PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA

Size: px
Start display at page:

Download "PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA"

Transcription

1 New Phytol. (72) 71, PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA III. INCREASED UPTAKE OF LABILE P FROM SOIL BY D. S. HAYMAN AND B. MOSSE Rothamsted Experimental Station, Harpenden, Hertfordshire {Received May 71) SUMMARY Onion plants were grown in a range of soils labelled with '^P. It was found that although the mycorrhizal plants had taken up more phosphorus and grown larger, the proportion of ^^P to total P (specific activity) taken up by mycorrhizal and nonmycorrhizal plants after 10 weeks was not significantly different. It is concluded that the mycorrhizal roots used the same source of labile phosphate but explored a greater volume of soil beyond the zone of phosphate depletion near the root surface. There was no indication that mycorrhizal roots had access to sources of phosphate different from those accessible to nonmycorrhizal roots. The specific activity of NaHCOj-extractable phosphorus differed considerably between the eight soils but the specific activity of absorbed phosphorus in the plants always corresponded closely to that of the soil in which they had grown. INTRODUCTION In phosphate-deficient soils plants infected with vesicular-arbuscular (VA) mycorrhiza usually take up more phosphorus and grow better than nonmycorrhizal plants (Baylis, 67; Gerdemann, 68; Hayman and Mosse, 71; Nicolson, 67). How the mycorrhizal plants obtain the extra phosphorus is not clear. Although VA mycorrhizal roots take up more phosphorus from solution than nonmycorrhizal roots (Bowen and Theodorou, 67; Gray and Gerdemann, 69), the same mechanism does not necessarily account for their greater uptake of phosphorus from the soil because the major factor normally limiting uptake in soil is the number of phosphate ions at the root surface (Sutton and Gunary, 69). Two possible mechanisms are: (i) hyphae of mycorrhizal roots can absorb phosphate from insoluble forms not available to nonmycorrhizal roots; and (2) hyphae extend into the soil and absorb soluble phosphate beyond the phosphatedepleted zone close to the root surface. The first possibility can be tested by labelling soil with ^^P and comparing the specific activities of the phosphate absorbed by mycorrhizal and nonmycorrhizal plants growing in it. In a short experimental period organic and insoluble phosphates in soil will not become labelled to any appreciable extent. Therefore, if mycorrlaizal plants can utilize these sources of phosphate while nonmycorrhizal plants cannot, the specific activity of absorbed phosphate in the mycorrhizal plants will be lower. MATERIALS AND METHODS Soils The eight soils used were from cultivated land (nos. 7 and 12), grassy common (i^o- 11), deciduous forest (no. 8) and heath (nos. 10, 15, 16 and ) (Hayman and Mosse, 41

2 42 D. S. HAYMAN AND B. MOSSE 71). They were sieved, mixed with peat in proportions of 3 parts soil to i part peat (by volume) and irradiated with a gamma dose of 0.8 Mrad. One quarter (by weight) sterilized sand was mixed with each soil, and lime was added to raise the ph to 6.5. Soluble phosphorus was estimated in 0.5 M NaHCOj at ph 8.5 and in o.oi M CaClj. Table i shows the phosphate contents of the eight soils. They were from the same sites as used in earlier experiments (Hayman and Mosse, 71), but the amounts of available phosphate and the plant growth responses were different in some of the soils. Table i. Phosphorus contents of the eight experimental soils Amounts of soil phosphorus mg total mg/iooo g soil //moles/i P/1000 g Soil no. 7 (F) 8 (F) IO (O) II (F) 12 (O) 15 (O) 16 (O) (O) ilf soluble in NaHCO 3 soluble in CaCl S-4 3-2O (4.6)* 0.97 (47.2)* * Solution too coloured for reliable Olsen test. t Determined colorimetrically with molybdenum blue after fusion with sodium carbonate. (F), Fresh collection from same site as before (Hayman and Mosse, 71): (O), original soil sample stored moist for about 2 years. A solution containing ^^P (2/^Ci//jg P) was added to the test soils at the rate of ioo /xci/kg soil. After standing 2 days each soil was thoroughly mixed with a Kenwood mixer, moistened to field capacity and kept moist. Specific activities were measured weekly in samples extracted in 0.5 M NaHCOj, and equilibrium between labile P and added ^^P was considered to have been reached after 3I weeks (Table 2). The figures in column tp represent the theoretical dilution of '^^P immediately after application to the soil; they are calculated by dividing the activity of ^^P added, by the mean of the NaHCOjextractable P determined on days ii, i8 and 25. Figures in the last column (tgo) represent the calculated specific activity on day 80, when specific activity of the plant phosphorus was determined. The soils were distributed into pots and planted 4 weeks after addition of the ^^P. Plants Onion seedlings, Allium cepa var. James' Long Keeping, were grown in 3-in. pots, two per pot and three replicate pots, and watered and fed as before (Hayman and Mosse, il no II 12 IS 16 Table 2. Rate of equilibration of soil P with P in the eight soils cpm 1 figp soluble in NaHCO 3 (specific activity) to* After 11 days After 18 days After 25 days I3II tsot S 12.7 * to = theoretical specific activity at zero time. t t8o = calculated specific activity on day 80 when specific activity of plant phosphorus was measured. Figures in the first four columns have been adjusted for decay and are directly comparable.

3 uptake of labile P from soil 43 71). They grew for 4 weeks in a glasshouse with supplementary lighting, then 6 weeks in a Saxcil growth cabinet with 16 hours light (24,000 lx) at 21 C and 8 hours dark at 16 C, and a relative humidity of 70%. Treatments Seedlings germinated in sterilized sand were planted in two sets of irradiated no. 8 soil. One set was made mycorrhizal by inoculating with Endogone (yellow vacuolate spore type, Mosse and Bowen, 68), the inoeulum of sporocarps, mycelium and infected root pieces being placed in each planting hole. The other set (eontrols) was given sporocarp teachings containing the micro-organisms that contaminated the sporocarps. When transplanted after 3 weeks to the test soils, the mycorrhizal seedlings weighed an average of 10.3 mg and contained mg P, and the nonmycorrhizal seedlings weighed an average of io.o mg and contained S P- Measurements Fresh and dry weights of shoots and roots were measured at the end of the experiment. The phosphorus contents of washed shoots and roots, ground up and ashed with magnesium aeetate at 450 C and dissolved in HCl, were determined colorimetrieally by the molybdenum blue method using a Technicon auto-analyser. The amount of ^^P present in the washed shoots and roots was determined on either 50- or ioo-mg ground samples on aluminium planchets in a i-in. Geiger-Muller counter with an automatic sample changer and counted for either 1000 or 5000 seconds. The analyses of total P and ^^P were done on samples derived from the two seedlings from each pot combined. Where the combined dry weights were less than 50 mg, the whole sample was placed on the planehet and counted. RESULTS After 18 days equilibration the specific activity of NaHCOj-extractable phosphorus in the soil changed little (Table 2). After 25 days equilibration it ranged from 120 cpm/ /'g P for soil 16, with most extractable phosphorus, to 1404 cpm//jg P for soil 15 with least. In general the measured specific activity on day 11 (Table 2, column 2), was related to the calculated theoretical specific activity at zero time (Table 2, column to), which is ti measure of the expected specific activity on the basis of dilution with the NaHCOjt'Xtractable phosphate. The ratio to/specific activity on day 11 is not, however, the same for all the soils, indicating that other factors, perhaps exchange with other kinds of labile phosphate, affect the specific activity. In all eight soils the specific activity of absorbed phosphorus in the mycorrhizal plants Was very similar to that in nonmycorrhizal ones (Table 3). The differences were not significant at P = Therefore, under our experimental conditions, mycorrhizal and nonmycorrhizal plants had taken up similar amounts of ^^P per unit total phosphorus. 'Similar results were also obtained in a preliminary experiment with two soils (nos. 8 and 'i)- For all soils the specific activity of phosphorus absorbed by plants (Table 3) was similar to that of NaHC03-extractable soil phosphorus adjusted for decay (Table 2, column tgo). Except for soil the activity of the soil phosphorus was always slightly greater. This could be due to a continued slow equilibration of the ^'^P in the soil. In all eight soils the mycorrhizal plants took up more phosphorus (Table 4) and grew

4 44 D. S. HAYMAN AND B. MOSSE Table 3. Specific activities ofphosphorus absorbed by mycorrhizal and nonmycorrhizal onions grown in eight soils {mean of three replicates) il no II cpm//ig P taken up Mycorrhizal plants Nonmycorrhizal plants Shoots Roots II.I Roots Shoots * * Negligible uptake of P. bigger (Table 5) than the nonmycorrhizal ones. Although the mycorrhizal roots weighed more and, therefore, were probably more extensive and explored more soil, the root/ shoot ratios of mycorrhizal plants were generally smaller (Table 5) than those of nonmycorrhizal plants in the same soil. In a previous experiment this was even more marked (Hayman and Mosse, 71). In the present experiment (Table 5) root/shoot ratios were very similar in soils 8 and 12; in soil that of mycorrhizal plants was even slightly Table 4. Phosphorus content of mycorrhizal and nonmycorrhizal onions grown in eight soils {mean ofsixplants) Total phosphorus/plant (mg) Mycorrhizal plants Nonmycorrhizal plants Soil no. Shoots Roots Shoots Roots II s larger, but nonmycorrhizal plants in this soil were so small that a small loss of plant material during harvesting would greatly distort the figures. As VA mycorrhiza causes little change in root morphology it is clear that per unit shoot weight the absorbing surface of mycorrhizal roots is the same or smaller than that of nonmycorrhizal roots. Hence, since mycorrhizal plants have taken up more phosphorus (Table 4), their roots must be more efficient in uptake Table 5. Dry weights and root I shoot ratios of mycorrhizal and nonmycorrhizal onions grown in the eight soils {mean of six plants) Dry weight/plant (mg) Mycorrhizal plants Nonmycorrhizal plants ii no II Shoots Roots ~ Root/shoot ' Shoots " K001 ~ Root/shoot ratio ratio s S 0.83

5 uptake of labile P from soil 45 DISCUSSION These results show that, although mycorrhizal plants clearly took up more phosphate from the soil than nonmycorrhizal ones (Table 4), the specific activity of the absorbed phosphorus was very similar in both (Table 3), indicating that they had used the same, or similarly labelled, sources of phosphate. Similar results have recently been obtained by Sanders and Tinker (71). The correspondence, in all eight soils, between specific activities of absorbed phosphorus in the plants and the NaHCOj-extractable phosphorus in the soil further suggests that the latter was the chief source of phosphorus for both mycorrhizal and nonmycorrhizal plants. These results were unexpected, because Daft and Nicolson (66) and Murdoch, Jackobs and Gerdemann (67) showed that VA mycorrhiza improved growth of plants in sand when the only source of phosphate was 'unavailable', e.g. rock phosphate or apatite, and this has generally been taken as evidence that VA mycorrhiza hydrolysed insoluble phosphates. If this were so the specific activity of their absorbed phosphorus in our experiment should have been lower. A possible explanation of the improved growth of mycorrhizal plants given insoluble phosphate is that mycorrhizal roots, by virtue of their external hyphae, may have a greater area of close contact with surfaces where phosphate ions are dissociating chemically. Small amounts of phosphate will dissociate from rock phosphate to form an equilibrium with the soil solution. If these ions are taken up more efficiently by the external hyphae, more ions will dissociate chemically to restore the equilibrium. With ectotrophic mycorrhiza also there has been uncertainty about the source of the additional phosphate taken up by the mycorrhizal plants. Hydrolysis of insoluble inorganic phosphates, of organic phosphates (phytates) and extra absorbing surface of the branched roots have been considered the most likely explanations. The experimental evidenee has been reviewed by Harley (69). Although the metabolism of mycorrhizal roots differs from that of uninfected roots in several respects (increased respiration rates and sugar levels have been recorded), this may not be a relevant consideration. The uptake of phosphate, especially from low phosphate soils, is thought to be controlled by slow rates of movement of these ions in the soil, so that the limiting factor is not the ability of the root to take them up, hut the ability of the phosphate ions to reach the absorbing surface. Changes in absorbing surface area are therefore more likely to affect uptake than changes in metabolism. Unlike the ectotrophic mycorrhiza, VA mycorrhiza causes little change in root morphology, but could greatly increase the volume of soil explored if the external hyphae acted as additional absorbing surface. Hyphae, by virtue 01 their very large surface per unit weight, could be a very efficient uptake system. In addition mycelium of Endogone has the unusual characteristic that growth is not restricted *-o the hyphal tip, but fine, thin-walled, much branched, rhizoid-iike hyphae can arise laterally from fully mature, even very old thick-walled main hyphae. Also the fungus, being a phycomycete, has few septa and the nnigration of cytoplasm from hyphae that h'ive apparently become functionless to other growing parts of the hyphal system may be observed. The empty part is then cut off by a septum. The extent of the external mycelium ifi the soil and the number and viability of hyphal links between it and the mycelium in tile roots may vary with the soil. Nicolson (60) noted that the external mycelium was much better developed in the fixed yellow zone than in other zones of sand dunes, and ^e noticed (Hayman and Mosse, 71) that in one soil the external mycelium was exceptionally vigorous while in another it seemed to be chiefly in the rhizoplane with a ^e restricted spread in the soil. In agar culture (Mosse and Phillips, 71) the external

6 46 D. S. HAYMAN AND B. MOSSE mycelium can be greatly stimulated by adding certain substances to the medium and under these conditions hyphae grow vigorously up to 4 cm from the root surface. This is considerably more than the depletion zone around roots in the soil which is considered to extend over millimeters rather than centimeters. Sanders and Tinker (71), having considered possible mechanisms that might account for the increased phosphorus uptake of mycorrhizal roots, also concluded that it was most likely linked to the external mycelium. Baylis' (70) observation that plants lacking root hairs tend to benefit more from mycorrhizal infection would also fit in with this explanation. But so far the evidence is largely circumstantial and more positive evidence is required. The best so far is provided by the work of Stone (49) with ectotrophic mycorrhiza. He showed that in two different soils Sudan grass grown together with mycorrhizal pine absorbed very little phosphorus and grew very poorly, but it absorbed between three and ten times as much phosphorus and grew much better when the pine was not mycorrhizal. The nonmycorrhizal pine absorbed little phosphorus and grew very badly. Clearly the Sudan grass and the pine competed for a limited amount of phosphate and when the pine was mycorrhizal it obtained a much greater share. Little is said about the mycorrhizal status of the Sudan grass, but similar kinds of experiment, using either a conifer or an Angiosperm that does not form VA mycorrhiza as index of available phosphate, might be informative. Another approach would he to restrict growth of the external hyphae by treating the soil with a mild fungicide or an antibiotic. The conclusion that the external mycelium of VA mycorrhiza can act as additional absorbing surface for the host plant is so far-reaching that it cannot be accepted without further direct evidence. ACKNOWLEDGMENTS We thank Drs D. S. Jenkinson, F. Sanders and B. Tinker for helpful discussions, and Mr P. H. Le Mare and Miss B. Messer for some of the analyses. REFERENCES BAYLIS, G. T. S. (67). Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytol., 66, 231. BAYLIS, G. T. S. (70). Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil.?' Soil, 33, 713. BowEN, G. D. & THEODOROU, C. (67). Studies on phosphate uptake by mycorrhizas. Proc. int. Un. for. Res. Orgn., 14th, Munich, 5, 116. DAFT, M. J. & NICOLSON, T. H. (66). Effect oiendogone mycorrhiza on plant growth. New Phytol., (>Si 343. GERDEMANN, J. W. (68). Vesicular-arbuscular mycorrhiza and plant growth. A. Rev. Phytopath., 6, 3')7' GRAY, L. E. & GERDEMANN, J. W. (69). Uptake of phosphonjs-32 by vesicular-arbuscular mycorrhiza. PL Soil, 30, 415. HARLEY, J. L. (69). The Biology of Mycorrhiza. Leonard Hill, London. HAYMAN, D. S. & MOSSE, B. (71). Plant growth responses to vesicular-arbuscular mycorrhiza. L Growth of Endogone-\noc\i\2AeA plants in phosphate-deficient soils. New Phytol., 70,. MOSSE, B. & BOWEN, G. D. (68). A key to the recognition of some Endogone spore types. Trans. Br. mycol. Soc, 51, 469. MOSSE, B. & PHILLIPS, J. M. (71). The influence of phosphate and other nutrients on the development 01 vesicular-arbuscular mycorrhiza in culture. J. gen. Microbiol, 68 (in press). MURDOCH, C. L., JACKOBS, J. A. & GERDEMANN, J. W. (67) Utilization of phosphorus sources of different availability by mycorrhizal and non-mycorrhizal maize. PI. Soil, 27, 329. NICOLSON, T. H. (i960). Mycorrhiza in the Gramineae. IL Development in different habitats, particular sand dunes. Trans. Br. mycol. Soc, 43, 132. NICOLSON, T. H. (67). Vesicular-arbuscular mycorrhiza a universal plant symbiosis. Sci. Prog., Ox; 6

7 uptake of labile P from soil 47 SANDERS, F. E. & TINKER, P. B. (71). Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature, Lond., 233, 278. STONE, E. L. (49). Some effects of mycorrhizae on the phosphorus nutrition of Monterey pine seedlings. Proc. Soil Sci. Soc. Am., 14, 340. SuTTON, C. D. & GuNARY, D. (69). Phosphate equilibria in soil. In: Ecological Aspects of the Mineral Nutrition of Plants (Ed. by I. H. Rorison). Brit. ecol. Soc. Symp. No. 9, 127.

8

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH New Phytol. (1969) 68, 945-952. EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH II. INFLUENCE OF SOLUBLE PHOSPHATE ON ENDOPHYTE AND HOST IN MAIZE BY M. J. DAFT AND T. H. NICOLSON Department of Biological

More information

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH New Phytol. (1969) 68, 953-963. EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH III. INFLUENCE OE INOCULUM CONCENTRATION ON GROWTH AND INFECTION IN TOMATO BY M. J. DAFT AND T. H. NICOLSON Department of Biological

More information

COMPONENTS OF VA MYCORRHIZAL INOCULUM AND THEIR EFFECTS ON GROWTH OF ONION

COMPONENTS OF VA MYCORRHIZAL INOCULUM AND THEIR EFFECTS ON GROWTH OF ONION New Phytol. (1981) 87, 3 5 5.161 355 OMPONENTS OF VA MYORRHIZAL INOULUM AND THEIR EFFETS ON GROWTH OF ONION BY A. MANJUNATH AND D. J. BAGYARAJ Depart?nent of Agricultural Microbiology, University of Agricultural

More information

AUTORADIOGRAPHY OF THE DEPLETION ZONE OF PHOSPHATE AROUND ONION ROOTS IN THE PRESENCE OF VESICULAR-ARBUSCULAR MYCORRHIZA

AUTORADIOGRAPHY OF THE DEPLETION ZONE OF PHOSPHATE AROUND ONION ROOTS IN THE PRESENCE OF VESICULAR-ARBUSCULAR MYCORRHIZA New Phytol. (1979) 82, 133-140 AUTORADIOGRAPHY OF THE DEPLETION ZONE OF PHOSPHATE AROUND ONION ROOTS IN THE PRESENCE OF VESICULAR-ARBUSCULAR MYCORRHIZA BY E. OWUSU-BENNOAH AND A. WILD Department of Soil

More information

EFFECT OF GLOMUS MOSSEAE ON GROWTH AND CHEMICAL COMPOSITION OF CAJANUS CAJAN (VAR. ICPL-87)

EFFECT OF GLOMUS MOSSEAE ON GROWTH AND CHEMICAL COMPOSITION OF CAJANUS CAJAN (VAR. ICPL-87) Scholarly Research Journal for Interdisciplinary Studies, Online ISSN 2278-8808, SJIF 2016 = 6.17, www.srjis.com UGC Approved Sr. No.45269, SEPT-OCT 2017, VOL- 4/36 EFFECT OF GLOMUS MOSSEAE ON GROWTH AND

More information

Vesicular-arbuscular mycorrhizal associations of sesamum

Vesicular-arbuscular mycorrhizal associations of sesamum Proc. lndian Acad. Sci. (Plant Sci.), Vol. 98, No. 1, February 1988, pp. 55-59. 9 Printed in India. Vesicular-arbuscular mycorrhizal associations of sesamum M VIJAYALAKSHMI and A S RAO Department of Botany,

More information

Absorption of Mineral Salts by Higher Plant

Absorption of Mineral Salts by Higher Plant Article Shared by Absorption of Mineral Salts by Higher Plant Let us make an in-depth study of the Mycorrhizae. After reading this article you will learn about their role in absorption of mineral salts

More information

THE SIGNIFICANCE OF MYCORRHIZAL NODULES OF AGATHIS AUSTRALIS

THE SIGNIFICANCE OF MYCORRHIZAL NODULES OF AGATHIS AUSTRALIS New Phytol. (1967) 66, 245-250. THE SIGNIFICANCE OF MYCORRHIZAL NODULES OF AGATHIS AUSTRALIS BY T. M. MORRISON AND D. A. ENGLISH Lincoln College, Canterhurv, Nezv Zealand {Received 18 October 1966) SUMMARV

More information

EFFECT OF VESIGULAR-ARBUSCULAR MYCORRHIZAS ON GROWTH OF GRISELLNIA LITTORALIS (CORNAGEAEj BY G, T, S, BAYLIS

EFFECT OF VESIGULAR-ARBUSCULAR MYCORRHIZAS ON GROWTH OF GRISELLNIA LITTORALIS (CORNAGEAEj BY G, T, S, BAYLIS EFFECT OF VESIGULAR-ARBUSCULAR MYCORRHIZAS ON GROWTH OF GRISELLNIA LITTORALIS (CORNAGEAEj BY G, T, S, BAYLIS Botanv Dept., University of Otago, Neiv Zealand {Received 25 July 1958) (With I figure in the

More information

BY SHERIFF O. SANNI. Federal Department of Agricultureal Research, Moor Plantation, P.M.B. 5042, Ibadan, Nigeria. [Received i August 1975) SUMMARY

BY SHERIFF O. SANNI. Federal Department of Agricultureal Research, Moor Plantation, P.M.B. 5042, Ibadan, Nigeria. [Received i August 1975) SUMMARY New Phytol. (1976) 77, 667-671. VESICULAR-ARBUSCULAR MYCORRHIZA IN SOME NIGERIAN SOILS AND THEIR EFFECT ON THE GROWTH OF COWPEA (VIGNA UNGUICULATA), TOMATO {LYCOPERSICON ESCULENTUM) AND MMZE {ZEA MAYS)

More information

QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION*

QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION* W. (1981)87, 6-67 6 QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION* BY BRENDA BIERMANN Department of Botany and Plant Pathology, Oregon State University, Corvallis,

More information

Nature and Science, 2009;7(6), ISSN ,

Nature and Science, 2009;7(6), ISSN , Effect of phosphorus nutrition on growth and mycorrhizal dependency of Coriaria nepalensis seedlings Kiran Bargali and S.S. Bargali* Department of Botany, DSB Campus, Kumaun University, Nainital-263002,

More information

RELATIONSHIPS BETWEEN HOST AND ENDOPHYTE DEVELOPMENT IN MYCORRHIZAL SOYBEANS

RELATIONSHIPS BETWEEN HOST AND ENDOPHYTE DEVELOPMENT IN MYCORRHIZAL SOYBEANS Phytol. (1982) 90, 537-543 537 RELATIONSHIPS BETWEEN HOST AND ENDOPHYTE DEVELOPMENT IN MYCORRHIZAL SOYBEANS BY G. J. BETHLENFALVAY, M. S. BROWN, AND R. S. PACOVSKY Western Regional Research Center, U.S.

More information

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH

EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH EFFECT OF ENDOGONE MYCORRHIZA ON PLANT GROWTH BY M. J. DAFT AND T. H. NICOLSON Department of Botany, Queen's College, Dundee {Received 3 January 1966) SUMMARY The growth effects of three mycorrhizal Endogone

More information

Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp Printed in India. K PARVATHI, K VENKATESWARLU and A S RAO

Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp Printed in India. K PARVATHI, K VENKATESWARLU and A S RAO Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp. 35--40. 9 Printed in India. Response of groundnut (Arachis hypogaea L) to combined inoculation with Glomus mosseae and Rhizobium sp

More information

INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZA AND RHIZOBIUM AND THEIR EFFECTS ON SOYBEAN IN THE FIELD

INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZA AND RHIZOBIUM AND THEIR EFFECTS ON SOYBEAN IN THE FIELD New Phytol. (1979) 82. 141-145 I j_i INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZA AND RHIZOBIUM AND THEIR EFFECTS ON SOYBEAN IN THE FIELD BY D. J- BAGYARAJ, A. MANJUNATH AND R.B. PATIL Department

More information

DIFFERENTIAL RESPONSE OF THE EDAPHIC ECOTYPES IN CYNODON DACTYLON (L)

DIFFERENTIAL RESPONSE OF THE EDAPHIC ECOTYPES IN CYNODON DACTYLON (L) DIFFERENTIAL RESPONSE OF THE EDAPHIC ECOTYPES IN CYNODON DACTYLON (L) PERS. TO SOIL CALCIUM BY P. S. RAMAKRISHNAN* AND VIJAY K. SINGH Department of Botany, Panjab University, -^, India {Received 24 April

More information

Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture

Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture Proc. Indian Acad. Sci. (Plant Sci.), Vol. 93, No. 2, May 1984, pp. 105-110 9 Printed in India. Development of the VAM fungus, Glomus mosseae in groundnut in static solution culture K PARVATHI, K VENKATESWARLU

More information

MYCORRHIZAL DEPENDENCY OF SEVERAL CITRUS CULTIVARS UNDER THREE NUTRIENT REGIMES

MYCORRHIZAL DEPENDENCY OF SEVERAL CITRUS CULTIVARS UNDER THREE NUTRIENT REGIMES NewPhytol. (1978)81,553-559. MYCORRHIZAL DEPENDENCY OF SEVERAL CITRUS CULTIVARS UNDER THREE NUTRIENT REGIMES By J. A. MENGE*, E. L. V. JOHNSON* and R. G. PLATTf Departments Plant Pathology * and Plan t

More information

STUDIES IN THE PHYSIOLOGY OF LICHENS

STUDIES IN THE PHYSIOLOGY OF LICHENS STUDIES IN THE PHYSIOLOGY OF LICHENS V. TRANSLOCATION FROM THE ALGAL LAYER TO THE MEDULLA IN PELTIGERA POLYDACTYLA BY D. C. SMITH AND E. A. DREW Department of Agriculture, University of Oxford {Received

More information

EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM*

EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM* New Phytol. (\9S7), 15, A2^\ 4O3 EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICA TUM* BY B. A. DANIELS HETRICK, D. GERSCHEFSKE KITT AND G. THOMPSON

More information

PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA XII FIELD INOCULATION RESPONSES OF BARLEY AT TWO SOIL P LEVELS

PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA XII FIELD INOCULATION RESPONSES OF BARLEY AT TWO SOIL P LEVELS New Phytol. (1981) 87, 695-703 695 PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA XII FIELD INOCULATION RESPONSES OF BARLEY AT TWO SOIL P LEVELS C. CLARKE.-^ND B. MOSSE Soil Microbiology Department,

More information

Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal. inoculation. Abstract

Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal. inoculation. Abstract Growth responses of Acacia angustissima to vesicular-arbuscular mycorrhizal inoculation ID # 04-32 N. Lucena Costa 1, V.T. Paulino 2 and T.S. Paulino 3 1 EMBRAPA - Amapá,, C.P. 10, Macapá, Amapá, 68902-208,

More information

THE ALLEVIATION OF SALT STRESS BY THE ACTIVITY OF AM FUNGI IN GROWTH AND PRODUCTIVITY OF ONION (ALLIUM CEPA L.) PLANT. ABSTRACT

THE ALLEVIATION OF SALT STRESS BY THE ACTIVITY OF AM FUNGI IN GROWTH AND PRODUCTIVITY OF ONION (ALLIUM CEPA L.) PLANT. ABSTRACT THE ALLEVIATION OF SALT STRESS BY THE ACTIVITY OF AM FUNGI IN GROWTH AND PRODUCTIVITY OF ONION (ALLIUM CEPA L.) PLANT. SHINDE S.K.*¹, SHINDE AND PATALE. 1 Arts, Commerce & Science College, Lasalgaon.(India)

More information

Working with Mycorrhizas in Forestry and Agriculture

Working with Mycorrhizas in Forestry and Agriculture Working with Mycorrhizas in Forestry and Agriculture SUB Gdttingen 206 384661 Mark Brundrett, Neale Bougher, Bernie Dell, Tim Grove and Nick Malajczuk CONTENTS Chapter I. INTRODUCTION 1.1. MYCORRHIZAL

More information

A RELATIONSHIP BETWEEN OXYGEN TRANSPORT AND THE FORMATION OF THE ECTOTROPHIC MYCORRHIZAL SHEATH IN CONIFER SEEDLINGS

A RELATIONSHIP BETWEEN OXYGEN TRANSPORT AND THE FORMATION OF THE ECTOTROPHIC MYCORRHIZAL SHEATH IN CONIFER SEEDLINGS New Phytol. (1972) 71, 49-53. A RELATIONSHIP BETWEEN OXYGEN TRANSPORT AND THE FORMATION OF THE ECTOTROPHIC MYCORRHIZAL SHEATH IN CONIFER SEEDLINGS BY D. J. READ AND W. ARMSTRONG Department of Botany, University

More information

International Journal of Advanced Research in Biological Sciences ISSN: Research Article

International Journal of Advanced Research in Biological Sciences ISSN: Research Article International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com Research Article Diversity and Distribution of VAM Fungi in soils of Kalaburagi District, Karnataka. Venkat

More information

INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS AND STREPTOMYCES CINNAMOMEOUS AND THEIR EFFECTS ON FINGER MILLET

INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS AND STREPTOMYCES CINNAMOMEOUS AND THEIR EFFECTS ON FINGER MILLET New Phytol. (1982) 92, 41-45 INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS AND STREPTOMYCES CINNAMOMEOUS AND THEIR EFFECTS ON FINGER MILLET BY K. R. KRISHNA*, A. N. BALAKRISHNA AND D. J.

More information

MYCORRHIZAL COLONIZATION AS IMPACTED BY CORN HYBRID

MYCORRHIZAL COLONIZATION AS IMPACTED BY CORN HYBRID Proceedings of the South Dakota Academy of Science, Vol. 81 (2002) 27 MYCORRHIZAL COLONIZATION AS IMPACTED BY CORN HYBRID Marie-Laure A. Sauer, Diane H. Rickerl and Patricia K. Wieland South Dakota State

More information

AMMONIUM UPTAKE FROM DILUTE SOLUTIONS BY PINUS RADIATA SEEDLINGS

AMMONIUM UPTAKE FROM DILUTE SOLUTIONS BY PINUS RADIATA SEEDLINGS 10 Vol. 9 AMMONIUM UPTAKE FROM DILUTE SOLUTIONS BY PINUS RADIATA SEEDLINGS JAMES W. FLEWELLING School of Forest Resources, University of Georgia, Athens, Georgia, U.S.A. (First received for publication

More information

ABSORPTION OF PHOSPHORUS FROM SOILS BY MYGORRHIZAL PLANTS BY T. M. MORRISON

ABSORPTION OF PHOSPHORUS FROM SOILS BY MYGORRHIZAL PLANTS BY T. M. MORRISON ABSORPTION OF PHOSPHORUS FROM SOILS BY MYGORRHIZAL PLANTS BY T. M. MORRISON Department of Botany., University of Otago, New Zealand {Received January 19 61) (With 6 figures in the text) SUMMARY Transfer

More information

GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON

GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON New Phytol. (1987) 106, 217-223 217 GERMINATION OF BASIDIOSPORES OF MYCORRHIZAL FUNGI IN THE RHIZOSPHERE OF PINUS RADIATA D. DON BY C. THEODOROU AND G. D. BOWEN* Commonwealth Scientific and Industrial

More information

I International Journal of Innovations in Agricultural Sciences (IJIAS) Journal of In

I International Journal of Innovations in Agricultural Sciences (IJIAS) Journal of In Available online at www.jpsscientificpublications.com Volume 1; Issue - 1; Year 2017; Page: 15 20 ISSN: 2456-7353 DOI: 10.22192/ijias.2017.1.1.4 I International Journal of Innovations in Agricultural Sciences

More information

The Effect of Two Mycorrhizal Fungi upon Growth and Nutrition of Avocado Seedlings Grown with Six Fertilizer Treatments 1

The Effect of Two Mycorrhizal Fungi upon Growth and Nutrition of Avocado Seedlings Grown with Six Fertilizer Treatments 1 J. Amer. Soc. Hort. Sci. 105(3):400-404. 1980. The Effect of Two Mycorrhizal Fungi upon Growth and Nutrition of Avocado Seedlings Grown with Six Fertilizer Treatments 1 J. A. Menge 2, J. LaRue 3, C. K.

More information

EFFECT OF GLOMUS CALLOSUM, MELOIDOGYNE INCOGNITA AND SOIL MOISTURE ON GROWTH AND YIELD OF SUNFLOWER

EFFECT OF GLOMUS CALLOSUM, MELOIDOGYNE INCOGNITA AND SOIL MOISTURE ON GROWTH AND YIELD OF SUNFLOWER Pak. J. Bot., 40(1): 391-396, 2008. EFFECT OF GLOMUS CALLOSUM, MELOIDOGYNE INCOGNITA AND SOIL MOISTURE ON GROWTH AND YIELD OF SUNFLOWER M. JALALUDDIN 1, N.B. HAJRA 2, K. FIROZA 3 AND F. SHAHINA 3 1 Department

More information

The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply

The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply Neto Phytol. (1993), 125, 581-586 The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply BY F. AMIJEE^*, D. P. STRIBLEY^ AND P. W. LANE'^

More information

The Influence of Four Species of Vesicular Arbuscular Mycorrhizas on the Growth of Three Legume Plants

The Influence of Four Species of Vesicular Arbuscular Mycorrhizas on the Growth of Three Legume Plants JKAU: Sci., The vol. Influence 10, pp. 5-10 of Four (1418 Species... A.H. / 1998 A.D.) 5 The Influence of Four Species of Vesicular Arbuscular Mycorrhizas on the Growth of Three Legume Plants SALEH M.

More information

Chapter 37: Plant Nutrition - A Nutritional Network

Chapter 37: Plant Nutrition - A Nutritional Network Chapter 37: Plant Nutrition - A Nutritional Network Every organism continually exchanges energy and materials with its environment For a typical plant, water and minerals come from the soil, while carbon

More information

THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH

THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH [ 24O ] THE UPTAKE OE PHOSPHATE BY EXCISED MYCORRHIZAL ROOTS OE THE BEECH VI. ACTIVE TRANSPORT OF PHOSPHORUS FROM THE FUNGAL SHEATH INTO THE HOST TISSUE BY J. L. HARLEY AND J. K. BRIERLEY Department of

More information

EVIDENCE ON THE PATHWAYS OF PHOSPHORUS TRANSFER BETWEEN VESICULAR-ARBUSCULAR MYCORRHIZAL PLANTS

EVIDENCE ON THE PATHWAYS OF PHOSPHORUS TRANSFER BETWEEN VESICULAR-ARBUSCULAR MYCORRHIZAL PLANTS Neio Phytol. (1986) 104, 77-87 77 EVIDENCE ON THE PATHWAYS OF PHOSPHORUS TRANSFER BETWEEN VESICULAR-ARBUSCULAR MYCORRHIZAL PLANTS BY E. I. NEWMAN AND K. RITZ* Department of Botany, University of Bristol,

More information

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) NCEA Level 1 Biology (90927) 2016 page 1 of 5 Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) Evidence Statement Question One No response

More information

Copyright 2009 Pearson Education, Inc. FUNGI

Copyright 2009 Pearson Education, Inc. FUNGI Copyright 2009 Pearson Education, Inc. FUNGI FUNGI Fungi are absorptive heterotrophic eukaryotes that digest their food externally and absorb the nutrients Most fungi consist of a mass of threadlike hyphae

More information

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae

Effect of host plant, cultivation media and inoculants sources on propagation of mycorrhizal fungus Glomus Mossae EUROPEAN ACADEMIC RESEARCH Vol. V, Issue 12/ March 2018 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Effect of host plant, cultivation and inoculants sources on propagation

More information

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

Increased Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi by Manipulation of Nutrient Regimenst

Increased Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi by Manipulation of Nutrient Regimenst APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 199, p. 413-418 99-224/9/2413-6$2./ Copyright 199, American Society for Microbiology Vol. 56, No. 2 Increased Sporulation of Vesicular-Arbuscular Mycorrhizal

More information

Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links

Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links Yao, Q., Li, X. L., Ai, W. D., & Christie, P. (2003). Bi-directional transfer of

More information

THE INFLUENCE OF SOIL AERATION ON THE EFFICIENCY OF VESICULAR-ARBUSCULAR MYCORRHIZAE

THE INFLUENCE OF SOIL AERATION ON THE EFFICIENCY OF VESICULAR-ARBUSCULAR MYCORRHIZAE Neu> Phytol. (1981) 88, 649-659 649 THE INFLUENE OF SOIL AERATION ON THE EFFIIENY OF VESIULAR-ARBUSULAR MYORRHIZAE I. EFFET OF SOIL OXYGEN ON THE GROWTH AND MINERAL UPTAKE OF EUPA TORIUM ODOR A TUM L.

More information

MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND. Supaporn Thamsurakul 1 and Sompetch Charoensook 2

MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND. Supaporn Thamsurakul 1 and Sompetch Charoensook 2 MYCORRHIZAL FUNGI AS BIOFERTILIZER FOR FRUIT TREE PRODUCTION IN THAILAND Supaporn Thamsurakul 1 and Sompetch Charoensook 2 1 Soil Microbiology Research Group, Soil Science Division, Department of Agriculture,

More information

Plant Function Chs 38, 39 (parts), 40

Plant Function Chs 38, 39 (parts), 40 Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

EVALUATING MYCORRHIZAL INOCULUM LEVELS IN SOIL AND QUANTIFYING THEIR CONTRIBUTION TO THE PHOSPHORUS NUTRITION OF COWPEA

EVALUATING MYCORRHIZAL INOCULUM LEVELS IN SOIL AND QUANTIFYING THEIR CONTRIBUTION TO THE PHOSPHORUS NUTRITION OF COWPEA EVALUATING MYCORRHIZAL INOCULUM LEVELS IN SOIL AND QUANTIFYING THEIR CONTRIBUTION TO THE PHOSPHORUS NUTRITION OF COWPEA A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL

More information

Mycorrhizae of Trees with Special Emphasis on Physiology of Ectotrophic Types

Mycorrhizae of Trees with Special Emphasis on Physiology of Ectotrophic Types The Ohio State University Knowledge Bank kb.osu.edu Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 57, Issue 6 (November, 1957) 1957-11 Mycorrhizae of Trees with Special

More information

Fungi Coloring Worksheet

Fungi Coloring Worksheet Fungi Coloring Worksheet The basic structural features of fungi are not cells but hyphae. Hyphae are microscopic branching filaments filled with cytoplasm and nuclei. Each thread consists of a tube formed

More information

PHOSPHATASE ACTIVITY ASSOCIATED WITH THE ROOTS AND THE RHIZOSPHERE OF PLANTS INFECTED WITH VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI

PHOSPHATASE ACTIVITY ASSOCIATED WITH THE ROOTS AND THE RHIZOSPHERE OF PLANTS INFECTED WITH VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI New Phytol. (1987) 17, 163-172 ' \',. \. ^ ;^::;;;;T*^ - y3--^;- ^ ^ '\ : -^ ""'^ 163 PHOSPHATASE ACTIVITY ASSOCIATED WITH THE ROOTS AND THE RHIZOSPHERE OF PLAS INFECTED WITH VESICULAR-ARBUSCULAR MYCORRHIZAL

More information

Influence of Soils and Fertility on Activity and Survival of Vesicular-Arbuscular Mycorrhizal. Fungi

Influence of Soils and Fertility on Activity and Survival of Vesicular-Arbuscular Mycorrhizal. Fungi Mycorrhiza Symposium Influence of Soils and Fertility on Activity and Survival of Vesicular-Arbuscular Mycorrhizal. Fungi D. S. Hayman Soil Microbiology Department, Rotharnsted Experimental Station, Harpenden,

More information

Effect Of Inoculation Of Vam Fungi On Enhancement Of Biomass And Yield In Okra. Maruti S. Darade

Effect Of Inoculation Of Vam Fungi On Enhancement Of Biomass And Yield In Okra. Maruti S. Darade Effect Of Inoculation Of Vam Fungi On Enhancement Of Biomass And Yield In Okra Maruti S. Darade Department of Botany, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604 (M.S.), India e-mail

More information

Summary Rostaniha, Vol. 2, 2001 THE SYMBIOSIS EFFECT OF VESICULAR-ARBUSCULAR MYCORRHIZA ON GROWTH OF POA BULBOSA (BULBOS BLUE GRASS) L. SAFAII, H. KIANMEHR and M. HAJIAN SHAHRI Department of Biology, Ferdowsi

More information

Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: colonization, plant growth and phosphate uptake

Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: colonization, plant growth and phosphate uptake New Phytol. (1999, 144, 163 172 Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: colonization, plant growth and phosphate uptake S. DICKSON,*, S. E. SMITH, AND F. A.

More information

Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants

Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants B. A. Daniels Hetrick, D. Gerschefske Kitt, G. Thompson Wilson Canadian Journal of Botany, 1988, 66(7): 1376-1380,

More information

A Level. A Level Biology. AQA, OCR, Edexcel. Photosynthesis, Respiration Succession and Nutrient Cycle Questions. Name: Total Marks: Page 1

A Level. A Level Biology. AQA, OCR, Edexcel. Photosynthesis, Respiration Succession and Nutrient Cycle Questions. Name: Total Marks: Page 1 AQA, OCR, Edexcel A Level A Level Biology Photosynthesis, Respiration Succession and Nutrient Cycle Questions Name: Total Marks: Page 1 Q1. The diagram shows the energy flow through a freshwater ecosystem.

More information

As negative mycorrhizal growth responses (MGR) have received more experimental attention

As negative mycorrhizal growth responses (MGR) have received more experimental attention Supplemental Material: Annu. Rev. Plant Biol. 2011. 62:227-250 Supplementary A Negative mycorrhizal responses As negative mycorrhizal growth responses (MGR) have received more experimental attention it

More information

Root-Knot Nematode on Tomato Plants: Effects of Nemacur, Phosphorus and. Infection Time

Root-Knot Nematode on Tomato Plants: Effects of Nemacur, Phosphorus and. Infection Time Ayman Elbuhuth Scientific Journal., Vol 5, pp. 88-107, 1996 Interaction of VA Mycorrhizal Fungi and Root-Knot Nematode on Tomato Plants: Effects of Nemacur, Phosphorus and Infection Time M. O. MIRGHANI

More information

Amutha and Kokila, IJALS, Volume (7) Issue (2) May RESEARCH ARTICLE

Amutha and Kokila, IJALS, Volume (7) Issue (2) May RESEARCH ARTICLE Effect of on symbiotic association of Glomus aggregatum an Arbuscular Mycorrhizal Fungus K. Amutha and V. Kokila Department of Biotechnology, Vels University, Pallavaram, Chennai, Tamilnadu, India Email

More information

Vesicular-arbuscular mycorrhizal fungal sporocarps associated with Pennisetum pedicillatum

Vesicular-arbuscular mycorrhizal fungal sporocarps associated with Pennisetum pedicillatum Proc. lndian Acad. Sci. (Plant Sci.), Vol. 96, No. 2, June 1986, pp. 153--158. 9 Printed in India. Vesicular-arbuscular mycorrhizal fungal sporocarps associated with Pennisetum pedicillatum K AMMANI, K

More information

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant Photosynthesis is the primary driver of the plant. Through a series of complex steps,

More information

In vitro Cultivation of Vesicular- Arbuscular Mycorrhizal Fungi and its Biological Efficacy

In vitro Cultivation of Vesicular- Arbuscular Mycorrhizal Fungi and its Biological Efficacy International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 03 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.703.110

More information

Tropical forests form a source of rich

Tropical forests form a source of rich Research Paper : Effect of AM fungi on sedlings of L. and Juss for integrated nursery stock International Journal of Plant Protection (October, 2010), Vol. 3 No. 2 : 248-252 See end of the article for

More information

GRADE 7: Life science 4. UNIT 7L.4 7 hours. Growing plants. Resources. About this unit. Previous learning. Expectations

GRADE 7: Life science 4. UNIT 7L.4 7 hours. Growing plants. Resources. About this unit. Previous learning. Expectations GRADE 7: Life science 4 Growing plants UNIT 7L.4 7 hours About this unit This unit is the fourth of six units on life science for Grade 7. This unit is designed to guide your planning and teaching of lessons

More information

External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.

External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol. (1992), 120, 509-516 External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of ^^p over defined distances BY I. JAKOBSEN\ L.

More information

Fungi are absorptive heterotrophs that secrete digestive enzymes and are major decomposers of dead organic material

Fungi are absorptive heterotrophs that secrete digestive enzymes and are major decomposers of dead organic material Fungi 1 2002 Prentice Hall, Inc The scarlet hood (Hygrocybe coccinea) Fungi are absorptive heterotrophs that secrete digestive enzymes and are major decomposers of dead organic material 2 Animals 3 Myxozoa

More information

Plant Nutrition and Transport. Chapter 29

Plant Nutrition and Transport. Chapter 29 Plant Nutrition and Transport Chapter 29 Overview: Underground Plants The success of plants depends on their ability to gather and conserve resources from their environment. The transport of materials

More information

Comparison of two main mycorrhizal types

Comparison of two main mycorrhizal types Comparison of two main mycorrhizal types VAM (Endos) Ectos Plant hosts Most vascular plants, including herbs, shrubs, trees. examples of tree you know: Maples, Ash, giant Sequoia, Sequoia, Incense Cedar

More information

Plant Transport and Nutrition

Plant Transport and Nutrition Plant Transport and Nutrition Chapter 36: Transport in Plants H 2 O & Minerals o Transport in xylem o Transpiration Evaporation, adhesion & cohesion Negative pressure. Sugars o Transport in phloem. o Bulk

More information

Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition

Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition Mycorrhizae Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry * M Vosatka M Gryndler Z Prikryl 1 Botanical Institute,

More information

F.A. SMITH S.E. SMITH

F.A. SMITH S.E. SMITH BIOTROPIA No. 8, 1995: 1-10 NUTRIENT TRANSFER IN VESICULAR-ARBUSCULAR MYCORRHIZAS: A NEW MODEL BASED ON THE DISTRIBUTION OF ATPases ON FUNGAL AND PLANT MEMBRANES*) F.A. SMITH Department of Botany, The

More information

EFFECTS OF NUTRIENT LEVELS ON THE COLONIZATION OF POA SECUNDA BY ARBUSCULAR MYCORRHIZAL FUNGI AND DARK SEPTATE ENDOPHYTES

EFFECTS OF NUTRIENT LEVELS ON THE COLONIZATION OF POA SECUNDA BY ARBUSCULAR MYCORRHIZAL FUNGI AND DARK SEPTATE ENDOPHYTES EFFECTS OF NUTRIENT LEVELS ON THE COLONIZATION OF POA SECUNDA BY ARBUSCULAR MYCORRHIZAL FUNGI AND DARK SEPTATE ENDOPHYTES Preya Sanjay Sheth Abstract Arbuscular mycorrhizal fungi (AMF) and dark septate

More information

Name: Block: FUNGI WORKSHEET

Name: Block: FUNGI WORKSHEET FUNGI WORKSHEET Name: Block: The basic structural features of fungi are not cells but hyphae. Hyphae are microscopic branching filaments filled with cytoplasm and nuclei. Each thread consists of a tube

More information

Impact of cropping system on mycorrhiza

Impact of cropping system on mycorrhiza Impact of cropping system on mycorrhiza H. Kahiluoto 1 and M. Vestberg 2 Agricultural Research Centre of Finland 1 Ecological Production, Partala, FIN-51900 Juva, Finland 2 Laukaa Research and Elite Plant

More information

Mycorrhiza Fungus + Plant Host (Root)

Mycorrhiza Fungus + Plant Host (Root) Mycorrhiza Fungus + Plant Host (Root) Root Anatomy Mycorrhizal fungi Cryptomycota http://www.mykoweb.com/articles/index.html#apm1_4 Summary Mycorrhizal symbioses are mutualistic Fungal benefits carbohydrates

More information

The Use of Mycorrhizae in Mined Land Reclamation

The Use of Mycorrhizae in Mined Land Reclamation The Use of Mycorrhizae in Mined Land Reclamation Susan Sturges Mined land sites are generally known to be nutrient poor and contain soils that are in dire need of stabilization to prevent erosion. Marked

More information

Absorption of Water by Plants

Absorption of Water by Plants Absorption of Water by Plants Absorption of water by cells and roots Availability of Water in the Soil Soil is the major source of water for plants. The plants absorb water through root hairs from the

More information

What Shapes an Ecosystem Section 4-2

What Shapes an Ecosystem Section 4-2 What Shapes an Ecosystem Section 4-2 Biotic and Abiotic Factors Ecosystems are influenced by a combination of biological and physical factors. Biotic factors are the biological influences on an organism.

More information

AN ABSTRACT OF THE THESIS OF. in Botany and Plant Pathology presented on December 15, 1976 OF EASTER LILY IN THE PACIFIC NORTHWEST

AN ABSTRACT OF THE THESIS OF. in Botany and Plant Pathology presented on December 15, 1976 OF EASTER LILY IN THE PACIFIC NORTHWEST AN ABSTRACT OF THE THESIS OF Robert Norman Ames for the degree of Master of Science in Botany and Plant Pathology presented on December 15, 1976 Title: STUDIES ON THE VESICULAR-ARBUSCULAR MYCORRHIZAE OF

More information

Gnzman-Plazola. R.A.. R. Ferrera-Cerrato and JJX Etchevers. Centro de Edafologia, Colegio de Postgraduados, Montecillo, Mexico.

Gnzman-Plazola. R.A.. R. Ferrera-Cerrato and JJX Etchevers. Centro de Edafologia, Colegio de Postgraduados, Montecillo, Mexico. Gnzman-Plazola. R.A.. R. Ferrera-Cerrato and JJX Etchevers. Centro de Edafologia, Colegio de Postgraduados, Montecillo, Mexico. LEUCAENA LEUCOCEPHALA, A PLANT OF HIGH MYCORRHIZAL DEPENDENCE IN ACID SOILS

More information

Treat the Cause not the symptom

Treat the Cause not the symptom Treat the Cause not the symptom A few facts about Novozymes Biologicals Bu sin ess d ivisio n o f No vo zym es w it h it s o w n R& D, Manufacturing, Sales & Marketing, Administration Headquartered in

More information

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions.

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions. 5 SIL CHEMISTRY 5.1 Introduction A knowledge of the chemical composition of a soil is less useful than a knowledge of its component minerals and organic materials. These dictate the reactions that occur

More information

Using of Arbuscular Mycorrhizal Fungi to Reduce the Deficiency Effect of Phosphorous Fertilization on Maize Plants (Zea mays L.)

Using of Arbuscular Mycorrhizal Fungi to Reduce the Deficiency Effect of Phosphorous Fertilization on Maize Plants (Zea mays L.) Using of Arbuscular Mycorrhizal Fungi to Reduce the Deficiency Effect of Phosphorous Fertilization on Maize Plants (Zea mays L.) Almagrabi O. A. 1 and Abdelmoneim T. S. 1&2* 1 Biology Department, Faculty

More information

INFLUENCE OF VESICULAR-ARBUSCULAR MYCORRHIZAE ON THE GROWTH AND WATER RELATIONS OF VEGETABLE CROPS

INFLUENCE OF VESICULAR-ARBUSCULAR MYCORRHIZAE ON THE GROWTH AND WATER RELATIONS OF VEGETABLE CROPS INFLUENCE OF VESICULAR-ARBUSCULAR MYCORRHIZAE ON THE GROWTH AND WATER RELATIONS OF VEGETABLE CROPS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF

More information

Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton

Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton R. S. Hussey and R. W. Roncadori ~ Abstract: The influence of,4phelenchus avenae on the relationship between

More information

1 Towards Ecological Relevance Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature... 3 D.J.

1 Towards Ecological Relevance Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature... 3 D.J. Contents Section A: Introduction 1 Towards Ecological Relevance Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature... 3 D.J. Read 1.1 Summary.............................

More information

Mycorrhiza Fungus + Plant Host (Root)

Mycorrhiza Fungus + Plant Host (Root) Mycorrhiza Fungus + Plant Host (Root) Two fungi commonly Use in ectomycorrhiza Research. Laccaria bicolor Pisolithus tinctorius Flowering Plants and mycorrhizal fungi http://mycorrhizas.info/evol.html#intro

More information

Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University

Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI ON GROWTH AND PRODUCTIVITY OF LETTUCE Wantira Ranabuht Department of Botany, Faculty of Science Chulalongkorn University Lettuce Lettuce : Lactuca sativa L. Family

More information

Growth response and nitrogen fixation of Phaseolus lunatus (Lima bean) with the inoculation of AM fungi and Rhizobium

Growth response and nitrogen fixation of Phaseolus lunatus (Lima bean) with the inoculation of AM fungi and Rhizobium RESEARCH PAPER Asian Sciences (June & December, 2009) Vol. 4 Issue 1 & 2 : 37-41 Growth response and nitrogen fixation of Phaseolus lunatus (Lima bean) with the inoculation of AM fungi and Rhizobium P.G.

More information

THE RELATIONSHIP OF MYCORRHIZAL INFECTION TO PHOSPHORUS-INDUCED COPPER DEFICIENCY IN SOUR ORANGE SEEDLINGS*

THE RELATIONSHIP OF MYCORRHIZAL INFECTION TO PHOSPHORUS-INDUCED COPPER DEFICIENCY IN SOUR ORANGE SEEDLINGS* l^ezo Phytol. il9s0) S5, 15-23 THE RELTIONSHIP OF MYCORRHIZL INFECTION TO PHOSPHORUS-INDUCED COPPER DEFICIENCY IN SOUR ORNGE SEEDLINGS* BY L. W. TIMMERf ND R. F. LEYDEN Texas & I University Citrus Center,

More information

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25 B5 PLANT HORMONES Practice questions Name: Class: Date: Time: 53 minutes Marks: 53 marks Comments: Biology Only Page of 25 Hormones called auxins control plant growth. A student investigated plant growth

More information

Tropical Agricultural Research & Extension 16(4): 2014

Tropical Agricultural Research & Extension 16(4): 2014 Tropical Agricultural Research & Extension 16(4): 2014 EFFECTS OF MYCORRHIZAE AS A SUBSTITUTE FOR INORGANIC FERTILIZER ON GROWTH AND YIELD OF TOMATO (LYCOPERSICON ESCULENTUM L.) AND SOY- BEAN (GLYCINE

More information

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford Contents 1 Soil Factors Affecting Nutrient Bioavailability........ 1 N.B. Comerford 1.1 Introduction........................... 1 1.2 Release of Nutrients from the Soil Solid Phase........ 2 1.3 Nutrient

More information

8 Reproduction in flowering plants

8 Reproduction in flowering plants Self-assessment questions 8.01 8 Reproduction in flowering plants 1 Which is the most accurate statement? The principal role of a flower in the life cycle of a plant is: (a) attracting insects (b) producing

More information

Influence of Endomycorrhizae on Growth of Sweetgum Seedlings From Eight Mother Trees

Influence of Endomycorrhizae on Growth of Sweetgum Seedlings From Eight Mother Trees Iowa State University From the SelectedWorks of Richard C. Schultz December, 1977 Influence of Endomycorrhizae on Growth of Sweetgum Seedlings From Eight Mother Trees Richard C. Schultz, University of

More information

Chapter 30: Plant Nutrition & Transport

Chapter 30: Plant Nutrition & Transport Chapter 30: Plant Nutrition & Transport Carnivorous Plants Capture animals to supplement their nutrient intake Venus flytrap lures insects with sugary bait; closes on victim Cobra lily lures insects down

More information

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 4.1 Cell biology Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism.

More information