by photocatalytic oxidation (PCO): Benchscale test results and cost analysis, Sematech Inc., Technology Transfer # A ENG. Zhang Yinping, Yang Rui, and Zhao Rongyi, A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds, Atmospheric Environment 37, pp

Test Report in accordance CDPH-IAQ

Test Report in accordance CDPH-IAQ Scan Underlay ApS Smedeskovvej 38 Dalgas Avenue 50 8464 Galten 8000 Aarhus C Denmark Denmark voc@eurofins.com www.eurofins.com/voc-testing Test Report in accordance CDPH-IAQ Date 6 January 2015 1 Sample

More information

VOC EMISSION TEST REPORT ISO 16000

VOC EMISSION TEST REPORT ISO 16000 Proxy A/S Gothersgade 12, 1.th 1123 København K DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC

More information

Test Report in accordance CDPH-IAQ

Test Report in accordance CDPH-IAQ Hilti Entwicklungsgesellschaft GmbH Hiltistraße 6 86916 Kaufering Germany Test Report in accordance CDPH-IAQ Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing

More information

VOC TEST REPORT CDPH

VOC TEST REPORT CDPH Baux AB Östermalmsgatan 26A 114 26 Stockholm SWEDEN Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT CDPH 29 September 2017

More information

Test Report ROMA USA LLC. Product Emissions of Furniture in accordance with. Cradle to Cradle section 5.8 ECODOMUS SATIN BASE TR.

Test Report ROMA USA LLC. Product Emissions of Furniture in accordance with. Cradle to Cradle section 5.8 ECODOMUS SATIN BASE TR. Test Report ROMA USA LLC Product Emissions of Furniture in accordance with Cradle to Cradle section 5.8 ECODOMUS SATIN BASE TR March 2015 Client: ROMA USA LLC 554 North Avenue NW, Suite B Atlanta, GA 30318

More information

VOC EMISSION TEST REPORT BREEAM NOR

VOC EMISSION TEST REPORT BREEAM NOR Hey di AS Tretjerndalsveien 68 Pb 13 2017 Frogner NORWAY Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information

More information

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation SAMPLE DESCRIPTION & TESTING PARAMETERS Tesoro Woods submitted exemplars of their

More information

VOC TEST REPORT AgBB

VOC TEST REPORT AgBB Bostik SA 253 rue du Président Wilson 93211 La Plaine St Denis Cedex FRANCE Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT

More information

VOC TEST REPORT M1. 23 October Regulation or protocol Conclusion Version of regulation or protocol

VOC TEST REPORT M1. 23 October Regulation or protocol Conclusion Version of regulation or protocol Würth Oy Würthintie 1 11710 Riihimäki Finland Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT M1 23 October 2017 1 Sample

More information

VOC TEST REPORT CDPH

VOC TEST REPORT CDPH Adolf Würth GmbH und Co. KG Reinhold-Würth Str. 12-17 74653 Künzelsau GERMANY Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT

More information

Test Report. Muovihaka Oy. Product Emissions in accordance with the Swedish Building Material Assessment Ultima graphite.

Test Report. Muovihaka Oy. Product Emissions in accordance with the Swedish Building Material Assessment Ultima graphite. Test Report Muovihaka Oy Product Emissions in accordance with the Swedish Building Material Assessment July 2012 Client: Muovihaka Oy Kuusimäentie 12 01900 Nurmijärvi Finland Date: 26 July 2012 Testing

More information

Test Report- VOC emission regulations in Europe

Test Report- VOC emission regulations in Europe Protox Fabriksvej 19 6000 Kolding DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 13 August 2015 Test Report- VOC emission regulations

More information

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Replaces: Dated: Author: Date: AM-No.: New New Nils Arne Jentoft 18.06.2014 0 CHANGES This procedure is new. 1 SCOPE This document describes

More information

Test Report- VOC emission regulations in Europe

Test Report- VOC emission regulations in Europe Protox Aps Fabriksvej 19 6000 Kolding Denmark Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 14 November 2014 Test Report- VOC emission

More information

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No. G12871B_02

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No. G12871B_02 Polyseam A/S Ravneveien 7 Linnestad Næringsområde 3174 Revetal Norway Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 09 October 2014

More information

M1 Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04

M1 Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04 Würth International AG Aspermontstrasse 1 CH-7000 Chur Switzerland M1 Test Report Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 28

More information

VOC TEST REPORT M1. 6 April Regulation or protocol Conclusion Version of regulation or protocol

VOC TEST REPORT M1. 6 April Regulation or protocol Conclusion Version of regulation or protocol Dana Lim A/S Københavnsvej 220 4600 Køge DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT M1 6 April 2017 1 Sample

More information

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04 Sika Technology AG Tüffenwies 16 8048 Zürich SWITZERLAND EMICODE Test Report 1 Sample Information Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing

More information

ASTM D5116 Emissions Test Report with CDPH SM V Loading Scenarios per Cradle to Cradle Standard v3.0 Sect. 5.8

ASTM D5116 Emissions Test Report with CDPH SM V Loading Scenarios per Cradle to Cradle Standard v3.0 Sect. 5.8 ROMA USA LLC 554-B North Ave. NW Atlanta, GA 30318 Eurofins Product Testing NA 180 Blue Ravine Road, Suite B Folsom, CA 95630 voc@eurofinsus.com www.eurofinsuspt.com ASTM D5116 Emissions Test Report with

More information

VOC TEST REPORT CDPH

VOC TEST REPORT CDPH Euro Trade Flooring SL. Pol. Ind. Can Estella c/galileo no. 11 08635 Sant Esteve Sesrovires BARCELONA SPAIN Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing

More information

Test Report- VOC emission regulations in Europe

Test Report- VOC emission regulations in Europe CONICA AG Industriestr. 26 CH-8207 Schauffhausen Switzerland Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 31 July 2014 Test Report-

More information

IMPROVEMENT OF IAQ BY COATING OF ADSORPTIVE POLYMER: THE DEVELOPMENT OF MATERIAL, EVALUATION AND ITS APPLICATION

IMPROVEMENT OF IAQ BY COATING OF ADSORPTIVE POLYMER: THE DEVELOPMENT OF MATERIAL, EVALUATION AND ITS APPLICATION IMPROVEMENT OF IAQ BY COATING OF ADSORPTIVE POLYMER: THE DEVELOPMENT OF MATERIAL, EVALUATION AND ITS APPLICATION M Hori 1*, T Ohkawara 2, S Handa 2 and T Wakui 1 1 Yokohama National University; Yokohama,

More information

Test Report- VOC emission regulations in Europe

Test Report- VOC emission regulations in Europe L Isolante K-flex Srl Via Leonardi da Vinci 36 20877 Roncello (MB) Italy Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 29 August 2013

More information

VOC TEST REPORT EMICODE

VOC TEST REPORT EMICODE Bostik SA 253 rue du Président Wilson 93211 La Plaine St Denis Cedex FRANCE Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT

More information

VOC TEST REPORT EMICODE

VOC TEST REPORT EMICODE Polyseam Ltd Shaw Park, Silver Street Huddersfield, West Yorkshire, HD5 9AF UK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT

More information

VOC TEST REPORT M1. 16 August Regulation or protocol Conclusion Version of regulation or protocol

VOC TEST REPORT M1. 16 August Regulation or protocol Conclusion Version of regulation or protocol SGS-Doors A/S Thrigesvej 8-16 7430 Ikast DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT M1 16 August 2016 1 Sample

More information

VOC TEST REPORT Indoor Air Comfort

VOC TEST REPORT Indoor Air Comfort LENTEX S.A. Powstanców Slaskich 54 42-700 Lubliniec POLAND Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT Indoor Air Comfort

More information

VOC TEST REPORT Tarkett Indoor Air Quality

VOC TEST REPORT Tarkett Indoor Air Quality Tarkett France 2, av Francois Sommer B.P. 40333 08203 SEDAN Cedex FRANCE Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information

More information

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA 94804-3614 Ph. 510-236-2325; Fax 510-236-2335 E-mail info@berkeleyanalytical.com VOC Emissions from Building Products Customer & Building

More information

Emission measurements according to, M1 (3 appendices)

Emission measurements according to, M1 (3 appendices) issued by an Accredited Testing Laboratory Contact person Ulrika Johansson 2017-01-30 6F024225-1 1 (6) Chemistry, Materials and Surfaces +46 10 516 53 22 ulrika.johansson@sp.se Accred. No. 1002 Testing

More information

Test Report. Tremco-Illbruck GmbH & Co KG. Product Emissions Test (AgBB/DIBt Test Protocol) Butyl und Bitumenprimer. June 2011

Test Report. Tremco-Illbruck GmbH & Co KG. Product Emissions Test (AgBB/DIBt Test Protocol) Butyl und Bitumenprimer. June 2011 Test Report Tremco-Illbruck GmbH & Co KG Product Emissions Test (AgBB/DIBt Test Protocol) Butyl und Bitumenprimer June 2011 Client: Tremco-Illbruck GmbH & Co KG Von Der Wettern Str. 27 51149 Köln Germany

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Hunter Douglas Europe BV Piekstraat 2 3071 EL Rotterdam NETHERLANDS Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC

More information

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Turk J Chem 24 (2000), 131 139. c TÜBİTAK Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Naciye KILIÇ University of Uludağ,

More information

EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR

EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR Proceedings: Indoor Air 25 EXPERIMENT OF NANOMETER PHOTOCATALYTIC TO ELIMINATE DILUTE FORMALDEHYDE IN AIR S Geng 1*, R Wang 1, X Han 2, L Wang 1 1 Engineering Institute of Engineer Corps PLA University

More information

SURVEY OF CHEMICALS EMISSION FACTORS FROM BUILDING MATERIALS FOR INTERIORS

SURVEY OF CHEMICALS EMISSION FACTORS FROM BUILDING MATERIALS FOR INTERIORS SURVEY OF CHEMICALS EMISSION FACTORS FROM BUILDING MATERIALS FOR INTERIORS Hitomi Yoshida Japan Testing Center for Construction Materials, Japan Abstract Indoor air pollution in buildings is caused by

More information

Vapor Intrusion Sampling Options: Performance Data for Canisters, Badges, and Sorbent Tubes for VOCs

Vapor Intrusion Sampling Options: Performance Data for Canisters, Badges, and Sorbent Tubes for VOCs Vapor Intrusion Sampling Options: Performance Data for s, Badges, and Sorbent Tubes for VOCs Linda S. Coyne SKC Inc., 863 Valley View Road, Eighty Four, PA 1533 George Havalias, Maria C. Echarte American

More information

Test Report- VOC emission regulations in Europe

Test Report- VOC emission regulations in Europe Scan Underlay ApS Dalgas Avenue 50 8000 Aarhus C Denmark Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voctesting Date 6 January 2015 Test Report VOC

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Baux AB Östermalmsgatan 26A 114 26 Stockholm SWEDEN Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC TEST REPORT Indoor

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD AM Technology 1 Fore Street London EC2Y 5EJ UNITED KINGDOM Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC TEST REPORT

More information

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD Wasziederij De Vesting BV Trasweg 12 5712 BB Someren NETHERLANDS Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Polyseam AS Ravnevejen 7 3174 Revetal NORWAY Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC TEST REPORT Indoor Air

More information

USING OZONE AIR CLEANERS TO REMOVE INDOOR VOLATILE ORGANIC COMPOUNDS

USING OZONE AIR CLEANERS TO REMOVE INDOOR VOLATILE ORGANIC COMPOUNDS USING OZONE AIR CLEANERS TO REMOVE INDOOR VOLATILE ORGANIC COMPOUNDS KP Yu 1*, GWM Lee 1, CP Hsieh 1, SH Yang 1 1 Graduate Institute of Environmental Engineering, National Taiwan University 71, Chou-Shan

More information

VOC TEST REPORT Indoor Air Comfort

VOC TEST REPORT Indoor Air Comfort Masureel Int. NV Kantstraat 1 8531 Hulste-Harelbeke BELGIUM Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing VOC TEST REPORT Indoor Air Comfort

More information

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD Scan Underlay Production ApS Ursusvej 16 8464 Galten DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Polyseam AS Ravnevejen 7 3174 Revetal NORWAY Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC TEST REPORT Indoor Air

More information

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA 94804-3614 Ph. 510-236-2325; Fax 510-236-2335 E-mail info@berkeleyanalytical.com VOC Emissions from Building Products Customer & Building

More information

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD POLYSEAM LTD St Andrews Road HD1 6SB Huddersfield UNITED KINGDOM Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information

More information

VOC EMISSION TEST REPORT Indoor Air Comfort

VOC EMISSION TEST REPORT Indoor Air Comfort Protox ApS Fabriksvej 19 6000 Kolding DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC EMISSION

More information

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 77A mini TD and 70A GC Application Note Environmental Authors Tingting Bu, Xiaohua Li Agilent Technologies (Shanghai) Co.,

More information

A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment

A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment Journal of Bioresources and Bioproducts. 2018, 3(2) 78-83 ORIGINAL PAPER DOI: 10.21967/jbb.v3i2.113 A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment Jun

More information

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Application Note Abstract The Massachusetts Department of Environmental Protection (MassDEP) developed the Method

More information

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD

VOC EMISSION TEST REPORT Indoor Air Comfort GOLD IEdiSa - GRAPHENSTONE Calle Carpinteros, 25 41520 EL VISO DEL ALCOR (Sevilla) SPAIN Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing

More information

Gas phase photocatalytic oxidation of VOC using TiO 2 -containing paint: influence of NO and relative humidity

Gas phase photocatalytic oxidation of VOC using TiO 2 -containing paint: influence of NO and relative humidity Air Pollution XV 585 Gas phase photocatalytic oxidation of VOC using TiO 2 -containing paint: influence of NO and relative humidity Th. Maggos 1, P. Leva 2, J. G. Bartzis 3, Ch. Vasilakos 1 & D. Kotzias

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Knauf Insulation sprl Rue de Maestricht 95 4600 VISÉ BELGIUM Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC TEST

More information

2B Technologies, Inc. An InDevR Company

2B Technologies, Inc. An InDevR Company 2B Technologies, Inc. An InDevR Company Technical Note No. 40 UV-Absorbing Interferences in Ozone Monitors Date: 22 April 2015 Author: John Birks Background Ozone measurements by absorbance of the 253.7-nm

More information

THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES

THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES J Kouzaki 1*, S Sato 1, S Nakai 1, Y Shirasuna 2, K Hirano 2 1 Graduate School of Environmental and Information

More information

RS DYNAMICS ECOPROBE 5. Portable IR/PID Gas Analyzer PID. PID and IR Analyzers

RS DYNAMICS ECOPROBE 5. Portable IR/PID Gas Analyzer PID. PID and IR Analyzers RS DYNAMICS ECOPROBE 5 Portable IR/PID Gas Analyzer PID + IR PID and IR Analyzers General ECOPROBE 5 has two autonomous analyzers in one case. The combination of analyzers provides a set of data designed

More information

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS Alberto Strini and Elisa Bossi ITC, Consiglio Nazionale delle Ricerche, San Giuliano Mil., Italy Abstract In

More information

Test Report. Glava AS. Emission test of Ecophon Venus according to M1 classification. October / November Smedeskovvej 38, DK-8464 Galten

Test Report. Glava AS. Emission test of Ecophon Venus according to M1 classification. October / November Smedeskovvej 38, DK-8464 Galten Test Report Glava AS Emission test of Ecophon Venus according to M1 classification October / November 2006 Client: Glava AS Nybråtveien 2 1832 Askim Norge Date: 8 th of November 2006 Testing Laboratory:

More information

Test report No. MAIC Chamber emission test of a leather sample.

Test report No. MAIC Chamber emission test of a leather sample. Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut WKI Fraunhofer WKI Bienroder Weg 54 E 38108 Braunschweig Germany ZHEJIANG KANCEN NEW MATERIAL TECHNOLOGY CO.,LTD Attn: Mr. Shen Min Min

More information

Analysis of volatile organic compounds emitted from aircraft carpets: comparison using headspace and dynamic chamber tests

Analysis of volatile organic compounds emitted from aircraft carpets: comparison using headspace and dynamic chamber tests Journal of Chongqing University (English Edition) [ISSN 1671-8224] Vol. 13 No. 1 March 2014 doi:10.11835/j.issn.1671-8224.2014.01.01 To cite this article: WANG Chao, YANG Xu-Dong, GAO Peng. Analysis of

More information

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine?

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? A B C D C 4 + Cl C 3 + Cl C 3 + Cl C 3 Cl + C 3 + Cl 2 C 3 Cl + Cl C 3 Cl + Cl C 2 Cl + Cl (Total 1

More information

VOC TEST REPORT Indoor Air Comfort GOLD

VOC TEST REPORT Indoor Air Comfort GOLD Jotun Coating (Zhang Jia Gang) Co., Ltd No. 15 Changjiang Road Jiangsu Yangtze River International Chemical Industry Park 215634 Jingang Town CHINA Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten

More information

Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine

Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine, Sarah Oldfield, Charles B. Mullins, David T. Allen In this communication, we present experimental results from

More information

Questions, Myths and Misconceptions about Using Photoionization Detectors

Questions, Myths and Misconceptions about Using Photoionization Detectors Questions, Myths and Misconceptions about Using Photoionization Detectors Solvent, fuel and other VOC vapours are pervasively common in many workplace environments. Increased awareness of the toxicity

More information

CURRENT STATUS OF THE UCR-EPA ENVIRONMENTAL CHAMBER PROJECT

CURRENT STATUS OF THE UCR-EPA ENVIRONMENTAL CHAMBER PROJECT CURRENT STATUS OF THE UCR-EPA ENVIRONMENTAL CHAMBER PROJECT By William P. L. Carter College of Engineering Center for Environmental Research and Technology (CE-CERT), University of California, Riverside,

More information

Advanced oxidation of organic pollutants in air non-thermal plasmas

Advanced oxidation of organic pollutants in air non-thermal plasmas UNIVERSITÀ DEGLI STUDI DI PADVA Department of Chemical Sciences Advanced oxidation of organic pollutants in air non-thermal plasmas Ester Marotta and Cristina Paradisi PlasTEP, Berlin, December 5-6, 212

More information

Chapter 3. Distinguishing between Reaction Intermediates and. Spectators: A Kinetic Study of Acetone Oxidation Using

Chapter 3. Distinguishing between Reaction Intermediates and. Spectators: A Kinetic Study of Acetone Oxidation Using Chapter 3 Distinguishing between Reaction Intermediates and Spectators: A Kinetic Study of Acetone Oxidation Using Ozone on a Silica-Supported Manganese Oxide Catalyst 3.1 Introduction This chapter concentrates

More information

THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION

THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION THE EFFECT OF PHOTOCATALYTIC BUILDING MATERIALS IN URBAN DEPOLLUTION Th. Maggos, D. Kotzias, J.G Bartzis, N. Moussiopoulos Photocatalysis provides a very promising solution for pollutants removal compared

More information

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA 94804-3614 Ph. 510-236-2325; Fax 510-236-2335 E-mail info@berkeleyanalytical.com VOC Emissions from Building Products Customer & Building

More information

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation Technical Overview Introduction Inert flow path technology Modern GC and GC/MS instrumentation is an important analytical tool

More information

AA-ANSIBIFMA-Jun2408, Page 1 of 16

AA-ANSIBIFMA-Jun2408, Page 1 of 16 356-001-01AA-ANSIBIFMA-Jun2408, Page 1 of 16 BERKELEY ANALYTICAL ASSOCIATES, LLC 815 Harbour Way South, Suite 6 Richmond, CA 94804-3612 Ph. 510-236-2325; Fax 510-236-2335 E-mail baalab@berkeleyanalytical.com

More information

Test report No. MAIC Testing and evaluating of a digital printed paper material according to AgBB/DIBt-scheme.

Test report No. MAIC Testing and evaluating of a digital printed paper material according to AgBB/DIBt-scheme. Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut WKI Fraunhofer WKI Bienroder Weg 54 E 3818 Braunschweig Germany HP Espanola, S.L. Attn: Mr. Adrian Liga Cami de Can Graells, 1-21 8174 Sant

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE SYNERGETI EFFET OF UV LIGHT ON TOLUENE DEOMPOSITION Y DIELETRI ARRIER DISHARGE R. Pyagay, 1 J-S. Kim, 2. Ahn, 2 Y-S. Yim 2 1 hemistry department, Lomonosov Moscow State University, Moscow 119-992, Russia

More information

Experiment 5 Reactions of Hydrocarbons

Experiment 5 Reactions of Hydrocarbons Experiment 5 Reactions of ydrocarbons ydrocarbons are compounds that only contain carbon and hydrogen. ydrocarbons can be classified further by the type of bonds they contain. If a hydrocarbon contains

More information

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1)

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1) In order to fully understand photo-catalytic oxidation we must first learn a little about the metal catalyst involved (Titanium in our case). Titanium has been stated as being light, strong and anti-corrosive,

More information

Jonathan M. Liebmann et al. Correspondence to: John N. Crowley

Jonathan M. Liebmann et al. Correspondence to: John N. Crowley Supplement of Atmos. Chem. Phys., 18, 12045 12059, 2018 https://doi.org/10.5194/acp-18-12045-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

More information

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax

BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA Ph ; Fax BERKELEY ANALYTICAL 815 Harbour Way South, Suite 6 Richmond, CA 94804 Ph. 510-236-2325; Fax 510-236-2335 E-mail info@berkeleyanalytical.com VOC Emissions from Building Products Customer & Building Product

More information

High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017

High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017 High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017 Y.J. Mange D.B. Milligan V.S. Langford B.J. Prince M. Perkins C. Anderson T. Wilks Who is using Syft Technologies

More information

MOLEKULE INC. TEST REPORT

MOLEKULE INC. TEST REPORT MOLEKULE INC. TEST REPORT SCOPE OF WORK VOC Emissions on Part C Test 1 REPORT NUMBER 103658037GRR-002 ISSUE DATE 18-October-2018 PAGES 8 DOCUMENT CONTROL NUMBER Per GFT-OP-10 (6-March-2017) 2018 INTERTEK

More information

Supplement for Understanding primary and secondary sources of. ambient carbonyl compounds in Beijing using the PMF model

Supplement for Understanding primary and secondary sources of. ambient carbonyl compounds in Beijing using the PMF model 1 2 3 4 5 6 7 8 9 Supplement for Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model W. T. Chen 1, M. Shao 1, S. H. Lu 1, M. Wang 1, L. M. Zeng 1, B.

More information

TEST REPORT Formaldehyde Reduction

TEST REPORT Formaldehyde Reduction Sigma Coatings Amsterdamseweg 14 1422 AA Uithoorn The Netherlands Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark VOC@eurofins.com www.eurofins.com/voc-testing TEST REPORT Formaldehyde

More information

[ a ppl ic at ion no t e ]

[ a ppl ic at ion no t e ] [ a ppl ic at ion no t e ] Fast A nalysis of A ldehydes and K etones by A C Q U I T Y U P L C Mark E. Benvenuti Waters Corporation, Milford, MA, USA INT RO DUC T ION Aldehydes and ketones are products

More information

Real-Time Detection: From Gisclard et al.: A Simple Device for Air Analysis. AIHA Quarterly, 14(1):23-25 (1953)

Real-Time Detection: From Gisclard et al.: A Simple Device for Air Analysis. AIHA Quarterly, 14(1):23-25 (1953) Real-Time Detection: 1953 From Gisclard et al.: A Simple Device for Air Analysis. AIHA Quarterly, 14(1):23-25 (1953) Sampling Gases and Vapors Gas: A state of matter characterized by very low density and

More information

Chapter 3: Source Measurement Techniques

Chapter 3: Source Measurement Techniques Chapter 3 Source Measurement Techniques Measurement Methods Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography Method 25, Determination of Total Gaseous Non-Methane Organic

More information

Chlorinated volatile organic compounds (VOC)

Chlorinated volatile organic compounds (VOC) Mass Spectrometry On-Line Monitoring and MS 2 Product Characterization of TiO 2 /UV Photocatalytic Degradation of Chlorinated Volatile Organic Compounds Rosana M. Alberici, Maria Anita Mendes, Wilson F.

More information

Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor

Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor Korean J. Chem. Eng., 21(3), 721-725 (2004) Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor Myung-Jin Kim, Wooseok Nam and Gui Young Han Department of Chem. Eng., Sungkyunkwan

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ Application Note Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ -3 Application Note Abstract This application note demonstrates the

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

DEVELOPMENT OF A PHOTOREACTING FABRIC FILTER FOR SIMULTANEOUS REMOVAL OF VOC VAPORS AND FINE PARTICLES

DEVELOPMENT OF A PHOTOREACTING FABRIC FILTER FOR SIMULTANEOUS REMOVAL OF VOC VAPORS AND FINE PARTICLES DEVELOPMENT OF A PHOTOREACTING FABRIC FILTER FOR SIMULTANEOUS REMOVAL OF VOC VAPORS AND FINE PARTICLES O. H. Park, and C. S. Kim Department of Environmental Engineering, Pusan National University, Pusan,

More information

Supporting Information

Supporting Information Supporting Information Robust Co-Catalytic Performance of Nanodiamonds Loaded on WO 3 for the Decomposition of Volatile Organic Compounds under Visible Light Hyoung il Kim, a Hee-na Kim, a Seunghyun Weon,

More information

The UCR Environmental Chamber Database for Mechanism Evaluation

The UCR Environmental Chamber Database for Mechanism Evaluation Outline The UCR Environmental Chamber Database for Mechanism Evaluation William P. L. Carter CE-CERT, University of California, Riverside December 7, 26 Database used in SAPRC-99 evaluation and Current

More information

DEVELOPMENT OF A NEXT-GENERATION ENVIRONMENTAL CHAMBER FACILITY FOR CHEMICAL MECHANISM AND VOC REACTIVITY RESEARCH

DEVELOPMENT OF A NEXT-GENERATION ENVIRONMENTAL CHAMBER FACILITY FOR CHEMICAL MECHANISM AND VOC REACTIVITY RESEARCH DEVELOPMENT OF A NEXT-GENERATION ENVIRONMENTAL CHAMBER FACILITY FOR CHEMICAL MECHANISM AND VOC REACTIVITY RESEARCH SUMMARY OF PROGRESS AND DRAFT RESEARCH PLAN BY WILLIAM P. L. CARTER COLLEGE OF ENGINEERING

More information

EPA TO-17 Volatile Organic Compounds

EPA TO-17 Volatile Organic Compounds EPA TO-17 Volatile Organic Compounds Method TO-17 is used to analyze samples for volatile organic compounds collected on multi-bed sorbent tubes, which are thermally desorbed and cryo-focused on the capillary

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Influence Of The Substrates On Water-based Paints Emissions Fabio Abbà,1*, Mikaela Decio 2, Tiziano Cerulli 2 and Roberto Leoni 2

Influence Of The Substrates On Water-based Paints Emissions Fabio Abbà,1*, Mikaela Decio 2, Tiziano Cerulli 2 and Roberto Leoni 2 Influence Of The Substrates On Water-based Paints Emissions Fabio Abbà,1*, Mikaela Decio 2, Tiziano Cerulli 2 and Roberto Leoni 2 1 Vinavil S.p.A. R & D Laboratory, Via Toce, 7, 28844 Villadossola, Italy

More information

Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor

Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor Korean J. Chem. Eng., 23(5), 773-778 (2006) SHORT COMMUNICATION Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor Min-Gyu Lee,

More information

EVALUATION OF UV-PCO AIR CLEANERS PERFORMANCE AT LOW LEVEL VOCS CONCENTRATION

EVALUATION OF UV-PCO AIR CLEANERS PERFORMANCE AT LOW LEVEL VOCS CONCENTRATION EVALUATION OF UV-PCO AIR CLEANERS PERFORMANCE AT LOW LEVEL VOCS CONCENTRATION Alireza Aghighi A Thesis in The Department of Building, Civil and Environmental Engineering Presented in Partial Fulfillment

More information