Catalytic Partial Oxidation of Methane with Rhodium Catalysts for Hydrogen Production

Size: px
Start display at page:

Download "Catalytic Partial Oxidation of Methane with Rhodium Catalysts for Hydrogen Production"

Transcription

1 Catalytic Partial Oxidation of Methane with Rhodium Catalysts for Hydrogen Production L.D.Vella 1, S. Specchia 1, B. Lorenzut 2, T. Montini 2, P. Fornasiero 2, V. Specchia 1 1. Dipartimento di Scienze dei Materiali ed Ingegneria Chimica - Politecnico di Torino, Torino - ITALY 2. Dipartimento di Scienze Chimiche and INSTM - Università di Trieste, Trieste ITALY 1. Introduction Natural gas (NG) is an abundant source of energy, but large portions of the world s reserves of NG remain virtually untouched and need to be effectively used. Almost all options for NG exploitation involve its initial conversion to syngas (H 2 and CO) that can then be used in a wide range of applications. Actually the most important industrial route to syngas production is steam reforming of CH 4 ; this process is carried out in large-sized reactors with high energy demand [1], suffering mainly of high energy consumption, high investment costs and H 2 /CO ratios 3 which do not suit all important downstream processes [2]. Catalytic partial oxidation (CPO) of CH 4 offers a promising alternative; it is a mildly exothermic process (H = kj mol -1 ) with H 2 /CO ratio of about 2, resulting appropriate for subsequent methanol production or Fischer-Tropsch processes for synthetic liquid fuel. Moreover, the procurement of H 2 for fuel cells, in particular in their application for the propulsion of future vehicles, presents a further driving force for a more compact syngas production technology [1]. CPO of CH 4 over metal catalysts was intensively studied; nickel [3-5], cobalt [5-7] and noble metal based catalysts [8-10] showed high activities. It is widely accepted that with metal catalysts a first oxidation of methane to CO 2 and H 2 O in the first part of the catalytic bed until O 2 is exhausted, is followed in the final portion of the catalytic bed by reforming of the remaining CH 4 with CO 2 and H 2 O initially formed [8-10]. However, at extremely high temperatures and very short contact time (SCT), it is possible that syngas is formed directly [9-13]. In this case, syngas is obtained by flowing through a small catalytic bed volume the reactants for few milliseconds and producing H 2 and CO through direct partial oxidation reactions. This approach has been widely investigated both in its fundamental and technological topics [14]. Recent studies [15] have shown that fixed bed reactors in catalytic partial oxidation, offer the best performance for syngas production. The aim of the present work was the design of the optimal fixed bed structure made of Rh/-Al 2 O 3 particles obtained with two different preparation methods for syngas production from CH 4 and O 2 through a SCT-CPO reactor. 2. Experimental 2.1. Catalysts Preparation and Characterization The research was primarily focused on designing a catalyst thermally stable under extreme working conditions and resistant to deactivation by aging (coking and sintering). Two different structures based on Rh over Al 2 O 3 were developed: an egg-shell catalyst (hereafter named A) and egg-yolk catalyst (hereafter named B). The A catalyst carried Rh on the external support surface and the other, B, contained the same load of Rh embedded into the porous carrier. Both catalysts were loaded with 0.5% in weight of Rh. III-1, 1

2 The egg-shell Rh catalyst was prepared by Rh deposition over commercial -Al 2 O 3 spheres of 1 mm in diameter. Rh was deposited by incipient wetness impregnation technique, using 10% wt aqueous solution of Rh(NO 3 ) 3. The solution was added drop-wise at room temperature to the -Al 2 O 3 spheres which were stirred until no solution was left. The asprepared spheres were left at rest overnight and then calcined in air in an oven at 600 C for 6 h [16]. The egg-yolk Rh catalyst was synthesized starting from the preparation of stabilized Rh nanoparticles under Ar atmosphere at room temperature. HEAC16Br (a cationic surfactant) was used as protective agent for Rh metal particles. After the addition of Al(NO 3 ) 3 to the colloidal suspension of Rh nanoparticles, the resulting system was added drop-wise to NH 4 OH solution. The formed gel was aged and then filtered. Several washing cycles with NH 4 OH/NH 4 NO 3 buffer solution and distilled H 2 O were applied to remove the bromide ions from the surfactant. The obtained precipitate was suspended in 2-propanol under reflux, filtered, dried and calcined firstly at 500 C for 5 h and then for 5 h at 900 C [17]. Finally, the material was pressed, crushed and sieved to collect the fraction between 425 and 850 m. For both type of catalysts, 0.5% by weight of Rh was deposed to investigate the role of the two different structure. The morphology of as-prepared A and B catalysts was observed by FESEM (SEM FEI Quanta Inspect 200 LV apparatus) and TEM microscopy (Philips CM200 UT apparatus). The catalysts BET surface area was measured by means of N 2 adsorption with an automated gas sorption analyzer (Micromeritics ASAP 2010 M apparatus). The BET area of the two catalysts were high and very similar, between 152 and 157 m 2 g -1, in spite of the complete different preparation methods adopted. SEM micrographs enlightened an egg-shell distribution of the Rh for the A catalyst (Fig. 1), typical distribution due to the IWI method used for the catalyst preparation: the active component is present only in a thin external surface layer of the -Al 2 O 3 spheres but not in the internal pores. The thickness of the catalytic layer is approx 50 m. HRTEM analysis on B catalysts showed Rh nanoclusters of about 2 to 4 nm completely embedded in the Al 2 O 3 matrix, as expected with a typical egg-yolk configuration (Fig. 1). Fig. 1 SEM image of the A catalyst (left side: cross section of a sphere embedded in a resin matrix) and TEM image of B catalyst (right side). III-1, 2

3 2.2. Pilot Plant The experimental test can be divided into four main sections: (1) mixing and pre-heating; (2) reaction; (3) gas cooling; (4) gas analysis. In the first one, CH 4 and O 2 are mixed at room temperature and fed to the reactor where the mixture is pre-heated. The reactor was realized with two Inconel coaxial pipes (internal pipe: 15 mm i.d. and 2 mm wall thickness) with a resulting jacket which helps to improve the thermal insulation. The internal tube was covered with an oxidized layer of FeCrAlloy to avoid contacts between reactive gases and the nickel present in the Inconel alloy. The catalyst was arranged in a fixed bed of Rh/γ-Al 2 O 3 particles placed between two porous quartz disks. Upstream the catalytic bed there was a quartz particle bed (to complete the static mixing of O 2 and CH 4 ) followed by a SiC particle layer that promoted the pre-heating of the reagents mixture using the heat released from the reaction and provided a shield for the radiant energy from the reaction zone. After the reaction zone there was a layer of low thermal conductivity quartz particles to reduce the heat losses and allow the product stream to cool more slowly. The gas temperatures were monitored by two thermocouples located at the inlet and outlet of the catalytic bed, respectively. Once the products had left the reactor, a hygrometer determined the H 2 O concentration of the reaction gas mixture and afterwards part of the gas stream was sampled and analysed with a multiple gas analyzer (Uras, Caldos and Magnos modules from ABB) to measure H 2, CO, CO 2, CH 4 and O 2 concentrations. Then, the reacted gas stream was completely oxidized in a catalytic honeycomb burner, to avoid syngas release to the atmosphere. The CPO reaction was ignited by heating the reactor in a tubular oven up to 950 C and feeding a room temperature mixture of pure CH 4 and O 2 at a O 2 /CH 4 ratio equal to 0.5 (stoichiometric condition for partial oxidation). The reagents stream was heated by the hot particle segment upstream the catalytic bed, and once ignited the reactor remained thermally self-sustained by the heat released from the reaction. The start-up procedure took about 1 min and then the O 2 /CH 4 ratio was gradually increased to the operative desired value and maintained till to reach steady-state conditions. The chosen O 2 /CH 4 ratio to carry on the tests was 0.575, a value slightly above the stoichiometric one, which a previous research demonstrated to be the best one to maintain the reactor temperature in a proper range and obtain the best syngas yield [16]. The feed flow rate was adjusted accordingly to increase the WHSV from 130 to 450 Nl h -1 g cat Results and Discussion The so-prepared A and B catalysts were tested into the reactor in five different fixed bed structure configurations (1.5 g of catalyst were always present in the bed): (1) A catalyst fixed bed only; (2) B catalyst fixed bed only; (3) A/B catalysts mix 50%-50%, i.e. a fixed bed of a random A and B catalysts mixture; (4) A+B catalysts, 50%-50%, i.e. 1 st bed segment A catalyst, 2 nd bed segment B catalyst; (5) B+A catalysts, 50%-50%, i.e. 1 st bed segment B catalyst, 2 nd bed segment A catalyst. The obtained results from the catalytic activity tests of the different fixed bed configurations are reported in Figure 3 as CH 4 conversion, in Figure 4 as H 2 selectivity, in Figure 5 as CO selectivity, in Figure 6 as fixed bed inlet (T in ) and outlet (T out ) temperatures. The best value of CH 4 conversion was reached by B single catalyst, always over 90% in the whole range of WHSV. Instead the A single catalytic bed showed a lower performance and its conversion decreased always with the increase of the WHSV (Fig.2). The double catalyst beds had an intermediate behaviour between the two single catalyst beds. The same happened III-1, 3

4 to the H 2 selectivity curves where the best performance was reached by the B single catalyst showing values above 98% (Fig. 3). Fig. 2 CH 4 conversion vs. WHSV for different catalytic fixed beds. Fig. 3 H 2 selectivity vs. WHSV for different catalytic fixed beds. The CO selectivity curves had similar values, with an almost constant trend at medium-high WHSV except the B+A bed which started with lower values but reached to the same ones of A and A+B beds at high WHSV (Fig. 4). The inlet A catalyst bed temperature decreased significantly until 260 C with the increase of WHSV, while the outlet temperature increased until 1200 C; instead the inlet B catalyst bed had lower and more stable temperatures of A catalyst and always a T in higher than the corresponding T out (Fig. 5). III-1, 4

5 The different performance of the two type catalyst was probably due to different shape of the particles and Rh position on the γ-al 2 O 3 carrier; in the egg-shell configuration Rh is immediately accessible to reagents favouring short contact time reactions as direct partial oxidation of CH 4 while in the egg-yolk configuration the reagent must diffuse inside the pores of the catalyst thus promoting the total oxidation of CH 4 in the first part of the catalytic bed followed by the endothermic reforming reactions of the remaining CH 4 ; this was also confirmed by the higher T in and lower T out values recorded with catalytic beds where B catalyst was present in the fixed bed (see Fig. 5). Moreover, probably the irregular shape of particles of B catalyst increases the contact points between themselves by improving the heat transfer coefficient along the catalytic bed. Fig. 4 CO selectivity vs. WHSV for different catalytic fixed beds. Fig. 5 T in and T out temperatures vs. WHSV for the different catalytic fixed beds. III-1, 5

6 4. Conclusions Catalytic partial oxidation of NG for syngas production offers an excellent alternative to steam reforming. The present work investigated, in the WHSV range from 130 to 450 Nl h -1 g -1 cat, five different fixed bed structures using two different Rh-Al 2 O 3 -based catalyst both loaded with 0.5% by weight of Rh: a catalyst with Rh in egg-shell configuration and the other one with Rh in egg-yolk configuration. The best performances in term of CH 4 conversion (higher than 90%) and H 2 selectivity (higher than 98%) was obtained with the fixed bed realized only with the egg-yolk catalyst in the whole range of WHSV examined. Instead the fixed bed realized only with the egg-shell catalyst denoted the worst performance, decreasing with the increase of the WHSV. The fixed bed composed of various structures of the two catalysts denoted an intermediate behaviour between the two single catalyst beds. The different performance of the two catalyst type was probably due to the different shape of the particles and to the Rh position on the carrier itself. 5. References 1. Schwiedernoch, R., Tischer, S., Correa, C., Deutschmann, O.: Chemical Engineering Science, 58:633 (2003). 2. Zhu, J., Mujeebur Rahuman, M.S.M., van Ommen, J.G., Lefferts, L.: Applied Catalysis A General, 259:95 (2004). 3. Choudhary, V.R., Rane, V.H., Rajput, A.M.: Applied Catalysis A, 162:235 (1997). 4. Choudhary, V.R., Rane, V.H., Rajput, A.M.: Catalysis Letters, 22:289 (1993). 5. Choudhary, V.R., Rajput, A.M., Prabhakar, B.: Catalysis Letters, 15:363 (1992). 6. Choudhary, V.R., Sansare, S.D., Mamman, A.S.: Applied Catalysis A, 90:L1 (1992). 7. Choudhary, V.R., Rajput, A.M., Rane, V.H.: Catalysis Letters, 16:269 (1992). 8. Ashcroft, A.T., Vernon, P.D.F., Green, M.L.H.: Nature, 344:319 (1990). 9. Vermeriren, W.J.M., Blomsma, E., Jacobs, P.A.: Catalysis Today, 13:427 (1992). 10. Dissanayake, D., Rosynek, M.P., Kharas, K.C., Lunsford, J.H.: Journal of Catalysis, 132:117 (1991). 11. Hickman, D.A., Schmidt, L.D.: Science, 259:343 (1993). 12. Schmidt, L.D., Huff, M.: Catalysis Today, 21:443 (1994). 13. Hickman, D.A., Schmidt, L.D.: Catal. Lett., 17: 223 (1993). 14. Basini, L., Aasberg-Petersen, K., Guarinoni, A., Ostberg, M.: Catalysis Today, 64:9 (2001). 15. Hohn, K.L., Schmidt, L.D.: Applied Catalysis A General, 211:53 (2001). 16. Specchia, S., Negro, G., Saracco, G., Specchia, V.: Applied Catalysis B Environmental, 70:525 (2007). 17. Montini, T., Condò, A.M., Hickey, N., Lovey, F.C., De Rogatis, L., Fornasiero, P., Graziani, M.: Applied Catalysis B Environmental, 73:84 (2007). III-1, 6

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Journal of Natural Gas Chemistry 12(2003)205 209 Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Haitao Wang, Zhenhua Li, Shuxun Tian School of Chemical Engineering

More information

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts N.D. Charisiou 1,2, A. Baklavaridis 1, V.G. Papadakis 2, M.A. Goula 1 1 Department of Environmental

More information

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Supporing Information Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Chun-Jiang Jia, Yong Liu, Hans Bongard, Ferdi Schüth* Max-Planck-Institut für Kohlenforschung,

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING Ni-BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER

PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING Ni-BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER MAKARA, TEKNOLOGI, VOL. 9, NO. 2, NOPEMBER 25: 48-52 PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER Widodo W. Purwanto, M. Nasikin,

More information

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate An-Yuan Yin, Xiao-Yang Guo, Wei-Lin Dai*, Kang-Nian Fan Shanghai Key Laboratory of Molecular

More information

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Center for Sustainable Technologies Indian Institute of Science Bangalore IDF presentation

More information

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS Olaf Deutschmann 1, Lanny D. Schmidt 2, Jürgen Warnatz 1 1 Interdiziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg Im Neuenheimer

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Controllable integration of ultrasmall noble metal nanoparticles

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Influence of Ni based catalysts on CH 4 -CO 2 reforming reaction Hangjie Li 1, Dongming Shen 2, Xikun Gai 3,

More information

Elucidation of the Influence of Ni-Co Catalytic Properties on Dry Methane Reforming Performance

Elucidation of the Influence of Ni-Co Catalytic Properties on Dry Methane Reforming Performance 925 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Journal of Natural Gas Chemistry 13(2004)36 40 Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Qun Dong 1, Xiaofei Zhao 1, Jian Wang 1, M Ichikawa 2 1. Department of Petrochemical Engineering,

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Increasing olefins by H 2 and CH 4 addition to the catalytic partial oxidation of n-octane

Increasing olefins by H 2 and CH 4 addition to the catalytic partial oxidation of n-octane Applied Catalysis A: General 313 (2006) 63 73 www.elsevier.com/locate/apcata Increasing olefins by H 2 and CH 4 addition to the catalytic partial oxidation of n-octane G.J. Panuccio, L.D. Schmidt * Department

More information

METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS

METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS Bajopas Volume 2 Number 2 December, 29 Bayero Journal of Pure and Applied Sciences, 2(2): 149-154 Received: May, 29 Accepted: July, 29 METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS Abdullahi Nuhu Kano

More information

Hydrogen Peroxide Direct Synthesis: from Catalyst Preparation to Continuous Reactors

Hydrogen Peroxide Direct Synthesis: from Catalyst Preparation to Continuous Reactors Hydrogen Peroxide Direct Synthesis: from Catalyst Preparation to Continuous Reactors Pierdomenico Biasi 1, *, Sergio Zancanella 2, Francesco Pinna 3, Paolo Canu 2 and Tapio O. Salmi 1 1 Process Chemistry

More information

By Rogéria Amaral and Sébastien Thomas

By Rogéria Amaral and Sébastien Thomas Kinetics of CO 2 methanation over a Ni/alumina industrial catalyst By Rogéria Amaral and Sébastien Thomas Laboratoire de Matériaux, Surfaces et Procédés pour la Catalyse, Groupe Energie et Carburants pour

More information

Developing Carbon Tolerance Catalyst for Dry Methane Reforming

Developing Carbon Tolerance Catalyst for Dry Methane Reforming 745 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

La-promoted Ni/γ-Al 2 O 3 catalyst for autothermal reforming of methane

La-promoted Ni/γ-Al 2 O 3 catalyst for autothermal reforming of methane Korean J. Chem. Eng., 31(7), 1204-1210 (2014) DOI: 10.1007/s11814-014-0044-0 INVITED REVIEW PAPER INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 La-promoted Ni/γ-Al 2 O 3 catalyst for autothermal

More information

Supporting Information

Supporting Information Supporting Information Remarkable performance of Ir 1 /FeO x single-atom catalyst in water gas shift reaction Jian Lin, Aiqin Wang, Botao Qiao, Xiaoyan Liu, Xiaofeng Yang, Xiaodong Wang, Jinxia Liang,

More information

Compact Multi-Fuel Autothermal Reforming Catalytic Reactor for H 2 Production

Compact Multi-Fuel Autothermal Reforming Catalytic Reactor for H 2 Production Compact Multi-Fuel Autothermal Reforming Catalytic Reactor for H 2 Production Vincenzo Palma*, Emma Palo, Antonio Ricca, Paolo Ciambelli Dipartimento di Ingegneria Industriale, Università degli Studi di

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Synthesis and Characterization of high-performance ceramic materials for hightemperature

Synthesis and Characterization of high-performance ceramic materials for hightemperature Synthesis and Characterization of high-performance ceramic materials for hightemperature CO 2 capture and hydrogen production. Location: Institute for Energy Technology (IFE), Kjeller, Norway Department

More information

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp , 2016

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp , 2016 KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 255 259, 216 Research Article Effect of Strong Metal Support Interactions of Supported Ni and Ni-Co Catalyst on Metal Dispersion and Catalytic Activity

More information

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Rodrigo Suárez París Supervisors: Magali Boutonnet, Sven Järås Division of Chemical Technology, KTH OUTLINE Introduction and objective Experimental

More information

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications Babak Karimi* a, Majid Vafaeezadeh a a Department of Chemistry,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx Manuel Moliner, *a Cristina Franch, a Eduardo Palomares,

More information

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with High

More information

Manganese promotion in cobalt-based Fischer-Tropsch catalysis

Manganese promotion in cobalt-based Fischer-Tropsch catalysis Manganese promotion in cobalt-based Fischer-Tropsch catalysis F. Morales Cano, O.L.J. Gijzeman, F.M.F. de Groot and B.M. Weckhuysen Department of Inorganic Chemistry and Catalysis, Debye Institute, Utrecht

More information

Sustainable Energy Technologies

Sustainable Energy Technologies Sustainable Energy Technologies Molecular Heterogeneous Catalysis Hydrogen Technology Renewable feedstocks Fuel cell catalysis Prof. Dr. Emiel Hensen Prof. Dr. Peter Notten Prof. Dr. Jaap Schouten Chemical

More information

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Catalysis Today 63 (2000) 471 478 Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Moses O. Adebajo, Russell F. Howe, Mervyn A. Long School of Chemistry, University

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing Ricardo R. Soares, Dante A. Simonetti, and James A. Dumesic*

More information

Introduction. Mathematical model and experimental

Introduction. Mathematical model and experimental COMPARISON OF THE PERFORMANCE OF A REVERSE FLOW REACTOR AND NETWORKS OF NON-STATIONARY CATALYTIC REACTORS FOR CATALYTIC COMBUSTION OF METHANE IN LEAN MIXTURES Miguel A. G. Hevia 1, Davide Fissore 2, Salvador

More information

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION Prof. Elisabete M. Assaf, PhD IQSC - USP Prof. José M. Assaf, PhD; Janaina F. Gomes, PhD; Aline R. L. Miranda, Ms DEQ - UFSCar

More information

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst M. Broda a, V. Manovic b, Q. Imtiaz a, A. M. Kierzkowska a, E. J. Anthony

More information

[ENE06] Optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst

[ENE06] Optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst [ENE06] Optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst Soon Ee Pheng, Nor Aishah Saidina Amin Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi

More information

Aviation Fuel Production from Lipids by a Single-Step Route using

Aviation Fuel Production from Lipids by a Single-Step Route using Aviation Fuel Production from Lipids by a Single-Step Route using Hierarchical Mesoporous Zeolites Deepak Verma, Rohit Kumar, Bharat S. Rana, Anil K. Sinha* CSIR-Indian Institute of Petroleum, Dehradun-2485,

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Propylene: key building block for the production of important petrochemicals

Propylene: key building block for the production of important petrochemicals Propylene production from 11-butene and ethylene catalytic cracking: Study of the performance of HZSMHZSM-5 zeolites and silicoaluminophosphates SAPO--34 and SAPOSAPO SAPO-18 E. Epelde Epelde*, *, A.G.

More information

have also been successfully tested in low temperature NH 3 Noble metals, especially platinum, have been reported to be active catalysts in NH 3

have also been successfully tested in low temperature NH 3 Noble metals, especially platinum, have been reported to be active catalysts in NH 3 46 Novel Pt/CNT and Pd/CNT catalysts for the low temperature ammonia and ethanol assisted selective catalytic reduction of NO Anna Avila 1 *, Mari Pietikäinen 1, Mika Huuhtanen 1, Anne-Riikka Leino 2,

More information

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES ALICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES L. A. ETROV SABIC Chair in Heterogeneous Catalysis Chemical and Materials Engineering Department College of Engineering, King Abdulaziz

More information

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300 42 Utilisation of isotopic oxygen exchange in the development of air-purification catalysts Satu Ojala 1 *, Nicolas Bion 2, Alexandre Baylet 2, Daniel Duprez 2 and Riitta L. Keiski 1 1 University of Oulu,

More information

Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming

Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming A. DI GIULIANO 1,2, J. GIRR 1, C. COURSON 1, A. KIENNEMANN 1,R. MASSACESI 2, K.GALLUCCI 2 1 U n i ve rs i

More information

Selective oxidation of methane to carbon monoxide on supported palladium catalyst

Selective oxidation of methane to carbon monoxide on supported palladium catalyst Applied Catalysis A: General, 80 (1992) Ll-L5 Elsevier Science Publishers B.V., Amsterdam Ll APCAT 2187 Selective oxidation of methane to carbon monoxide on supported palladium catalyst A.K. Bhattacharya*,

More information

CATALYTIC PARTIAL OXIDATION OF ETHANE WITH SULPHUR IMPURITIES OVER Rh AND Pt CATALYSTS

CATALYTIC PARTIAL OXIDATION OF ETHANE WITH SULPHUR IMPURITIES OVER Rh AND Pt CATALYSTS CATALYTIC PARTIAL OXIDATION OF ETHANE WITH SULPHUR IMPURITIES OVER AND CATALYSTS S. Cimino*, G. Mancino**, L. Lisi* stefano.cimino@cnr.it *Istituto Ricerche sulla Combustione CNR P.le V. Tecchio 8, Napoli

More information

Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst

Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite)

More information

Proceeding of ICNM st International Conference on Nanostructured Materials and Nanocomposites (6 8 April 2009, Kottayam, India)

Proceeding of ICNM st International Conference on Nanostructured Materials and Nanocomposites (6 8 April 2009, Kottayam, India) Proceeding of ICNM - 2009 1 st International Conference on Nanostructured Materials and Nanocomposites (6 8 April 2009, Kottayam, India) Published by : Applied Science Innovations Private Limited, India.

More information

TWO-DIMENSIONAL MODELING OF PARTIAL OXIDATION OF METHANE ON RHODIUM IN A SHORT CONTACT TIME REACTOR

TWO-DIMENSIONAL MODELING OF PARTIAL OXIDATION OF METHANE ON RHODIUM IN A SHORT CONTACT TIME REACTOR Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2283 2291 TWO-DIMENSIONAL MODELING OF PARTIAL OXIDATION OF METHANE ON RHODIUM IN A SHORT CONTACT TIME REACTOR OLAF

More information

Babak Karimi* and Majid Vafaeezadeh

Babak Karimi* and Majid Vafaeezadeh Electronic upplementary Material (EI) for RC Advances This journal is The Royal ociety of Chemistry 2013 BA-15 functionalized sulfonic acid confined hydrophobic and acidic ionic liquid: a highly efficient

More information

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect Supporting Information Sintering-resistant Ni-based Reforming Catalysts via the Nanoconfinement Effect Chengxi Zhang a,b, Wancheng Zhu c, Shuirong Li a,b, Gaowei Wu a,b, Xinbin Ma a,b, Xun Wang c, and

More information

Highly Efficient and Robust Au/MgCuCr 2 O 4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde

Highly Efficient and Robust Au/MgCuCr 2 O 4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde Highly Efficient and Robust Au/MgCuCr O 4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde Peng Liu,*, and Emiel J. M. Hensen*, Department of Chemical Engineering and Chemistry, Eindhoven University

More information

Electronic Supplementary Information (ESI) Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications

Electronic Supplementary Information (ESI) Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

O 2 CH 4 CO 2 H

O 2 CH 4 CO 2 H Simulation of Reactive Flow in a Partial Oxidation Reactor with Detailed Gas Phase and Surface Chemistry Models Olaf Deutschmann 1, Lanny D.Schmidt 2, and Jíurgen Warnatz 1 1 Interdisciplinary Center for

More information

The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle

The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle CLEERS presentation October, 2017 The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle Lifeng Xu*, Jason Lupescu, Jeffery Hepburn, Giovanni Cavataio, Kevin Guo, Paul Laing,

More information

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Journal of Natural Gas Chemistry 11(2002)145 150 Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Fandong Meng 1,2, Genhui Xu 1, Zhenhua Li 1, Pa Du 1 1. State

More information

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Kaoru TAKEISHI (武石 薫) E-mail: tcktake ipc.shizuoka.ac.jp Faculty of Engineering, Shizuoka University (Japan)

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/321/5894/1331/dc1 Supporting Online Material for Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation Andrew A. Herzing, Christopher J.

More information

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 104 CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 7.1 INTRODUCTION Aromatic ketones such as acetophenone are important intermediates for the synthesis of drugs and pharmaceuticals (Choudhary et al 2004).

More information

SINOPEC MTP and MTX technologies

SINOPEC MTP and MTX technologies COPYRIGHT@SUNJUNNAN COPYRIGHT@SUNJUNNAN 18-19 th, July, 2016, Parsian Azadi Hotel, Tehran, Iran Methanol+Toluene to Xylenes SINOPEC MTP and MTX technologies July 18 th, 2016 CONTENT MTP Introduction S-MTP

More information

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage (Supporting Information) Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage Sanjay Kumar Singh, Xin-Bo Zhang, and Qiang Xu* National Institute of Advanced Industrial

More information

HYDROGEN PRODUCTION THROUGH GLYCEROL STEAM REFORMING REACTION USING TRANSITION METALS ON ALUMINA CATALYSTS

HYDROGEN PRODUCTION THROUGH GLYCEROL STEAM REFORMING REACTION USING TRANSITION METALS ON ALUMINA CATALYSTS Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 HYDROGEN PRODUCTION THROUGH GLYCEROL STEAM REFORMING REACTION USING TRANSITION

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations

In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations Katrin Pelzer Co-workers MBMS group Catalytic Oxidations Enormous industrial

More information

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Supporting Information Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Guangyi Li, a,b Ning Li, a Shanshan Li, a,b Aiqin Wang, a Yu Cong, a Xiaodong Wang a and Tao Zhang a * a State

More information

DEVELOPMENT OF CATALYSTS FOR ETHANE EPOXIDATION REACTION. Keywords: Ethylene oxide, Partial oxidation, Ethane epoxidation, Second metal.

DEVELOPMENT OF CATALYSTS FOR ETHANE EPOXIDATION REACTION. Keywords: Ethylene oxide, Partial oxidation, Ethane epoxidation, Second metal. DEVELOPMENT OF CATALYSTS FOR ETHANE EPOXIDATION REACTION Kingsuda Mahunee a, Krittiya Pornmai a, Sitthiphong Pengpanich c, Sumaeth Chavade j* a,b a The Petroleum and Petrochemical College, Chulalongkorn

More information

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL 93 CHAPTER 4 SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL 4.1 INTRODUCTION TiO 2 -derived nanotubes are expected to be applicable for several applications,

More information

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 A Tunable Process: Catalytic Transformation of Renewable Furfural with Aliphatic

More information

Methane production from CO2 over Ni-Hydrotalcite derived catalysts

Methane production from CO2 over Ni-Hydrotalcite derived catalysts Methane production from CO2 over Ni-Hydrotalcite derived catalysts Keerthivarman Veerappanchatram Kaliappan vkkeerthivarman@gmail.com Instituto Superior Tecnico, Universidade de Lisboa, Portugal. October

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2522 Catalyst design for natural-gas upgrading through oxybromination chemistry Vladimir Paunović, Guido Zichittella, Maximilian Moser, Amol P. Amrute, and Javier Pérez-Ramírez* Further

More information

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Comparison of acid catalysts for the dehydration of methanol to dimethyl ether I. Sierra, J. Ereña, A. T.

More information

Preventing Thermal Runaways of LENR Reactors. Jacques Ruer sfsnmc

Preventing Thermal Runaways of LENR Reactors. Jacques Ruer sfsnmc Preventing Thermal Runaways of LENR Reactors Jacques Ruer sfsnmc 1 Temperature activated reactions Several authors report that the LENR power increases with the temperature. 2 Temperature activated reactions

More information

HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING

HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING H.T.J. Reijers, D.F. Roskam-Bakker, J.W. Dijkstra, R.P. de Smidt, A. de Groot, R.W. van den Brink Address: Energy research Centre of the Netherlands,

More information

Suppression of natural limestones deactivation during cyclic carbonationdecarbonation

Suppression of natural limestones deactivation during cyclic carbonationdecarbonation Suppression of natural limestones deactivation during cyclic carbonationdecarbonation process in CCS technology Presented by: Dipl.-Ing. Marek Staf, Ph.D UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE FACULTY

More information

Synthesis of Zeolite Composite Membranes for CO2 Separation

Synthesis of Zeolite Composite Membranes for CO2 Separation Synthesis of Zeolite Composite Membranes for CO2 Separation April. 10. 2003 Sang Hoon Hyun, Dong Wook Shin, Young Eun Lee, Moon Hee Han*, and Churl Hee Cho* School of Materials Science & Engineering Yonsei

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

Versatile Preparation of Monodisperse Poly (furfuryl alcohol) and Carbon. Hollow Spheres in a Simple Microfluidic Device

Versatile Preparation of Monodisperse Poly (furfuryl alcohol) and Carbon. Hollow Spheres in a Simple Microfluidic Device Electronic supplementary information (ESI) Versatile Preparation of Monodisperse Poly (furfuryl alcohol) and Carbon Hollow Spheres in a Simple Microfluidic Device Yichang Pan, Minhua Ju, Chongqing Wang,

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Conditions for HCN synthesis and catalyst activation over Pt±Rh gauzes

Conditions for HCN synthesis and catalyst activation over Pt±Rh gauzes Applied Catalysis A: General 180 (1999) 287±298 Conditions for HCN synthesis and catalyst activation over Pt±Rh gauzes A.G. Dietz III, L.D. Schmidt * Department of Chemical Engineering and Materials Science,

More information

Effect of reaction variables on CO methanation process over NiO La 2 O 3 MgO/Al 2 O 3 catalyst for coal to synthetic natural gas

Effect of reaction variables on CO methanation process over NiO La 2 O 3 MgO/Al 2 O 3 catalyst for coal to synthetic natural gas Appl Petrochem Res (2015) 5:413 417 DOI 10.1007/s13203-015-0127-9 ORIGINAL ARTICLE Effect of reaction variables on CO methanation process over NiO La 2 O 3 MgO/Al 2 O 3 catalyst for coal to synthetic natural

More information

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis of jet fuel range cycloalkanes with diacetone alcohol from

More information

-:Vijay Singh(09CEB023)

-:Vijay Singh(09CEB023) Heterogeneous Semiconductor Photocatalyst -:Vijay Singh(09CEB023) Guided by Azrina Abd Aziz Under Dr. Saravanan Pichiah Preparation of TiO 2 Nanoparticle TiO 2 was prepared by hydrolysis and poly-condensation

More information

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Songjun Liu; Ana Obradović; Joris W. Thybaut; Guy B. Marin Laboratory

More information

Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation

Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation Chemical Engineering Science 56 (2001) 633}639 Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation B. Monnerat, L. Kiwi-Minsker, A. Renken* Institute

More information

Methane Oxidation Reactions

Methane Oxidation Reactions Methane Oxidation Reactions CH 4 + 2 O -> CO 2 2 + 2 H 2 O Total Oxidation (Combustion) CH 4 + 0.5 O -> CO 2 + 2 H 2 CO + 0.5 O -> CO 2 2 H 2 + 0.5 O -> H 2 2 O CH 4 + H 2 O->CO + 3 H 2 Partial Oxidation

More information

Preparation of CNTs with the Controlled Porosity using Co-Mo/MCM-41 as a template

Preparation of CNTs with the Controlled Porosity using Co-Mo/MCM-41 as a template Preparation of CNTs with the Controlled Porosity using Co-Mo/MCM-41 as a template A.M. Rashidi 1, M.M. Akbarnejad 1, A.A. Khodadadi 2, Y.Mortazavi 2, M. Attarnejad 1 1 Gas and Catalyst Research Division,

More information

A method for the Regeneration of used Fe-ZSM5 Catalyst in Fischer-Tropsch Synthesis

A method for the Regeneration of used Fe-ZSM5 Catalyst in Fischer-Tropsch Synthesis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021175 1045

More information

Chlorohydrination of Allyl Chloride with HCl and H 2 O 2 to Produce. Dichloropropanols Catalyzed by Hollow TS-1 Zeolite

Chlorohydrination of Allyl Chloride with HCl and H 2 O 2 to Produce. Dichloropropanols Catalyzed by Hollow TS-1 Zeolite Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 216 Chlorohydrination of Allyl Chloride with and 2 O 2 to Produce Dichloropropanols Catalyzed

More information

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Fred Meunier fcm@ircelyon.univ-lyon1.fr Institut de Recherche sur la Catalyse et l Environnement de Lyon Villeurbanne,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Multi-scale promoting effects

More information

AutoChem II 2920 The Cayalyst Characterization Laboratory

AutoChem II 2920 The Cayalyst Characterization Laboratory AutoChem II 2920 The Cayalyst Characterization Laboratory AUTOCHEM II 2920 A Catalyst Characterization Laboratory in a Single Analytical Instrument Micromeritics AutoChem II 2920 Chemisorption Analyzer

More information

Rates of Reaction HL

Rates of Reaction HL Name: Rates of Reaction Objectives 16. Rates of Reaction -define rate of reaction -define catalysis -monitor the rate of production of oxygen from hydrogen peroxide, using manganese dioxide as a catalyst

More information

SUMMARY OF RESEARCH EXCHANGE AT KIT AND SUMMARY OF WP5.2 WORK

SUMMARY OF RESEARCH EXCHANGE AT KIT AND SUMMARY OF WP5.2 WORK SUMMARY OF RESEARCH EXCHANGE AT KIT AND SUMMARY OF WP5.2 WORK 6th researcher s seminar Francisco Vidal Vazquez (Paco) LUT.8.16 CONTENTS Research exchange at KIT Results since last time. Testing of coated

More information

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS A. GREGÓRIO *, A. GARCIA-GARCIA #, D. BOAVIDA *, I. GULYURTLU * AND I. CABRITA * * Department of

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information