Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Bio-Inspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction Zhong-Sheng Cai, 1, Yi Shi, 2, Song-Song Bao, 1 Yang Shen, 1 Xing-Hua Xia,*,2 and Li-Min Zheng*,1 1 State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing , P. R. China 2 State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing , P. R. China Corresponding authors: lmzheng@nju.edu.cn; xhxia@nju.edu.cn These authors contributed equally. S1

2 Table S1. Crystallographic data for 1Co. Temperature 298 K V (Å 3 ) (11) Empirical formula C 7 H 9 CoO 5 P Z 4 Fw ρ calcd (g cm -3 ) Crystal system monoclinic F(000) 532 Space group P2 1 /n GOF a (Å) (4) R1, wr2 [I >2σ(I)] a , b (Å) (2) R1, wr2 (all data) a , c (Å) (4) ( ρ) max, ( ρ) min / e Å , β (deg) (1) CCDC number a R 1 = Σ F o - F c /Σ F o. wr 2 = [Σw(F 2 o -F 2 c ) 2 /Σw(F 2 o ) 2 ] 1/2 Table S2. Selected bond lengths [Å] and angles [deg] for 1Co. Co1-O (18) O1-Co1-O2B 97.91(7) Co1-O1W 2.113(2) O1-Co1-O1C (7) Co1-O (18) O1W-Co1-O (7) Co1-O3A (18) O1W-Co1-O3A (8) Co1-O2B (18) O1W-Co1-O2B 93.99(7) Co1-O1C (18) O1C-Co1-O1W 91.37(7) P1-O (19) O2-Co1-O3A 87.18(7) P1-O (19) O2-Co1-O2B (7) P1-O (2) O1C-Co1-O (7) O1-Co1-O1W 89.03(7) O2B-Co1-O3A 89.87(7) O1-Co1-O (6) O1C-Co1-O3A 92.17(7) O1-Co1-O3A 86.05(7) O1C-Co1-O2B (7) Symmetry codes: A: 1+x, y, z; B: 1/2+x, 1/2-y, -1/2+z; C: 1/2+x, 1/2-y, 1/2+z Table S3. Fitting parameters of the PXRD patterns of compounds 1Mn, 1Fe, 1Ni and 1Cu. Compound 1Mn 1Fe 1Ni 1Cu Space group P2 1 /n P2 1 /n P2 1 /n P2 1 /n Scale a (Å) b (Å) c (Å) β (deg) V (Å 3 ) GOF R wp S2

3 Table S4. HER activities of various catalysts in neutral solution. Catalysts Overpot ential/ mv Tafel slope/ mv dec 1 η/ mv TOF/ s -1 Reference 1Co-ns In this work Ni-S film N/A N/A J. Mater. Chem. A, 2014, 2, Co-P-B/rGO N/A N/A J. Mater. Chem. A, 2014, 2, Co-S film J. Am. Chem. Soc., 2013, 135, Co 2 L 2 (SO 4 ) 2 ( H 2 O) N/A N/A N/A CrystEngComm., 2014, 16, 8492 FePS 3 rgo 5 55 N/A N/A N/A ACS Energy Lett., 2016, 1, WP NAs/CC N/A N/A ACS Appl. Mater. Interfaces, , 6, FeP/CC N/A N/A ACS Appl. Mater. Interfaces, 2014, 6, H 2 -CoCat N/A N/A Nature Mater., 2012, 11, 802 Cu 2 MoS 4 /FT O N/A N/A Energy Environ. Sci., 2012, 5, Co-MoS 3 film N/A N/A Chem. Sci., 2012, 3, 2515 MoS 3 film N/A N/A Chem. Sci., 2012, 3, 2515 Co 2 P/NPG N/A N/A Nano lett., 2016, 16, 4691 S3

4 Table S5. Comparative overpotentials of HER activity on different electrocatalysts in the neutral solution and the seawater. Catalyst Neutral solution Seawater Reference 1Co-ns 84 mv 205 mv In this work cobalt-sulfide film 43 mv ~500 mv J. Am. Chem. Soc., 2013, 135, Co P B/rGO 168 mv ~200 mv J. Mater. Chem. A, FePS j =-10 ma cm -2 rgo-feps j = -10 Co/N-codoped nanocarbon ma cm j = -10 ma cm , 2, j=-10 ACS Energy Lett., 2016, ma cm -2 1, j=-10 ACS Energy Lett., 2016, ma cm -2 1, j=-10 Nanoscale, 2015, 7, ma cm S4

5 Calculation of TOF The turn over number (TOF) was calculated from the HER polarization curve in Figure 3a. The total number of active sites was determined from the ICP-OES result. Number of active sites (in mol) for 1Co-ns, m = 3.26 x 10-8 mol From the number of active sites, the per-site turnover frequency (in s -1 ) was calculated using the following equation: TOF=J A/2 F m (1) where J stands for the anodic current density, A stands for the electrode surface area, F is the Faraday constant (96485 C mol -1 ) and m is the mole amount of Co 2+ ions. The factor 1/2 in the equation represents that two electrons are required to form one hydrogen molecule from two protons (2H + +2e - = H 2 ). TOF for 1Co-ns = s V vs. RHE (2) S5

6 Figure S1. Calibration of the Ag/AgCl electrode. Variation in the potential difference between the Ag/AgCl and RHE reference electrodes with time in 0.1 M N 2 -saturated tris- HNO 3 (ph = 7.4) neutral aqueous solution. Figure S2. SEM image of 1Co bulk. S6

7 Figure S3. Left: Light floccules obtained after the reaction of Co(CH 3 COO) 2 and 3-moppH 2 in water at room temperature under sonication. Right: Gel-like state of the floccules after the addition of a small amount of water. Figure S4. SEM image of the floccules. Up panel shows the element mapping images of Co, P, C, and O in the floccules. S7

8 Figure S5. The energy dispersive X-ray spectroscopy (EDS) pattern (left) of the floccules and the corresponding element amount (right). Figure S6. XPS spectra of 1Co. S8

9 Figure S7. XPS spectra of the floccules of 1Co (1Co-ns). The chemical nature of the sub-monolayer sample was investigated by X-ray photoelectron spectroscopy (XPS). Each element has characteristic binding energies associated with electronic transitions from each of its core atomic orbitals, which together with small shifts from the chemical environment, give rise to a characteristic set of peaks in the XPS spectrum. As observed, the XPS spectra of 1Co and 1Co-ns show the presence of cobalt, phosphorus and oxygen (Figures S6 and S7). The P2p region of both samples exhibits two sharp peaks with ev and ev binding energies (area ratio of 2:1) corresponding to the 2p3/2 and 2p1/2 core levels of the central phosphorus atoms in the phosphate species. In the Co region, two broad sets of signals corresponding to the 2p3/2 (781.9 ev) and 2p1/2 (797.8 ev) core levels are observed. The O1s signals are centered for both materials at ev. The P/Co/O atomic ratios for Co-ns (7.09:6.09:29.58) are similar to those of Co-bulk (7.75:6.52:32.23), indicating the same atomic composition. As the Co2p, P 2p and O1s signals of the 1Co and 1Co-ns are nearly in the same range as those of the cobalt phosphate inorganic compound, we tentatively conclude that the epitaxial organic skeleton helps optimize the electronic states of this coordination, further influencing the chemical nature and potential applications. S9

10 Figure S8. AFM image of 1Co-ns dispersed in water with the corresponding height values. Figure S9. The 3D visualization of the AFM image in Figure S8. Height / nm nm 1.48 nm 1.49 nm 1.49 nm 1.48 nm Distance / µm Height / nm nm 1.48 nm 1.55 nm 1.52 nm 1.51 nm Distance / µm Figure S10. The corresponding height profile with the same number labeling as shown in Figure S S10

11 Figure S11. PXRD patterns for the 1Co samples obtained by routes a and route b. Transmittance / a.u. 1Co-route Co-bulk-route a a 1Co-route Co-bulk-route b b Wavenumber / cm -1 Figure S12. IR spectra for the 1Co samples obtained by routes a and route b. S11

12 Figure S13. (A) HER polarization curves in tris-hno 3 solution (ph=7.4) obtained on 1Co-ns with different loading amount as indicated. (B) Tafel plots of 1Co-ns with the corresponding loading amounts derived from the early stages of the HER polarization curves. Figure S14. HER polarization curves in tris-hno 3 solution (ph=7.4) obtained on several catalysts as indicated in the figure. S12

13 Figure S15. (A) HER polarization curves obtained on 1Co-ns in D 2 O and H 2 O solution of tris-hno 3 (ph=7.4) as indicated in the figure. (B) Tafel plots of 1Co-ns in the corresponding solution derived from the early stages of the HER polarization curves. Figure S16. HER polarization curves of the 1Co-ns catalyst in 0.5 M H 2 SO 4 solution and tris- HNO 3 solution (ph=7.4). S13

14 Figure S17. HER polarization curves of the 1Co-ns catalyst in tris-hno 3 solution at different ph values (as indicated in the figure). Figure S18. HER polarization curves in artificial seawater obtained on 1Co-ns with different loading amounts as indicated. S14

15 Figure S19. (A) Electrochemical device used in the gas chromatography (GC) measurements. (B) GC measurements of products catalyzed by 1Co-ns in the artificial seawater. H 2 -standard: pure H 2 collected from the gas cylinder; H 2 -product: gas collected from the working electrode. Transmittance / a.u. Mn-bulk Fe-bulk Co-bulk Ni-bulk Cu-bulk Wavenumber / cm -1 Figure S20. IR spectra of 1Mn, 1Fe, 1Co, 1Ni, and 1Cu. S15

16 Weight / % Mn-bulk Co-bulk Ni-bulk Fe-bulk Co-ns Cu-bulk T / o C Figure S21. TG curves of 1Mn, 1Fe, 1Co, 1Ni and 1Cu. S16

17 S ,200 2,100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1,100 1, hkl_phase 0.00 % ,000 16,000 15,000 14,000 13,000 12,000 11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1, ,000-2,000-3,000-4,000-5,000-6,000-7,000-8,000-9, ,000 3,800 3,600 3,400 3,200 3,000 2,800 2,600 2,400 2,200 2,000 1,800 1,600 1,400 1,200 1, ,500 1,400 1,300 1,200 1,100 1, hkl_phase 0.00 % Figure S22. The PXRD patterns of 1Mn, 1Fe, 1Co, 1Ni and 1Cu. 1Mn 1Fe 1Ni 1Cu

18 Figure S23. XPS spectra of 1Mn. Figure S24. XPS spectra of 1Fe. Figure S25. XPS spectra of 1Ni. S18

19 Figure S26. XPS spectra of 1Cu. Figure S27. (A) HER polarization curves obtained on several catalysts with different metal centers in 0.5 M H 2 SO 4 solution at 20 mvs -1. (B) Relationship between the HER electrocatalytic activity and the number of d electrons of the center transition metal (Mn II, Fe II, Co II, Ni II, and Cu II ). The current densities were obtained at V (vs. RHE). The dashed volcano line is shown for guidance only. S19

20 References: 1. Jiang, N.; Bogoev, L.; Popova, M.; Gul, S.; Yano, J.; Sun, Y. Electrodeposited nickelsulfide films as competent hydrogen evolution catalysts in neutral water. J. Mater. Chem. A 2014, 2, Li, P. P.; Jin, Z. Y.; Xiao, D. A one-step synthesis of Co P B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J. Mater. Chem. A, 2014, 2, Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, Gao, X. L.; Gong, Y.; Zhang, P.; Yang, Y. X.; Meng, J. P.; Zhang, M. M.; Yin, J. L.; Lin, J. H. Metal(II) complexes based on 4-(2,6-di(pyridin-4-yl)pyridin-4-yl)benzonitrile: structures and electrocatalysis in hydrogen evolution reaction from water. CrystEngComm. 2014, 16, Mukherjee, D.; Austeria, P. M.; Sampath, S. Two-dimensional, few-layer phosphochalcogenide, FePS 3 : a new catalyst for electrochemical hydrogen evolution over wide ph range. ACS Energy Lett. 2016, 1, Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all ph values. ACS Appl. Mater. Interfaces 2014, 6, Tian, J. Q.; Liu, Q.; Liang, Y. H.; Xing, Z. C.; Abdullah, M. A.; Sun, X. P. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces 2014, 6, Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. A Janus cobalt-based catalytic material for electro-splitting of water. Nat. Mater. 2012, 11, Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.; Artero, V.; Wong, L. H.; Loo, J.; Barber, J. Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci. 2012, 5, Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, S20

21 11. Zhuang, M. H.; Ou, X. W.; Dou, Y. B.; Zhang, L. L.; Zhang, Q. C.; Wu, R. Z.; Ding, Y.; Shao, M. H.; Luo, Z. T. Polymer-embedded fabrication of Co 2 P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation. Nano lett. 2016, 16, S21

Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst

Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst Supporting information for: Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst Nikolay Kornienko 1, Joaquin Resasco 2, Nigel Becknell 1, Chang-Ming Jiang

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Ultrasmall tungsten phosphide nanoparticles

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three-dimensional amorphous tungsten-doped

More information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets Supporting Information Available ot Electron of Au Nanorods Activates the Electrocatalysis of ydrogen Evolution on MoS Nanosheets Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction Supporting Information Electronic Modulation of Electrocatalytically Active Center of Cu 7 S 4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction Qun Li, Xianfu Wang*, Kai Tang,

More information

Supporting Information

Supporting Information Supporting Information Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water Bo You, Xuan Liu, Guoxiang Hu, Sheraz Gul, Junko Yano, De-en

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic supplementary information Self-Supported Three-Dimensional Mesoporous Semimetallic

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Supporting Information

Supporting Information Supporting Information Nest-like NiCoP for Highly Efficient Overall Water Splitting Cheng Du, a Lan Yang, a Fulin Yang, a Gongzhen Cheng a and Wei Luo a,b* a College of Chemistry and Molecular Sciences,

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information for: A Highly Efficient Electrocatalyst Based on

More information

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This ournal is The Royal Society of Chemistry 2014 Supporting Information Electrodeposited nickel-sulfide films as competent

More information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting Supporting Information for Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting Zhengfei Dai,,, Hongbo Geng,,, Jiong Wang, Yubo Luo, Bing Li, ǁ Yun Zong, ǁ Jun Yang, Yuanyuan

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts Jin-Xian Feng, Si-Yao Tong, Ye-Xiang Tong, and Gao-Ren Li

More information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst Supporting Information Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction Mingjie Zang, [a] Ning Xu, [a] Guoxuan Cao, [a] Zhengjun Chen, [a] Jie Cui, [b]

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Supporting Information Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Xin Xiao, Dekang Huang, Yongqing Fu, Ming Wen, Xingxing Jiang, Xiaowei Lv, Man Li, Lin Gao,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide Miguel Cabán-Acevedo 1, Michael L. Stone 1, J. R. Schmidt 1, Joseph G. Thomas 1, Qi Ding 1, Hung- Chih Chang 2, Meng-Lin

More information

Supplementary Figure 1 SEM image for the bulk LCO.

Supplementary Figure 1 SEM image for the bulk LCO. Supplementary Figure 1 SEM image for the bulk LCO. S1 Supplementary Figure 2 TEM and HRTEM images of LCO nanoparticles. (a)-(c) TEM, HRTEM images, and SAED pattern for the 60 nm LCO, respectively. (d)-(f)

More information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Xuxu Wang, ab Zhaolin Na, a Dongming Yin, a Chunli Wang, ab Yaoming Wu, a Gang

More information

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supportting Information for Bimetallic Thin Film NiCo-NiCoO 2 @NC as Superior

More information

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation Supporting Information Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation Gan Jia, Yingfei Hu, Qinfeng Qian, Yingfang

More information

η (mv) J (ma cm -2 ) ma cm

η (mv) J (ma cm -2 ) ma cm J (ma cm -2 ) 250 200 150 100 50 0 253 mv@10 ma cm -2-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 η (mv) Supplementary Figure 1 Polarization curve of NiSe. S1 FeO x Fe-Se Intensity (a. u.) 720 717 714 711

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information

Supporting Information

Supporting Information Supporting Information Ultra-thin Alumina Masks Assisted Nanopore Patterning on Monolayer MoS 2 for Highly Catalytic Efficiency in Hydrogen Evolution Reaction Shaoqiang Su, Qingwei Zhou, Zhiqiang Zeng,

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan Supporting Information Co 3 O 4-δ Quantum Dots as a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

More information

Tungsten Phosphide Nanorod Arrays Directly Grown on Carbon Cloth: A Highly Efficient and Stable Hydrogen Evolution Cathode at All ph Values

Tungsten Phosphide Nanorod Arrays Directly Grown on Carbon Cloth: A Highly Efficient and Stable Hydrogen Evolution Cathode at All ph Values Supporting Information Tungsten Phosphide Nanorod Arrays Directly Grown on Carbon Cloth: A Highly Efficient and Stable Hydrogen Evolution Cathode at All ph Values Zonghua Pu, Qian Liu, Abdullah M. Asiri,,

More information

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Supporting Information Pomegranate-Like N, P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Yu-Yun Chen,,,# Yun Zhang,,# Wen-Jie Jiang,, Xing Zhang,, Zhihui

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Supporting information

Supporting information a Supporting information Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron- Embedded Porous Carbons Derived from Metal Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information MoS 2 nanosheet/mo 2 C-embedded N-doped

More information

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis Chem, Volume 3 Supplemental Information In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis Chengyi Hu, Qiuyu Ma, Sung-Fu Hung, Zhe-Ning Chen, Daohui

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Supporting Information Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Teng Wang, Yanru Guo, Zhenxing Zhou, Xinghua Chang, Jie Zheng *,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information One-Dimensional MoO2-Co2Mo3O8@C Nanorods: A Novel and High

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

FeP and FeP 2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction

FeP and FeP 2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information and Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction

More information

Supporting Information. Molybdenum Polysulfide Anchored on Porous Zr Metal Organic Framework to Enhance the Performance of Hydrogen Evolution Reaction

Supporting Information. Molybdenum Polysulfide Anchored on Porous Zr Metal Organic Framework to Enhance the Performance of Hydrogen Evolution Reaction Supporting Information Molybdenum Polysulfide Anchored on Porous Zr Metal Organic Framework to Enhance the Performance of Hydrogen Evolution Reaction Xiaoping Dai, *,, Mengzhao Liu,, Zhanzhao Li, Axiang

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Amorphous carbon supported MoS 2 nanosheets as effective

More information

Supporting Information. Direct Observation of Structural Evolution of Metal Chalcogenide in. Electrocatalytic Water Oxidation

Supporting Information. Direct Observation of Structural Evolution of Metal Chalcogenide in. Electrocatalytic Water Oxidation Supporting Information Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation Ke Fan *,, Haiyuan Zou, Yue Lu *,, Hong Chen, Fusheng Li, Jinxuan Liu, Licheng

More information

Supporting Information

Supporting Information Supporting Information Stabilizing double perovskite for effective bifunctional oxygen electrocatalysis in alkaline conditions Bin Hua a, Yi-Fei Sun a, Meng Li a, Ning Yan b, *, Jian Chen c, Ya-Qian Zhang

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Hierarchical CoP/Ni 5 P 4 /CoP microsheet arrays as

More information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Trifunctional Ni-N/P-O-codoped graphene electrocatalyst

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon.

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon. Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2015 Achieving Stable and Efficient Water Oxidation by Incorporating NiFe Layered Double Hydroxide

More information

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation Supporting Information Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation Jing Jiang*, Lan Huang, Xiaomin Liu, Lunhong Ai* Chemical Synthesis and Pollution

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 )

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 ) Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes Shizhang Qiao ( 乔世璋 ) s.qiao@adelaide.edu.au The University of Adelaide, Australia 18 19 January 216, Perth 1.

More information

Supporting Information

Supporting Information Supporting Information NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn Air Batteries Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng,

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

bifunctional electrocatalyst for overall water splitting

bifunctional electrocatalyst for overall water splitting Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Hierarchical Ni/NiTiO 3 derived from NiTi LDHs: a bifunctional electrocatalyst

More information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Xiujun Fan, * Yuanyue Liu, ς Zhiwei Peng, Zhenhua Zhang, # Haiqing Zhou, Xianming Zhang, Boris

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Ti mesh (TM) was provided

More information

Supporting information for

Supporting information for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information for N-doped Carbon Shelled Bimetallic Phosphates for Efficient Electrochemical

More information

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information for One-pot synthesis of bi-metallic PdRu tripods

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Synthesis of 1T-MoSe 2 ultrathin

More information

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of 100-800 nm and lengths up to several tens of micrometers with flexible,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting

Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting Supporting Information Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting Jiayuan Li,,# Jing Li,,# Xuemei Zhou, Zhaoming Xia, Wei Gao, Yuanyuan Ma,,*,,*

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Tannic acid (TA), silver nitrate

More information

Supporting information. A Metal-Organic Framework-Derived Porous Cobalt Manganese Oxide Bifunctional

Supporting information. A Metal-Organic Framework-Derived Porous Cobalt Manganese Oxide Bifunctional Supporting information A MetalOrganic FrameworkDerived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid NaAir/Seawater Batteries Mari Abirami a,, Soo Min Hwang a,, *, Juchan Yang a,

More information

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Majid Asnavandi +, Bryan H. R. Suryanto +, Wanfeng Yang, Xin Bo and Chuan Zhao* School of Chemistry,

More information

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 218 Electronic Supplementary Information Iridium(III) phosphors with bis(diphenylphorothioyl)amide

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Enhancing photocatalytic activity of graphitic carbon nitride by co-doping with P and C for efficient hydrogen generation Hao Wang, a Bo Wang, a Yaru Bian, a Liming Dai

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Scalable Two-Step Synthesis of Nickel-Iron Phosphide Electrodes for Stable and Efficient Electrocatalytic Hydrogen Evolution Wai Ling Kwong a, Cheng Choo Lee b, and

More information

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Supporting Information MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic Nanoparticles: Low Pt Contents and Robust Activity towards Electrocatalytic Oxygen Reduction Reaction Li-Li Ling,

More information

Supporting Information

Supporting Information Supporting Information Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS 2 Nanosheets and Hydrogenated Graphene Xiuxiu Han,, Xili Tong,,* Xingchen Liu, Ai Chen, Xiaodong Wen, Nianjun Yang,,,*

More information

Supporting Information

Supporting Information Supporting Information Exploring the detection of metal ions by tailoring the coordination mode of V-shaped thienylpyridyl ligand in three MOFs Li-Juan Han,, Wei Yan, Shu-Guang Chen, Zhen-Zhen Shi, and

More information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Self-Growth-Templating Synthesis of

More information

N, S-Containing MOF Derived Dual-Doped Mesoporous Carbon as Highly. Effective Oxygen Reduction Reaction Electrocatalyst

N, S-Containing MOF Derived Dual-Doped Mesoporous Carbon as Highly. Effective Oxygen Reduction Reaction Electrocatalyst Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information N, S-Containing MOF Derived Dual-Doped

More information

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Supporting Information Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Jian Zhao, a,b,c,d Phong D. Tran,* a,c Yang Chen, a,c Joachim

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information for Enhanced cycling stability of boron-doped lithium-rich

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Boosting the hydrogen evolution

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Supporting Information Self-Supported Nickel Phosphosulphide Nanosheets

More information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium Supporting Information One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium Afriyanti Sumboja, a Tao An, a Hai Yang Goh, b Mechthild Lübke,

More information

B.E. (ev)

B.E. (ev) a C 1s C=C b O 1s C-O C-O/C=N C=O/C-N O-C=O C=O Co-O 291 289 287 285 283 B.E. (ev) 540 538 536 534 532 530 528 B.E. (ev) Supplementary Figure 1. XPS C 1s and O 1s spectra of the Co-NG. Supplementary Figure

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Carbon-Coated Hollow Mesoporous FeP Microcubes:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information N-Carbon coated P-W 2 C composite as Efficient Electrocatalyst

More information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique Supporting Information Design 3D hierarchical architectures of carbon and highly active transition-metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithiumair batteries Dongxiao Ji, Shengjie

More information

Supporting Information for

Supporting Information for Supporting Information for Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping towards Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Supporting Informantion

Supporting Informantion Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Informantion Hierarchical Whisker-on-sheet NiCoP with Adjustable Surface structure

More information

Supporting Information

Supporting Information Supporting Information A Co-Ca Phosphonate Showing Humidity Sensitive Single Crystal-to-Single Crystal Structural Transformation and Tunable Proton Conduction Properties Song-Song Bao, Nan-Zhu Li, Jared

More information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage Supporting Information In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage Yingbin Tan, [a] Ming Liang, [b, c] Peili Lou, [a] Zhonghui Cui,

More information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Electronic Supplementary Material Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Li Qin 1,2,5, Ruimin Ding 1,2, Huixiang

More information