Multivariate Approaches: Joint Modeling of Imaging and Genetic Data

Size: px
Start display at page:

Download "Multivariate Approaches: Joint Modeling of Imaging and Genetic Data"

Transcription

1 Multivariate Approaches: Joint Modeling of Imaging and Genetic Data Bertrand Thirion, INRIA Saclay-Île-de-France, Parietal team CEA, DSV, I2BM, Neurospin

2 Outline Introduction: Multivariate methods Neuroimaging genetics Limitations of mass univariate models Penalized multiple regression Multivariate multiple regression Examples on simulated and real data

3 Introduction: Multivariate methods Two main families: supervised and unsupervised Unsupervised: clustering, PCA, ICA Generic form: X = AD + E, where only X is known Try to model/understand some data its distribution p(x) without trying to fit any target Supervised: regularized regression, kernel machines, discriminant analysis, PLS Generic form: Y = XB + E, where Y and X are known Try to fit the target data Y given X

4 Introduction: Multivariate methods Supervised methods Unsupervised methods Using unsupervised techniques to solve supervised problems is simply inefficient

5 Neuroimaging Genetics: problem statement Subject s=1..s Brain image data Genetic data Q response variables: Y = {y1,..,yq} P predictor variables: X = {x1,.., xp}

6 Genetic-Neuroimaging studies Small q, small p Small q, large p [Potkin et al. 2009] q = 1 mean BOLD signal; p = 317, 503 SNPs Large q, small p [Joyner et al. 2009] q = 4 brain size measures, p = 11 SNPs [Filippini et al. 2009] q = 29, 812 voxels; p = 1 SNP Large q, large p [Stein et al. 2010] q = 31, 622 voxels; p = 448, 293 SNPs

7 Mass Univariate Linear Models (MULM) A commonly used approach is to model one genotype and one phenotype at a time: 1. Fit all univariate linear regression models yj = βjk xk + ε, j = 1,..., q, k = 1,..., p 2 possibilities: Allelic dosage categorical model 2. Search for a subset of p significant genotypes with indices {k1, k2,..., kp' } {1,..,p} with p' p by testing all (p q) null hypotheses of no association H0 : β jk = 0 3. Correct for multiple testing control experiment-wise FWER or FDR Possible dependence patterns among genotypes and phenotypes are ignored at the modeling stage

8 Problems with MULM If we test for each (voxel, SNP) pair (up to 1012 pairs) Power issue: (peak statistic) to detect an effect with a power of 80%, based on n=1000 subjects, the standardized effect needs to be greater than.26 (.19 with n=2000 subjects). Reproducibility issue: is directly related to the small power false negatives hamper the reproducibility of the analysis this is known to be one of the major issues in GWAS.

9 Multivariate predictive modelling Why modeling multiple genotypes and multiple phenotypes? A weak effect may be more apparent when other causal effects are already accounted for A false signal may be weakened by inclusion in the model of a stronger signal from a true causal association A weak effect may be more apparent if multiple phenotypes are affected Basic strategy: build a linear regression model that includes all genotypes (predictors) and all phenotypes (responses) and then perform variable selection The models covered here are: Penalized multiple linear regression (any p and q = 1) Penalized sparse canonical correlation analysis (any p and q) Penalized reduced-rank regression (any p and q)

10 Multiple genotypes (p > 1) and one phenotype (q = 1): multiple regression The multiple linear regression model with univariate response Fit the multiple linear regression model by solving Equivalently, minimize the error function (loss) When n > p, the OLS solution is given by

11 Penalized multivariate regression for genotype selection One step-approach: fit the multiple linear regression model while finding a subset of p important predictors with indices {k1, k2,..., kp' } {1, 2,..., p} with p' p all having non-zero regression coefficients. This is achieved by fitting a penalized regression model: The penalization ψ(β) imposes a constraint on β. We use convex functions to have unique optimum The coupling parameter λ controls the trade-off between the OLS (unpenalized) solution and the penalized solution.

12 Ridge regression The problem can be rewritten as or more compactly λ controls the amount of shrinkage Some properties are: Closed-form solution Useful when the data matrix X is singular and X T X non invertible Bias-variance trade-off better predictions Grouping effect correlated variables get similar coefficients No variable selection

13 LASSO regression Lasso regression finds β subject to Performs both continuous shrinkage and variable selection λ controls the amount of sparsity For instance, with p = 2:

14 Example of Lasso regularization path The higher the regularization, the sparser the solution Run it yourself

15 Elastic net regression: convex combination of L1 and L2 penalties Elastic net regression solves It retains the benefits of both individual penalties Setting the penalty simplifies to

16 Solving the penalized regression problem Convex but non-smooth problem: a unique optimal solution can always be found, though not through simple techniques (gradient descent etc.) 3 families of methods: Homotopy methods: Lars algorithm [Efron et al. 2004] Proximal methods [Nesterov 2004] Coordinate descent [Friedmann et al. 2009] Implementations available in R/python Glmnet R package, Scikit learn,

17 Variable selection in practice: λ A common procedure is nested cross validation (CV) For each value of λ within a given range: 1. Leave m samples out for testing 2. Use the remaining n m samples for training fit the model 3. Compute the prediction error using the test sample 4. Repeat for all n/m folds and take the average prediction error The optimal λ minimizes the cross-validated prediction error Various search strategies can be used to explore the space Λ No optimal solution guaranteed: the Global problem (that includes optimizing λ) is NOT convex Cost = n/m * Λ

18 Variable selection in practice: caveat Learning the parameter is different from evaluating the performance of the predictive model! You need two have two cross-validation loops Test set (Xt, yt) Data set (X, y) Learning set (Xl, yl) Set Λ Prediction ŷt =Xt β Internal Test set (Xa, ya) Internal learning set (Xb, yb) For all λ in Λ Fit on (Xb, yb) Predict on (Xa, ya) Choose λ* in Λ Compute β prediction accuracy ŷt-yt 2

19 Variable selection in practice Stability selection is an alternative approach which avoids searching for an optimal regularization parameter [Meinshausen and Buhlmann, 2009] The procedure works as follow 1. Extract B subsamples (e.g. of size n/2) from the training data set 2. For each subsample, fit the sparse regression model 3. Estimate the probability of each predictor being selected 4. Select all those predictors whose selection probability is above a pre-determined threshold Under some assumptions, this procedure controls the expected number of false positives Unlike CV, it does not heavily depend upon the regularization parameter λ See [Brunea et al. 2011] But assumes a very sparse solution

20 Example: Lasso regression, stability path Lasso path vitamin geneexpression dataset. The paths of the 6 nonpermuted genes are plotted as solid, red lines, while the paths of the 4082 permuted genes are shown as broken, black lines. [Meinshausen and Buhlmann, 2009] stability path of Lasso

21 Summary on multiple regression Latent variable models for one phenotype Simultaneous dimensionality reduction and variable selection

22 Modeling multiple genotypes and phenotypes Multivariate multiple linear regression: Y = XC + E If n were greater than p, C could be estimated by least squares or with adequate penalization columnwise C(R) would be full rank, R = min (p, q) Same solutions as with q regression models

23 Reduced Rank Regression / PLS Alternative approach: impose a rank condition on the regression coefficient matrix so that rank(c) min(p, q) If C has rank r, it can be written as a product of a (p r ) matrix B and (r q) matrix A, both of full rank The RRR model is written Y = XBA + E, For a fixed rank r, the matrices A and B are obtained by minimizing the weighted least squares criterion M = Tr {(Y XBA) Γ (Y XBA)'} for a given (q q) positive definite matrix Γ

24 Reduced Rank Regression/ PLS illustration Canonical Correlation Analysis (CCA) can be used to remove the variance confound, but requires regularization

25 RRR/PLS Solution The optimal A and B are obtained as H is the (q r ) matrix whose columns are the first r normalized eigenvectors associated with the r largest eigenvalues of the (q q) matrix

26 Sparse reduced rank regression (srrr) Vounou et al. (2010), le Floch et al. (2011) Add penalties to induce sparsity on A and/or B

27 Interpretation of PLS/RRR/CCA Latent variable models for multiple phenotype: Find latent variable pairs (tr, sr ) satisfying some optimal properties [Hoggart et al. (2008) Wu et al. (2009) Vounou et al. (2010) Le Floch et al. (2011)]

28 Statistical power comparison Monte Carlo simulation framework [Vounou et al., 2010] Generate an entire population P of 10k individuals Use a forwards-in-time simulation approach (FREGENE) Reproduce features observed in real human populations Genotypes coded as minor allele SNP-dosage Generate B Monte Carlo data sets of sample size n each: 1. Randomly sample n genotypes x from the population P 2. Simulate the n phenotypes y from a multivariate normal distribution calibrated on real data (ADNI data base) 3. Induce an association according to an additive genetic model p between 1000 to 40, predictive SNPs with small marginal effects q = 111 with 6 true responses

29 Simulations results SNP sensitivity with n = 500 SNP sensitivity with n = 1000

30 Simulations results (ctd) Large p: Ratio of SNP sensitivities (srrr/mulm) as a function of the total number of SNPs

31 More experiments: MULM vs elastic net Comparison of the performance of MULM and elastic net to predict one phenotype generated as Varying the SNR Top: using hybrid simulation (real snps) Bottom: using i.i.d. Data (simulated snps) Also: better support recovery with elastic net Varying the sparsity

32 Real data Q=19 Fnctional asymmetries in Q=19 ROIs P=1083 snps in 12 genetic regions N=94 Localizer dataset [Pinel et al. Subm.] One significant association detected using enet [Thirion et al. in prep]

33 Many thanks to Vincent Frouin, Jean-Baptiste Poline, Edouard Duchesnay, Edith le Floch and the genim group at Neurospin Gaël Varoquaux, Fabian Pedregosa, Alexandre Gramfort, Vincent Michel and scikit learn contributors Giovanni Montana for providing most of this material

34 Bibliography Filippini, N., Rao, A., Wetten, S., et al. (2009). Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer's disease. NeuroImage, 44(3): Hoggart, C., Whittaker, J., De Iorio, M., and Balding, D. (2008). Simultaneous Analysis of All SNPs in Genome-Wide and Re-Sequencing Association Studies. PLoS Genet, 4(7). Joyner, A. H., Roddey, J. C., Bloss, C. S., et al. (2009). A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. PNAS, 106(36): Meinshausen, N. and Buhlmann, P. (2009). Stability selection. Annnals of Statistics. Potkin, S. G., Turner, J. a., Guanti, G., et al. (2009). A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophrenia bulletin, 35(1): Shen, L., Kim, S., Risacher, S. L., Nho, K., et al. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. NeuroImage, pages

35 Bibliography Stein, J. L., Hua, X., Lee, S., et al. (2010). Voxelwise genome-wide association study (vgwas). NeuroImage. Vounou, M., Nichols, T., and Montana, G. (2010). Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. NeuroImage Witten, D., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515. Wu, T., Chen, Y., Hastie, T., Sobel, E., and Lange, K. (2009). Genomewideassociation analysis by lasso penalized logistic regression. Bioinformatics, 25(6):714.

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, Ph.D. Computer Science, Kennesaw State University Problems

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

A Selective Review of Sufficient Dimension Reduction

A Selective Review of Sufficient Dimension Reduction A Selective Review of Sufficient Dimension Reduction Lexin Li Department of Statistics North Carolina State University Lexin Li (NCSU) Sufficient Dimension Reduction 1 / 19 Outline 1 General Framework

More information

HHS Public Access Author manuscript Brain Inform Health (2015). Author manuscript; available in PMC 2016 January 01.

HHS Public Access Author manuscript Brain Inform Health (2015). Author manuscript; available in PMC 2016 January 01. GN-SCCA: GraphNet based Sparse Canonical Correlation Analysis for Brain Imaging Genetics Lei Du 1, Jingwen Yan 1, Sungeun Kim 1, Shannon L. Risacher 1, Heng Huang 2, Mark Inlow 3, Jason H. Moore 4, Andrew

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

LASSO Review, Fused LASSO, Parallel LASSO Solvers

LASSO Review, Fused LASSO, Parallel LASSO Solvers Case Study 3: fmri Prediction LASSO Review, Fused LASSO, Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 3, 2016 Sham Kakade 2016 1 Variable

More information

The lasso: some novel algorithms and applications

The lasso: some novel algorithms and applications 1 The lasso: some novel algorithms and applications Newton Institute, June 25, 2008 Robert Tibshirani Stanford University Collaborations with Trevor Hastie, Jerome Friedman, Holger Hoefling, Gen Nowak,

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics arxiv:1603.08163v1 [stat.ml] 7 Mar 016 Farouk S. Nathoo, Keelin Greenlaw,

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider variable

More information

6. Regularized linear regression

6. Regularized linear regression Foundations of Machine Learning École Centrale Paris Fall 2015 6. Regularized linear regression Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Linear Regression. Volker Tresp 2018

Linear Regression. Volker Tresp 2018 Linear Regression Volker Tresp 2018 1 Learning Machine: The Linear Model / ADALINE As with the Perceptron we start with an activation functions that is a linearly weighted sum of the inputs h = M j=0 w

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Sparse Additive Functional and kernel CCA

Sparse Additive Functional and kernel CCA Sparse Additive Functional and kernel CCA Sivaraman Balakrishnan* Kriti Puniyani* John Lafferty *Carnegie Mellon University University of Chicago Presented by Miao Liu 5/3/2013 Canonical correlation analysis

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Raied Aljadaany, Shi Zong, Chenchen Zhu Disclaimer: A large

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Regularized Regression A Bayesian point of view

Regularized Regression A Bayesian point of view Regularized Regression A Bayesian point of view Vincent MICHEL Director : Gilles Celeux Supervisor : Bertrand Thirion Parietal Team, INRIA Saclay Ile-de-France LRI, Université Paris Sud CEA, DSV, I2BM,

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University.

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University. SCMA292 Mathematical Modeling : Machine Learning Krikamol Muandet Department of Mathematics Faculty of Science, Mahidol University February 9, 2016 Outline Quick Recap of Least Square Ridge Regression

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2013 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Meghana Kshirsagar (mkshirsa), Yiwen Chen (yiwenche) 1 Graph

More information

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013)

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013) A Survey of L 1 Regression Vidaurre, Bielza and Larranaga (2013) Céline Cunen, 20/10/2014 Outline of article 1.Introduction 2.The Lasso for Linear Regression a) Notation and Main Concepts b) Statistical

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Generalized Power Method for Sparse Principal Component Analysis

Generalized Power Method for Sparse Principal Component Analysis Generalized Power Method for Sparse Principal Component Analysis Peter Richtárik CORE/INMA Catholic University of Louvain Belgium VOCAL 2008, Veszprém, Hungary CORE Discussion Paper #2008/70 joint work

More information

Tales from fmri Learning from limited labeled data. Gae l Varoquaux

Tales from fmri Learning from limited labeled data. Gae l Varoquaux Tales from fmri Learning from limited labeled data Gae l Varoquaux fmri data p 100 000 voxels per map Heavily correlated + structured noise Low SNR: 5% 13 db Brain response maps (activation) n Hundreds,

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

Correlate. A method for the integrative analysis of two genomic data sets

Correlate. A method for the integrative analysis of two genomic data sets Correlate A method for the integrative analysis of two genomic data sets Sam Gross, Balasubramanian Narasimhan, Robert Tibshirani, and Daniela Witten February 19, 2010 Introduction Sparse Canonical Correlation

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 2. Overview of multivariate techniques 2.1 Different approaches to multivariate data analysis 2.2 Classification of multivariate techniques

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12 STATS 306B: Unsupervised Learning Spring 2014 Lecture 13 May 12 Lecturer: Lester Mackey Scribe: Jessy Hwang, Minzhe Wang 13.1 Canonical correlation analysis 13.1.1 Recap CCA is a linear dimensionality

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

2.3. Clustering or vector quantization 57

2.3. Clustering or vector quantization 57 Multivariate Statistics non-negative matrix factorisation and sparse dictionary learning The PCA decomposition is by construction optimal solution to argmin A R n q,h R q p X AH 2 2 under constraint :

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

MULTI-VARIATE/MODALITY IMAGE ANALYSIS

MULTI-VARIATE/MODALITY IMAGE ANALYSIS MULTI-VARIATE/MODALITY IMAGE ANALYSIS Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu Curse of dimensionality

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Sparse statistical modelling

Sparse statistical modelling Sparse statistical modelling Tom Bartlett Sparse statistical modelling Tom Bartlett 1 / 28 Introduction A sparse statistical model is one having only a small number of nonzero parameters or weights. [1]

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. August 2008 Trevor

More information

SUPPLEMENTARY APPENDICES FOR WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING

SUPPLEMENTARY APPENDICES FOR WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING Submitted to the Annals of Applied Statistics SUPPLEMENTARY APPENDICES FOR WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING By Philip T. Reiss, Lan Huo, Yihong Zhao, Clare

More information

Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations

Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations Yale School of Public Health Joint work with Ning Hao, Yue S. Niu presented @Tsinghua University Outline 1 The Problem

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

3 Comparison with Other Dummy Variable Methods

3 Comparison with Other Dummy Variable Methods Stats 300C: Theory of Statistics Spring 2018 Lecture 11 April 25, 2018 Prof. Emmanuel Candès Scribe: Emmanuel Candès, Michael Celentano, Zijun Gao, Shuangning Li 1 Outline Agenda: Knockoffs 1. Introduction

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Lucas Janson, Stanford Department of Statistics WADAPT Workshop, NIPS, December 2016 Collaborators: Emmanuel

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive:

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive: Simple Variable Selection LASSO: Sparse Regression Machine Learning CSE546 Carlos Guestrin University of Washington October 7, 2013 1 Sparsity Vector w is sparse, if many entries are zero: Very useful

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Proteomics and Variable Selection

Proteomics and Variable Selection Proteomics and Variable Selection p. 1/55 Proteomics and Variable Selection Alex Lewin With thanks to Paul Kirk for some graphs Department of Epidemiology and Biostatistics, School of Public Health, Imperial

More information

Statistical aspects of prediction models with high-dimensional data

Statistical aspects of prediction models with high-dimensional data Statistical aspects of prediction models with high-dimensional data Anne Laure Boulesteix Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie February 15th, 2017 Typeset by

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent KDD August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. KDD August 2008

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

27: Case study with popular GM III. 1 Introduction: Gene association mapping for complex diseases 1

27: Case study with popular GM III. 1 Introduction: Gene association mapping for complex diseases 1 10-708: Probabilistic Graphical Models, Spring 2015 27: Case study with popular GM III Lecturer: Eric P. Xing Scribes: Hyun Ah Song & Elizabeth Silver 1 Introduction: Gene association mapping for complex

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations

A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations Joint work with Karim Oualkacha (UQÀM), Yi Yang (McGill), Celia Greenwood

More information

Multi-Label Informed Latent Semantic Indexing

Multi-Label Informed Latent Semantic Indexing Multi-Label Informed Latent Semantic Indexing Shipeng Yu 12 Joint work with Kai Yu 1 and Volker Tresp 1 August 2005 1 Siemens Corporate Technology Department of Neural Computation 2 University of Munich

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2018 Last Time: PCA with Orthogonal/Sequential Basis When k = 1, PCA has a scaling problem. When k > 1, have scaling, rotation,

More information

A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA

A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA Gilbert Saporta CEDRIC, Conservatoire National des Arts et Métiers, Paris gilbert.saporta@cnam.fr With inputs from Anne Bernard, Ph.D student Industrial

More information

Adaptive Lasso for correlated predictors

Adaptive Lasso for correlated predictors Adaptive Lasso for correlated predictors Keith Knight Department of Statistics University of Toronto e-mail: keith@utstat.toronto.edu This research was supported by NSERC of Canada. OUTLINE 1. Introduction

More information

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression 1 / 36 Previous two lectures Linear and logistic

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

Lasso regression. Wessel van Wieringen

Lasso regression. Wessel van Wieringen Lasso regression Wessel van Wieringen w.n.van.wieringen@vu.nl Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics, VU University Amsterdam, The Netherlands Lasso regression Instead

More information

HERITABILITY ESTIMATION USING A REGULARIZED REGRESSION APPROACH (HERRA)

HERITABILITY ESTIMATION USING A REGULARIZED REGRESSION APPROACH (HERRA) BIRS 016 1 HERITABILITY ESTIMATION USING A REGULARIZED REGRESSION APPROACH (HERRA) Malka Gorfine, Tel Aviv University, Israel Joint work with Li Hsu, FHCRC, Seattle, USA BIRS 016 The concept of heritability

More information

Sparse PCA with applications in finance

Sparse PCA with applications in finance Sparse PCA with applications in finance A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon 1 Introduction

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Learning with Sparsity Constraints

Learning with Sparsity Constraints Stanford 2010 Trevor Hastie, Stanford Statistics 1 Learning with Sparsity Constraints Trevor Hastie Stanford University recent joint work with Rahul Mazumder, Jerome Friedman and Rob Tibshirani earlier

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Multicategory Vertex Discriminant Analysis for High-Dimensional Data

Multicategory Vertex Discriminant Analysis for High-Dimensional Data Multicategory Vertex Discriminant Analysis for High-Dimensional Data Tong Tong Wu Department of Epidemiology and Biostatistics University of Maryland, College Park October 8, 00 Joint work with Prof. Kenneth

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Predicting causal effects in large-scale systems from observational data

Predicting causal effects in large-scale systems from observational data nature methods Predicting causal effects in large-scale systems from observational data Marloes H Maathuis 1, Diego Colombo 1, Markus Kalisch 1 & Peter Bühlmann 1,2 Supplementary figures and text: Supplementary

More information

Penalized Methods for Multiple Outcome Data in Genome-Wide Association Studies

Penalized Methods for Multiple Outcome Data in Genome-Wide Association Studies Penalized Methods for Multiple Outcome Data in Genome-Wide Association Studies Jin Liu 1, Shuangge Ma 1, and Jian Huang 2 1 Division of Biostatistics, School of Public Health, Yale University 2 Department

More information

A simulation study of model fitting to high dimensional data using penalized logistic regression

A simulation study of model fitting to high dimensional data using penalized logistic regression A simulation study of model fitting to high dimensional data using penalized logistic regression Ellinor Krona Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Assignment 3. Introduction to Machine Learning Prof. B. Ravindran

Assignment 3. Introduction to Machine Learning Prof. B. Ravindran Assignment 3 Introduction to Machine Learning Prof. B. Ravindran 1. In building a linear regression model for a particular data set, you observe the coefficient of one of the features having a relatively

More information